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DISTRIBUTION OF INTEGRAL VALUES FOR THE RATIO OF

TWO LINEAR RECURRENCES

CARLO SANNA

Abstract. Let F and G be linear recurrences over a number field K, and let R be a finitely
generated subring of K. Furthermore, letN be the set of positive integers n such that G(n) 6= 0
and F (n)/G(n) ∈ R. Under mild hypothesis, Corvaja and Zannier proved that N has zero
asymptotic density. We prove that #(N∩[1, x])� x·(log log x/ log x)h for all x ≥ 3, where h is
a positive integer that can be computed in terms of F and G. Assuming the Hardy–Littlewood
k-tuple conjecture, our result is optimal except for the term log log x.

1. Introduction

A sequence of complex numbers F (n)n∈N is called a linear recurrence if there exist some
c0, . . . , ck−1 ∈ C (k ≥ 1), with c0 6= 0, such that

F (n+ k) =
k−1∑
j=0

cjF (n+ j),

for all n ∈ N. In turn, this is equivalent to an (unique) expression

F (n) =

r∑
i=1

fi(n)αni ,

for all n ∈ N, where f1, . . . , fr ∈ C[X] are nonzero polynomials and α1, . . . , αr ∈ C∗ are all the
distinct roots of the polynomial

Xk − ck−1X
k−1 − · · · − c1X − c0.

Classically, α1, . . . , αr and k are called the roots and the order of F , respectively. Furthermore,
F is said to be nondegenerate if none the ratios αi/αj (i 6= j) is a root of unity, and F is said to
be simple if all the f1, . . . , fr are constant. We refer the reader to [6, Ch. 1–8] for the general
theory of linear recurrences.

Hereafter, let F and G be linear recurrences and let R be a finitely generated subring of C.
Assume also that the roots of F and G together generate a multiplicative torsion-free group.
This “torsion-free” hypothesis is not a loss of generality. Indeed, if the group generated by
the roots of F and G has torsion order q, then for each r = 0, 1, . . . , q − 1 the roots of the
linear recurrences Fr(n) = F (qn + r) and Gr(n) = G(qn + r) generate a torsion-free group.
Therefore, all the results in the following can be extended just by partitioning N into the
arithmetic progressions of modulo q and by studying each pair of linear recurrences Fr, Gr
separately. Finally, define the following set of natural numbers

N := {n ∈ N : G(n) 6= 0, F (n)/G(n) ∈ R} .

Regarding the condition G(n) 6= 0, note that, by the “torsion-free” hypothesis, G(n) is nonde-
generate and hence the Skolem–Mahler–Lech Theorem [6, Theorem 2.1] implies that G(n) = 0
only for finitely many n ∈ N. In the sequel, we shall tacitly disregard such integers.

Divisibility properties of linear recurrences have been studied by several authors. A clas-
sical result, conjectured by Pisot and proved by van der Poorten, is the Hadamard-quotient
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2 CARLO SANNA

Theorem, which states that if N contains all sufficiently large integers, then F/G is itself a
linear recurrence [13, 19].

Corvaja and Zannier [5, Theorem 2] gave the following wide extension of the Hadamard-
quotient Theorem (see also [4] for a previous weaker result by the same authors).

Theorem 1.1. If N is infinite, then there exists a nonzero polynomial P ∈ C[X] such that
both the sequences n 7→ P (n)F (n)/G(n) and n 7→ G(n)/P (n) are linear recurrences.

The proof of Theorem 1.1 makes use of the Schmidt’s Subspace Theorem. We refer the
reader to [3] for a survey on several applications of the Schmidt’s Subspace Theorem in
Number Theory.

Let K be a number field. For the sake of simplicity, from now on we shall assume that R ⊆ K
and that F and G have coefficients and values in K. Corvaja and Zannier [5, Corollary 2] proved
also the following theorem about the set N .

Theorem 1.2. If F/G is not a linear recurrence, then N has zero asymptotic density.

We recall that a set of natural numbers S has zero asymptotic density if #S(x)/x → 0, as
x→ +∞, where we define S(x) := S ∩ [1, x] for all x ≥ 1.

Corvaja and Zannier also suggested [5, Remark p. 450] that their proof of Theorem 1.2 could
be adapted to show that if F/G is not a linear recurrence then

(1) #N (x)� x

(log x)δ
,

for any δ < 1 and for all sufficiently large x > 1, where the implied constant depends on K.
In our main result we obtain a more precise upper bound than (1). Before state it, we

mention some special cases of the problem of bounding #N (x) that have already been studied.
Alba González, Luca, Pomerance, and Shparlinski [1, Theorem 1.1] proved the following:

Theorem 1.3. If F is a simple nondegenerate linear recurrence over the integers, r ≥ 2,
G(n) = n, and R = Z, then

#N (x)� x

log x
,

for all sufficiently large x > 1, where the implied constant depends only on r.

