POLITECNICO DI TORINO

Repository ISTITUZIONALE

The quotient set of k-generalised Fibonacci numbers is dense in Q_p

Original
The quotient set of k-generalised Fibonacci numbers is dense in Q_p / Sanna, Carlo. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - STAMPA. - 96:1(2017), pp. 24-29.
[10.1017/S0004972716001118]

Availability:
This version is available at: 11583/2722651 since: 2020-05-03T09:44:47Z
Publisher:
AUSTRALIAN MATHEMATICS PUBL ASSOC INC

Published
DOI:10.1017/S0004972716001118

Terms of use.

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

THE QUOTIENT SET OF k-GENERALIZED FIBONACCI NUMBERS IS DENSE IN \mathbb{Q}_{p}

CARLO SANNA

Abstract

The quotient set of $A \subseteq \mathbb{N}$ is defined as $R(A):=\{a / b: a, b \in A, b \neq 0\}$. Using algebraic number theory in $\mathbb{Q}(\sqrt{5})$, Garcia and Luca proved that the quotient set of Fibonacci numbers is dense in the p-adic numbers \mathbb{Q}_{p}, for all prime numbers p. For any integer $k \geq 2$, let $\left(F_{n}^{(k)}\right)_{n \geq-(k-2)}$ be the sequence of k-generalized Fibonacci numbers, defined by the initial values $0,0, \ldots, 0,1$ (k terms) and such that each term afterwards is the sum of the k preceding terms. We use p-adic analysis to generalize Garcia and Luca's result, by proving that the quotient set of k-generalized Fibonacci numbers is dense in \mathbb{Q}_{p}, for any integer $k \geq 2$ and any prime number p.

1. Introduction

Given a set of nonnegative integers A, the quotient set of A is defined as

$$
R(A):=\{a / b: a, b \in A, b \neq 0\} .
$$

The question of when $R(A)$ is dense in \mathbb{R}^{+}is a classical topic and has been studied by many researchers (see, e.g., $[1,3,4,10,12,13,17,19]$). On the other hand, the analog question of when $R(A)$ is dense in the p-adic numbers \mathbb{Q}_{p}, for some prime number p, has been studied only recently $[8,9]$. Let $\left(F_{n}\right)_{n \geq 0}$ be the sequence of Fibonacci numbers, defined by $F_{0}=0$, $F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$, for all integers $n>1$. Using algebraic number theory in the field $\mathbb{Q}(\sqrt{5})$, Garcia and Luca [9] proved the following result.
Theorem 1.1. For any prime p, the quotient set of Fibonacci numbers is dense in \mathbb{Q}_{p}.
One of the many generalizations of the Fibonacci numbers is the sequence of k-generalized Fibonacci numbers $\left(F_{n}^{(k)}\right)_{n \geq-(k-2)}$, also called Fibonacci k-step sequence, Fibonacci k-sequence, or k-bonacci sequence. For any integer $k \geq 2$, the sequence $\left(F_{n}^{(k)}\right)_{n \geq-(k-2)}$ is defined by

$$
F_{-(k-2)}^{(k)}=\cdots=F_{0}^{(k)}=0, F_{1}^{(k)}=1,
$$

and

$$
F_{n}^{(k)}=F_{n-1}^{(k)}+F_{n-2}^{(k)}+\cdots+F_{n-k}^{(k)},
$$

for all integers $n>1$.
Usually, the study of the arithmetic properties of the k-generalized Fibonacci numbers is more difficult than that of Fibonacci numbers. Indeed, for $k \geq 3$ the sequence of k-generalized Fibonacci numbers lacks several nice properties of the sequence of Fibonacci numbers, like: being a strong divisibility sequence [16, p. 9], having a Primitive Divisor Theorem [21], and having a simple formula for its p-adic valuation [14, 18].

We give the following generalization of Theorem 1.1.
Theorem 1.2. For any integer $k \geq 2$ and any prime number p, the quotient set of the k-generalized Fibonacci numbers is dense in \mathbb{Q}_{p}.

It seems likely that Theorem 1.2 could be extended to other linear recurrences over the integers. However, in our proof we use some specific features of the k-generalized Fibonacci numbers sequence. Therefore, we leave the following open question to the interested readers:

[^0]Under which (reasonable) hypothesis is the quotient set of a linear recurrence over the integers dense in \mathbb{Q}_{p}, for some prime number p ?

