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THE QUOTIENT SET OF k-GENERALIZED FIBONACCI NUMBERS

IS DENSE IN Qp

CARLO SANNA

Abstract. The quotient set of A ⊆ N is defined as R(A) := {a/b : a, b ∈ A, b 6= 0}. Using

algebraic number theory in Q(
√

5), Garcia and Luca proved that the quotient set of Fibonacci
numbers is dense in the p-adic numbers Qp, for all prime numbers p. For any integer k ≥ 2,

let (F
(k)
n )n≥−(k−2) be the sequence of k-generalized Fibonacci numbers, defined by the initial

values 0, 0, . . . , 0, 1 (k terms) and such that each term afterwards is the sum of the k preceding
terms. We use p-adic analysis to generalize Garcia and Luca’s result, by proving that the
quotient set of k-generalized Fibonacci numbers is dense in Qp, for any integer k ≥ 2 and any
prime number p.

1. Introduction

Given a set of nonnegative integers A, the quotient set of A is defined as

R(A) := {a/b : a, b ∈ A, b 6= 0}.
The question of when R(A) is dense in R+ is a classical topic and has been studied by many
researchers (see, e.g., [1, 3, 4, 10, 12, 13, 17, 19]). On the other hand, the analog question of
when R(A) is dense in the p-adic numbers Qp, for some prime number p, has been studied
only recently [8, 9]. Let (Fn)n≥0 be the sequence of Fibonacci numbers, defined by F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2, for all integers n > 1. Using algebraic number theory in the
field Q(

√
5), Garcia and Luca [9] proved the following result.

Theorem 1.1. For any prime p, the quotient set of Fibonacci numbers is dense in Qp.

One of the many generalizations of the Fibonacci numbers is the sequence of k-generalized

Fibonacci numbers (F
(k)
n )n≥−(k−2), also called Fibonacci k-step sequence, Fibonacci k-sequence,

or k-bonacci sequence. For any integer k ≥ 2, the sequence (F
(k)
n )n≥−(k−2) is defined by

F
(k)
−(k−2) = · · · = F

(k)
0 = 0, F

(k)
1 = 1,

and
F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k,

for all integers n > 1.
Usually, the study of the arithmetic properties of the k-generalized Fibonacci numbers is

more difficult than that of Fibonacci numbers. Indeed, for k ≥ 3 the sequence of k-generalized
Fibonacci numbers lacks several nice properties of the sequence of Fibonacci numbers, like:
being a strong divisibility sequence [16, p. 9], having a Primitive Divisor Theorem [21], and
having a simple formula for its p-adic valuation [14, 18].

We give the following generalization of Theorem 1.1.

Theorem 1.2. For any integer k ≥ 2 and any prime number p, the quotient set of the
k-generalized Fibonacci numbers is dense in Qp.

It seems likely that Theorem 1.2 could be extended to other linear recurrences over the
integers. However, in our proof we use some specific features of the k-generalized Fibonacci
numbers sequence. Therefore, we leave the following open question to the interested readers:
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Under which (reasonable) hypothesis is the quotient set of a linear recurrence over the integers
dense in Qp, for some prime number p?

2. Proof of Theorem 1.2

From now on, fix an integer k ≥ 2 and a prime number p. In light of Theorem 1.1, we can
suppose k ≥ 3. Let

fk(X) = Xk −Xk−1 − · · · −X − 1

be the characteristic polynomial of the k-generalized Fibonacci numbers sequence.
It is known [20, Corollary 3.4] that fk is separable. Let K be the splitting field of fk over

Qp and let α1, . . . , αk ∈ K be the k distinct roots of fk. We have [5, Theorem 1]

(1) F (k)
n =

k∑
i=1

ciα
n
i ,

for all integers n ≥ 0, where

(2) ci :=
αi − 1

(k + 1)α2
i − 2kαi

,

for i = 1, . . . , k.

Now we shall interpolate a subsequence of (F
(k)
n )n≥0 by a function analytic over Zp. This is

a classical method in the study of linear recurrences, which goes back at least to the proof of
Skolem–Mahler–Lech theorem [6, Theorem 2.1].

We refer the reader to [11, Ch. 4–6] for the p-adic analysis used hereafter. Let OK be the
valuation ring of K; e and f be the ramification index and the inertial degree of K over Qp,
respectively; and π be an uniformizer of K.