For G(n) = n and R = Z, a still better upper bound can be given if F is a Lucas sequence,
that is, F (0) = 0, F (1) = 1, and F (n + 2) = aF (n + 1) + bF (n), for all n ∈ N and some
fixed integers a and b. In such a case the arithmetic properties of N were first investigated by
André-Jeannin [2] and Somer [16, 17]. Luca and Tron [11] studied the case in which F is the
sequence of Fibonacci numbers (a = b = 1) and Sanna [15], using some results on the p-adic
valuation of Lucas sequences [14], generalized Luca and Tron’s result to the following upper
bound.

Theorem 1.4. If F is a nondegenerate Lucas sequences, G(n) = n, and R = Z, then

#N (x) ≤ x1−( 1
2

+o(1)) log log log x
log log x ,

as x→ +∞, where the o(1) depends on F .

Now we state the main result of this paper.

Theorem 1.5. If F/G is not a linear recurrence, then

#N (x)� x ·
(

log log x

log x

)h
,

for all x ≥ 3, where h is a positive integer that can be computed in terms of F and G, while
the implied constant depends on F and G.

The computation of h will be clear in the proof of Theorem 1.5. In particular, it leads
immediately to the following corollary.
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Corollary 1.1. If F/G is not a linear recurrence, G ∈ Z[X], and gcd(G, f1, . . . , fr) = 1, then
h can be taken as the number of irreducible factors of G in Z[X] (counted without multiplicity).

Except for the term log log x, Corollary 1.1 should be optimal. Indeed, pick a positive integer
h and an admissible h-tuple h = (n1, . . . , nh), that is, n1 < · · · < nh are positive integers such
that for each prime number p there exists a residue class modulo p which does not intersect
{n1, . . . , nh}. Assuming Hardy–Littlewood h-tuple conjecture [7, p. 61], we have that the
number Th(x) of positive integers n ≤ x such that n + n1, . . . , n + nh are all prime numbers
satisfies

Th(x) ∼ Ch ·
x

(log x)h
,

as x→ +∞, where Ch > 0 depends on h. Therefore, taking F (n) = (2n+n1−2) · · · (2n+nh−2)
and G(n) = (n+ n1) · · · (n+ nh), we obtain

#N (x) ≥ Th(x)� x

(log x)h
,

for all sufficiently large x > 1.

Notation. Hereafter, the letter p always denotes a prime number. We employ the Landau–
Bachmann “Big Oh” and “little oh” notations O and o, as well as the associated Vinogradov
symbols � and �, with their usual meanings. If A � B and A � B, we write A � B. Any
dependence of implied constants is explicitly stated or indicated with subscripts.

2. Preliminaries

First, we need a quantitative form of a result due to Kronecker [10] (see also [18, p. 32]),
which states that the average number of zeros modulo p of a nonconstant polynomial f ∈ Z[X]
is equal to the number of irreducible factors of f in Z[X].

Theorem 2.1. Given a nonconstant polynomial f ∈ Z[X], for each prime number p let ηf (p)
be the number of zeros of f modulo p. Then∑

p≤x
ηf (p) · log p

p
= h log x+Of (1),

for all x ≥ 1, where h is the number of irreducible factors of f in Z[X].

Proof. It is enough to prove the claim for irreducible f . Let G be the Galois group of f over Q.
By a quantitative version of the Chebotarev’s density theorem [12, Ch. 2, Theorem 7.2], the
number of primes p ≤ x such that the irreducible factors of f modulo p have degrees d1, . . . , ds
is

πG(d1, . . . , ds)

#G
· Li(x) +Of

(
x

exp(C
√

log x)

)
,

for all x > 1, where Li(x) is the logarithmic integral function, C > 0 is a constant depending
on f , and πG(d1, . . . , ds) is the number of g ∈ G that have cycle decomposition with lengths
d1, . . . , ds when regarded as permutations of the roots of f . Furthermore, G acts transitively
on the roots of f , since f is irreducible, hence∑

g∈G
#Xg = #G,

by Burnside’s lemma, where Xg is the set of roots of f which are fixed by g. Hence,∑
p≤x

ηf (p) = Li(x) +Of

(
x

exp(C
√

log x)

)
,

and the desired result follows by partial summation. �

The following lemma [5, Lemma A.2] regards the minimum of the multiplicative orders of
some fixed algebraic numbers modulo a prime ideal.
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Lemma 2.2. Let β1, . . . , βs ∈ K such that none of them is zero or a root of unity. Then,
for all x ≥ 1, the number of prime numbers p ≤ x such that some βi has order less than p1/4

modulo some prime ideal of OK lying above p is O(x1/2), where the implied constant depends
only on β1, . . . , βs.