2. Proof of Theorem 1.2

From now on, fix an integer $k \geq 2$ and a prime number p. In light of Theorem 1.1, we can suppose $k \geq 3$. Let

$$
f_{k}(X)=X^{k}-X^{k-1}-\cdots-X-1
$$

be the characteristic polynomial of the k-generalized Fibonacci numbers sequence.
It is known [20, Corollary 3.4] that f_{k} is separable. Let K be the splitting field of f_{k} over \mathbb{Q}_{p} and let $\alpha_{1}, \ldots, \alpha_{k} \in K$ be the k distinct roots of f_{k}. We have [5, Theorem 1]

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} c_{i} \alpha_{i}^{n} \tag{1}
\end{equation*}
$$

for all integers $n \geq 0$, where

$$
\begin{equation*}
c_{i}:=\frac{\alpha_{i}-1}{(k+1) \alpha_{i}^{2}-2 k \alpha_{i}}, \tag{2}
\end{equation*}
$$

for $i=1, \ldots, k$.
Now we shall interpolate a subsequence of $\left(F_{n}^{(k)}\right)_{n \geq 0}$ by a function analytic over \mathbb{Z}_{p}. This is a classical method in the study of linear recurrences, which goes back at least to the proof of Skolem-Mahler-Lech theorem [6, Theorem 2.1].

We refer the reader to [11, Ch. 4-6] for the p-adic analysis used hereafter. Let \mathcal{O}_{K} be the valuation ring of $K ; e$ and f be the ramification index and the inertial degree of K over \mathbb{Q}_{p}, respectively; and π be an uniformizer of K.

Looking at the Newton's polygon of f_{k}, we get that $\left|\alpha_{i}\right|_{p}=1$ for all $i=1, \ldots, k$. Hence, in particular, $\alpha_{i} \not \equiv 0 \bmod \pi$. Thus, since $\mathcal{O}_{K} / \pi \mathcal{O}_{K}$ is a finite field of p^{f} elements, we obtain that $\alpha_{i}^{p^{f}-1} \equiv 1 \bmod \pi$. Now pick any positive integer s such that $p^{s} \geq e+1$. Being $|\pi|_{p}=p^{-1 / e}$, we have $\pi^{p^{s}} \equiv 0 \bmod p \pi$, and, in turn, it follows that $\alpha_{i}^{t} \equiv 1 \bmod p \pi$, where $t:=p^{s}\left(p^{f}-1\right)$. At this point,

$$
\begin{equation*}
\left|\alpha_{i}^{t}-1\right|_{p} \leq|p \pi|_{p}=p^{-1-1 / e}<p^{-1 /(p-1)} \tag{3}
\end{equation*}
$$

for $i=1, \ldots, k$.
Now let $\log _{p}$ and $\exp _{p}$ denote the p-adic logarithm and the p-adic exponential functions, respectively. Thanks to (3) we have that

$$
\alpha_{i}^{t}=\exp _{p}\left(\log _{p}\left(\alpha_{i}^{t}\right)\right),
$$

for $i=1, \ldots, k$, which together with (1) implies that $F_{n t}^{(k)}=G(n)$ for all integer $n \geq 0$, where

$$
G(z):=\sum_{i=1}^{k} c_{i} \exp _{p}\left(z \log _{p}\left(\alpha_{i}^{t}\right)\right)
$$

is an analytic function over \mathbb{Z}_{p}.
Let $r>0$ be the radius of convergence of the Taylor series of $G(z)$ at $z=0$, and let $\ell \geq 0$ be an integer. On the one hand, the radius of convergence of the Taylor series of $G\left(p^{\ell} z\right)$ at $z=0$ is $p^{\ell} r$. On the other hand,

$$
G\left(p^{\ell} z\right)=\sum_{i=1}^{k} c_{i} \exp _{p}\left(p^{\ell} z \log _{p}\left(\alpha_{i}^{t}\right)\right)=\sum_{i=1}^{k} c_{i} \exp _{p}\left(z \log _{p}\left(\alpha_{i}^{p^{\ell} t}\right)\right)
$$