Looking at the Newton’s polygon of fk, we get that |αi|p = 1 for all i = 1, . . . , k. Hence, in

particular, αi 6≡ 0 mod π. Thus, since OK/πOK is a finite field of pf elements, we obtain that

αpf−1
i ≡ 1 mod π. Now pick any positive integer s such that ps ≥ e + 1. Being |π|p = p−1/e,

we have πp
s ≡ 0 mod pπ, and, in turn, it follows that αt

i ≡ 1 mod pπ, where t := ps(pf − 1).
At this point,

(3) |αt
i − 1|p ≤ |pπ|p = p−1−1/e < p−1/(p−1),

for i = 1, . . . , k.
Now let logp and expp denote the p-adic logarithm and the p-adic exponential functions,

respectively. Thanks to (3) we have that

αt
i = expp(logp(α

t
i)),

for i = 1, . . . , k, which together with (1) implies that F
(k)
nt = G(n) for all integer n ≥ 0, where

G(z) :=

k∑
i=1

ci expp(z logp(α
t
i)),

is an analytic function over Zp.
Let r > 0 be the radius of convergence of the Taylor series of G(z) at z = 0, and let ` ≥ 0

be an integer. On the one hand, the radius of convergence of the Taylor series of G(p`z) at
z = 0 is p`r. On the other hand,

G(p`z) =

k∑
i=1

ci expp(p
`z logp(α

t
i)) =

k∑
i=1

ci expp(z logp(α
p`t
i )).

Therefore, taking s sufficiently large, we can assume r > 1.
In particular, we have

(4) G(z) =
∞∑
j=0

G(j)(0)

j!
zj ,
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for all z ∈ Zp.
Now we shall prove that G′(0) 6= 0. For the sake of contradiction, assume that

G′(0) =

k∑
i=1

ci logp(α
t
i) = 0.

Since fk(0) = −1 and t is even, we have αt
1 · · ·αt

k = 1, so that

logp(α
t
k) = − logp(α

t
1)− · · · − logp(α

t
k−1),

and consequently

(5)
k−1∑
i=1

(ci − ck) logp(α
t
i) = 0.

We need the following lemma [7, Lemma 1], which is a special case of a general result of
Mignotte [15] on Pisot numbers.

Lemma 2.1. The roots α1, . . . , αk−1 are multiplicatively independent, that is, αe1
1 · · ·α

ek−1

k−1 = 1
for some integers e1, . . . , ek−1 if and only if e1 = · · · = ek−1 = 0.

Thanks to Lemma 2.1, we know that αt
1, . . . , α

t
k−1 are multiplicatively independent. Hence,

logp(α
t
1), . . . , logp(α

t
k−1) are linearly independent over Z. Then by [2, Theorem 1] we get that

logp(α
t
1), . . . , logp(α

t
k−1) are linearly independent over the algebraic numbers, hence (5) implies

(6) c1 = c2 = · · · = ck.

At this point, from (2) and (6) it follows that α1, . . . , αk are all roots of the polynomial

c1(k + 1)X2 − (2c1k + 1)X + 1,

but that is clearly impossible, since k ≥ 3. Hence we have proved that G′(0) 6= 0.

Taking z = 1 in (4), we find that νp(G
(j)(0)/j!) → +∞, as j → +∞. In particular, there

exists an integer ` ≥ 0 such that νp(G
(j)(0)/j!) ≥ −`, for all integers j ≥ 0. As a consequence

of this, and since G(0) = F
(k)
0 = 0, taking z = mph in (4) we get that

G(mph) = G′(0)mph +O(p2h−`),

for all integers m,h ≥ 0. Therefore, for h > h0 := `+ νp(G
′(0)), we have

G(mph)

G(ph)
−m =

G′(0)mph +O(p2h−`)

G′(0)ph +O(p2h−`)
−m =

O(ph−`)

G′(0) +O(ph−`)
= O

(
ph−h0

)
,

that is,

lim
h→+∞

∣∣∣∣G(mph)

G(ph)
−m

∣∣∣∣
p

= 0.

In conclusion, we have proved that

lim
v→+∞

∣∣∣∣∣∣
F

(k)

mpv(pf−1)

F
(k)

pv(pf−1)

−m

∣∣∣∣∣∣
p

= 0,

for all integers m ≥ 0. In other words, the closure (respect to the p-adic topology) of the
quotient set of k-generalized Fibonacci numbers contains the nonnegative integers N.

The next easy lemma is enough to conclude.

Lemma 2.2. Let A ⊆ N. If the closure of R(A) contains N, then R(A) is dense in Qp.

Proof. Let C be the closure of R(A) as a subspace of Qp. Since N is dense in Zp, we have
Zp ⊆ C. Moreover, the inversion ι : Z×p → Qp : x → x−1 is continuous and, obviously, sends
nonzero elements of R(A) to R(A), hence ι(Zp) ⊆ C. Finally, Qp = Zp ∪ ι(Zp), thus C = Qp

and R(A) is dense in Qp. �

The proof of Theorem 1.2 is complete.
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