Now we state a technical lemma about the cardinality of a sieved set of integers.

Lemma 2.3. For each prime number p, let Ωp ( {0, 1, . . . , p− 1} be a set of residues modulo
p, and denote by Ω the whole family of Ωp’s. Suppose that there exist constants c, h > 0 such
that #Ωp ≤ c for each prime number p and

(2)
∑
p≤x

#Ωp ·
log p

p
= h log x+O(1),

for all x > 1. Then we have

# {n ≤ x : (n mod p) /∈ Ωp, ∀p ∈ ]y, z]} �Ω,δ1,δ2 x ·
(

log y

log x

)h
,

for all δ1, δ2 > 0, x > 1, 2 ≤ y ≤ (log x)δ1, and z ≥ xδ2.

Proof. All the constants in this proof, included the implied ones, may depend on Ω, δ1, δ2.
Clearly, we can assume δ2 ≤ 1/2. By the large sieve inequality [8, Theorem 7.14], we have

(3) # {n ≤ x : (n mod p) /∈ Ωp, ∀p ∈ ]y, z]} � x ·

∑
m≤w

gy(m)

−1

,

where w := xδ2 and gy is the multiplicative arithmetic function supported on squarefree num-
bers with all prime factors > y and such that

gy(p) =
#Ωp

p−#Ωp
,

for any prime number p > y.
For sufficiently large x, we have y ≤ w, and it follows from (2) that

−(A+ h log y) + h logw ≤
∑
p≤w

gy(p) log p ≤ B + h logw,

for some constants A,B > 0. Then from [9, Theorem 0.4.1] we obtain that∑
m≤w

gy(m) =
S(w)

Γ(h+ 1)
· (logw)h ·

(
1 +O

(
log y

logw

))
,

where Γ is the Euler’s Gamma function and

S(w) :=
∏
p≤w

(1 + gy(p))

(
1− 1

p

)h
.

In particular, since y ≤ (log x)δ1 , for sufficiently large x we get that

(4)
∑
m≤w

gy(m)� S(w) · (logw)h.

Now from (2) it follows easily that∏
p≤t

(
1− #Ωp

p

)−1

� (log t)h,

for all t ≥ 2. Hence, also thanks to Mertens’ third theorem [8, p. 34, Eq. 2.16], we have

(5) S(w) =
∏
p≤w

(
1− #Ωp

p

)−1(
1− 1

p

)h/ ∏
p≤y

(
1− #Ωp

p

)−1

� 1

(log y)h
.
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Putting together (3), (4), and (5), and recalling that w = xδ2 , the desired result follows. �

Finally, we need a lemma about the number of zeros of a simple linear recurrence in a finite
field of q elements Fq (see also [6, Theorem 5.10] for a more precise result).

Lemma 2.4. Let c1, . . . , cr, a1, . . . , ar ∈ F∗q, and let N be the minimum of the orders of the
ai/aj (i 6= j) in F∗q. (If r = 1 then pick an arbitrary positive integer N .) Then the number of
integers m ∈ [0, q − 1] such that

(6)
r∑
i=1

cia
m
i = 0

is at most 5(q − 1)N−1/2r−2
.

Proof. For r = 1 the claim is obvious since (6) never holds, hence we may assume r ≥ 2. In [5,
Proposition A.1] it is stated and proved that for prime q the number of integers m ∈ [1, q − 1]

satisfying (6) is at most 4(q − 1)N−1/2r−2
, and the same proof works also for not necessarily

prime q. Thus the claim follows, since 4(q − 1)N−1/2r−2
+ 1 ≤ 5(q − 1)N−1/2r−2

. �

3. Proof of Theorem 1.5

The first part of the proof proceeds similarly to the proof of Theorem 1.2. If N is finite,
then the claim is trivial, hence we suppose that N is infinite. Then, by Theorem 1.1 it follows
that F/G = H/P , for some linear recurrence H and some polynomial P . As a consequence,
without loss of generality, we shall assume that G is a polynomial.

Let S be a finite set of absolute values of K containing all the archimedean ones. Write OS
for the ring of S-integers of K, that is, the set of all α ∈ K such that |α|v ≤ 1 for all v /∈ S.
Enlarging K and S we may assume that α1, . . . , αr are S-units, f1, . . . , fr, G ∈ OS [X], and
R ⊆ OS .

Since F/G is not a linear recurrence, it follows that G does not divide all the f1, . . . , fr.
Moreover, factoring out the greatest common divisor (G, f1, . . . , fr) we can even assume that
(G, f1, . . . , fr) = 1 and thatG is nonconstant. In particular, (G(n), f1(n), . . . , fr(n)) is bounded
and, enlarging S, we may assume that it is an S-unit for all n ∈ N.