Therefore, taking s sufficiently large, we can assume $r>1$.
In particular, we have

$$
\begin{equation*}
G(z)=\sum_{j=0}^{\infty} \frac{G^{(j)}(0)}{j!} z^{j}, \tag{4}
\end{equation*}
$$

for all $z \in \mathbb{Z}_{p}$.
Now we shall prove that $G^{\prime}(0) \neq 0$. For the sake of contradiction, assume that

$$
G^{\prime}(0)=\sum_{i=1}^{k} c_{i} \log _{p}\left(\alpha_{i}^{t}\right)=0
$$

Since $f_{k}(0)=-1$ and t is even, we have $\alpha_{1}^{t} \cdots \alpha_{k}^{t}=1$, so that

$$
\log _{p}\left(\alpha_{k}^{t}\right)=-\log _{p}\left(\alpha_{1}^{t}\right)-\cdots-\log _{p}\left(\alpha_{k-1}^{t}\right)
$$

and consequently

$$
\begin{equation*}
\sum_{i=1}^{k-1}\left(c_{i}-c_{k}\right) \log _{p}\left(\alpha_{i}^{t}\right)=0 \tag{5}
\end{equation*}
$$

We need the following lemma [7, Lemma 1], which is a special case of a general result of Mignotte [15] on Pisot numbers.
Lemma 2.1. The roots $\alpha_{1}, \ldots, \alpha_{k-1}$ are multiplicatively independent, that is, $\alpha_{1}^{e_{1}} \cdots \alpha_{k-1}^{e_{k-1}}=1$ for some integers e_{1}, \ldots, e_{k-1} if and only if $e_{1}=\cdots=e_{k-1}=0$.

Thanks to Lemma 2.1, we know that $\alpha_{1}^{t}, \ldots, \alpha_{k-1}^{t}$ are multiplicatively independent. Hence, $\log _{p}\left(\alpha_{1}^{t}\right), \ldots, \log _{p}\left(\alpha_{k-1}^{t}\right)$ are linearly independent over \mathbb{Z}. Then by [2, Theorem 1] we get that $\log _{p}\left(\alpha_{1}^{t}\right), \ldots, \log _{p}\left(\alpha_{k-1}^{t}\right)$ are linearly independent over the algebraic numbers, hence (5) implies

$$
\begin{equation*}
c_{1}=c_{2}=\cdots=c_{k} . \tag{6}
\end{equation*}
$$

At this point, from (2) and (6) it follows that $\alpha_{1}, \ldots, \alpha_{k}$ are all roots of the polynomial

$$
c_{1}(k+1) X^{2}-\left(2 c_{1} k+1\right) X+1,
$$

but that is clearly impossible, since $k \geq 3$. Hence we have proved that $G^{\prime}(0) \neq 0$.
Taking $z=1$ in (4), we find that $\nu_{p}\left(G^{(j)}(0) / j!\right) \rightarrow+\infty$, as $j \rightarrow+\infty$. In particular, there exists an integer $\ell \geq 0$ such that $\nu_{p}\left(G^{(j)}(0) / j!\right) \geq-\ell$, for all integers $j \geq 0$. As a consequence of this, and since $G(0)=F_{0}^{(k)}=0$, taking $z=m p^{h}$ in (4) we get that

$$
G\left(m p^{h}\right)=G^{\prime}(0) m p^{h}+O\left(p^{2 h-\ell}\right),
$$

for all integers $m, h \geq 0$. Therefore, for $h>h_{0}:=\ell+\nu_{p}\left(G^{\prime}(0)\right)$, we have

$$
\frac{G\left(m p^{h}\right)}{G\left(p^{h}\right)}-m=\frac{G^{\prime}(0) m p^{h}+O\left(p^{2 h-\ell}\right)}{G^{\prime}(0) p^{h}+O\left(p^{2 h-\ell}\right)}-m=\frac{O\left(p^{h-\ell}\right)}{G^{\prime}(0)+O\left(p^{h-\ell}\right)}=O\left(p^{h-h_{0}}\right)
$$

that is,

$$
\lim _{h \rightarrow+\infty}\left|\frac{G\left(m p^{h}\right)}{G\left(p^{h}\right)}-m\right|_{p}=0
$$

In conclusion, we have proved that

$$
\lim _{v \rightarrow+\infty}\left|\frac{F_{m p^{v}\left(p^{f}-1\right)}^{(k)}}{F_{p^{v}\left(p^{f}-1\right)}^{(k)}}-m\right|_{p}=0
$$

for all integers $m \geq 0$. In other words, the closure (respect to the p-adic topology) of the quotient set of k-generalized Fibonacci numbers contains the nonnegative integers \mathbb{N}.