Let NK(α) denotes the norm of α ∈ K over Q. It is easy to prove that there exist a positive

integer g and a nonconstant polynomial G̃ ∈ Z[X] such that NK(G(n)) = G̃(n)/g for all n ∈ N.

Let h be the number of irreducible factors of G̃ in Z[X]. Again by enlarging S, we may assume
that g is an S-unit.

Let P be the set of all prime numbers p which do not make G̃ vanish identically modulo p,
such that pOK has no prime ideal factor πv with v ∈ S, and such that the minimum order of
the αi/αj (i 6= j) modulo any prime ideal above p is at least p1/4. Furthermore, let us define

Ωp :=
{
` ∈ {0, . . . , p− 1} : G̃(`) ≡ 0 (mod p)

}
,

for any p ∈ P, and Ωp := ∅ for any prime number p /∈ P.

Let x ≥ 3, y := (log x)2rh, and z := x1/(d+1), where d := [K : Q]. We split N (x) into two
subsets:

N1 := {n ∈ N (x) : (n mod p) /∈ Ωp, ∀p ∈ ]y, z]} ,
N2 := N \N1.

First, we give an upper bound for #N1. Hereafter, all the implied constants may depend on

F and G. Clearly, #Ωp ( {0, 1, . . . , p − 1} and #Ωp ≤ deg(G̃) for all prime number p, while
from Theorem 2.1 and Lemma 2.2 it follows that∑

p≤x
#Ωp ·

log p

p
= h log x+O(1).
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Therefore, applying Lemma 2.3, we obtain

#N1 � x ·
(

log y

log x

)h
�
(

log log x

log x

)h
.

Now we give an upper bound for #N2. If n ∈ N2 then there exist p ∈ P ∩ ]y, z] and ` ∈ Ωp

such that n ≡ ` (mod p). In particular, p divides NK(G(`)) in OS and, since pOK has no prime
ideal factor πv with v ∈ S, it follows that there exists some prime ideal π of OS lying above
p and dividing G(`). Let Fq := OS/π, so that q is a power of p. Write n = ` + mp, for some
integer m ≥ 0. Since π divides G(n) and F (n)/G(n) ∈ OS , we have that F (n) is divisible by
π too. As a consequence, we obtain that

(7)
r∑
i=1

fi(`)α
`
i

(
αpi
)m ≡ r∑

i=1

fi(n)αni ≡ F (n) ≡ 0 (mod π).

Note that f1(`), . . . , fr(`) cannot be all equal to zero modulo π, since π divides G(`) and
(G(`), f1(`), . . . , fr(`)) is an S-unit. Note also that the minimum order of the αpi /α

p
j (i 6= j)

modulo π is equal to the minimum order of the αi/αj (i 6= j) modulo π, since (p, q − 1) = 1.
Therefore, we can apply Lemma 2.4 to the congruence (7). The positive integer r may

decrease, and N can the taken ≥ p1/4, in light of the definition of P. It follows that the
number of possible values of m modulo q − 1 is at most 5(q − 1)p−1/2r . Consequently, the
number of possible values of n ≤ x is at most

5(q − 1)p−1/2r
(

x

p(q − 1)
+ 1

)
� x

p1+1/2r
,

since p(q − 1) < pd+1 ≤ zd+1 ≤ x. Hence, we have

#N2 �
∑

p∈P ∩ ]y,z]

x

p1+1/2r
�
∫ +∞

y

dt

t1+1/2r
� x

y1/2r
=

x

(log x)h
.

In conclusion,

#N (x) = #N1 + #N2 � x ·
(

log log x

log x

)h
as claimed.

Acknowledgements. The author thanks Umberto Zannier for a fruitful conversation on
Theorem 1.2.
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4. P. Corvaja and U. Zannier, Diophantine equations with power sums and universal Hilbert sets, Indag. Math.
(N.S.) 9 (1998), no. 3, 317–332.

5. P. Corvaja and U. Zannier, Finiteness of integral values for the ratio of two linear recurrences, Invent. Math.
149 (2002), no. 2, 431–451.

6. G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence sequences, Mathematical Surveys
and Monographs, vol. 104, American Mathematical Society, Providence, RI, 2003.

7. G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a
number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70.

8. H. Iwaniec and E. Kowalski, Analytic number theory, American Mathematical Society Colloquium
Publications, vol. 53, American Mathematical Society, Providence, RI, 2004.

9. D. Koukoulopoulos, Sieve methods, 2015, http://www.dms.umontreal.ca/~koukoulo/.
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