The next easy lemma is enough to conclude.
Lemma 2.2. Let $A \subseteq \mathbb{N}$. If the closure of $R(A)$ contains \mathbb{N}, then $R(A)$ is dense in \mathbb{Q}_{p}.
Proof. Let C be the closure of $R(A)$ as a subspace of \mathbb{Q}_{p}. Since \mathbb{N} is dense in \mathbb{Z}_{p}, we have $\mathbb{Z}_{p} \subseteq C$. Moreover, the inversion $\iota: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Q}_{p}: x \rightarrow x^{-1}$ is continuous and, obviously, sends nonzero elements of $R(A)$ to $R(A)$, hence $\iota\left(\mathbb{Z}_{p}\right) \subseteq C$. Finally, $\mathbb{Q}_{p}=\mathbb{Z}_{p} \cup \iota\left(\mathbb{Z}_{p}\right)$, thus $C=\mathbb{Q}_{p}$ and $R(A)$ is dense in \mathbb{Q}_{p}.

The proof of Theorem 1.2 is complete.

References

1. B. Brown, M. Dairyko, S. R. Garcia, B. Lutz, and M. Someck, Four quotient set gems, Amer. Math. Monthly 121 (2014), no. 7, 590-599.
2. A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121-124.
3. J. Bukor, T. Šalát, and J. T. Tóth, Remarks on R-density of sets of numbers, Tatra Mt. Math. Publ. 11 (1997), 159-165, Number theory (Liptovský Ján, 1995).
4. J. Bukor and J. T. Tóth, On accumulation points of ratio sets of positive integers, Amer. Math. Monthly 103 (1996), no. 6, 502-504.
5. G. P. B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), no. 4, Article 14.4.7, 9.
6. G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence sequences, Mathematical Surveys and Monographs, vol. 104, American Mathematical Society, Providence, RI, 2003.
7. C. Fuchs, C. Hutle, F. Luca, and L. Szalay, Diophantine triples and k-generalized Fibonacci sequences, Bull. Malays. Math. Sci. Soc. (2016), 1-17.
8. S. R. Garcia, Y. X. Hong, F. Luca, E. Pinsker, E. Schechter, and A. Starr, p-adic quotient sets, https: //arxiv.org/abs/1607.07951.
9. S. R. Garcia and F. Luca, Quotients of Fibonacci numbers, Amer. Math. Monthly (to appear).
10. S. R. Garcia, V. Selhorst-Jones, D. E. Poore, and N. Simon, Quotient sets and Diophantine equations, Amer. Math. Monthly 118 (2011), no. 8, 704-711.
11. F. Q. Gouvêa, p-adic numbers, second ed., Universitext, Springer-Verlag, Berlin, 1997, An introduction.
12. S. Hedman and D. Rose, Light subsets of \mathbb{N} with dense quotient sets, Amer. Math. Monthly 116 (2009), no. 7, 635-641.
13. D. Hobby and D. M. Silberger, Quotients of primes, Amer. Math. Monthly 100 (1993), no. 1, 50-52.
14. T. Lengyel, The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995), no. 3, 234-239.
15. M. Mignotte, Sur les conjugués des nombres de Pisot, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 2, 21.
16. P. Ribenboim, My numbers, my friends, Springer-Verlag, New York, 2000, Popular lectures on number theory.
17. T. Šalát, On ratio sets of sets of natural numbers, Acta Arith. 15 (1968/1969), 273-278.
18. C. Sanna, The p-adic valuation of Lucas sequences, Fibonacci Quart. 54 (2016), no. 2, 118-124.
19. O. Strauch and J. T. Tóth, Asymptotic density of $A \subset \mathbf{N}$ and density of the ratio set $R(A)$, Acta Arith. $\mathbf{8 7}$ (1998), no. 1, 67-78.
20. D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1998), no. 2, 129-145.
21. M. Yabuta, A simple proof of Carmichael's theorem on primitive divisors, Fibonacci Quart. 39 (2001), no. 5, 439-443.

Università degli Studi di Torino, Department of Mathematics, Turin, Italy
E-mail address: carlo.sanna.dev@gmail.com
URL: http://orcid.org/0000-0002-2111-7596

[^0]: 2010 Mathematics Subject Classification. Primary: 11B39, Secondary: 11B37, 11B05.
 Key words and phrases. Fibonacci numbers; k-generalized Fibonacci numbers; p-adic numbers; density.

