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DYNAMICS FOR SYSTEMS OF SCREW DISLOCATIONS∗

T. BLASS† , I. FONSECA‡ , G. LEONI‡ , AND M. MORANDOTTI§

Abstract. The goal of this paper is the analytical validation of a model of Cermelli and Gurtin
[Arch. Ration. Mech. Anal., 148 (1999), pp. 3–52] for an evolution law for systems of screw dislo-
cations under the assumption of antiplane shear. The motion of the dislocations is restricted to a
discrete set of glide directions, which are properties of the material. The evolution law is given by a
“maximal dissipation criterion,” leading to a system of differential inclusions. Short time existence,
uniqueness, cross-slip, and fine cross-slip of solutions are proved.
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renormalized energy, variational methods
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1. Introduction. Dislocations are one-dimensional defects in crystalline mate-
rials [28]. Their modeling is of great interest in materials science since important
material properties, such as rigidity and conductivity, can be strongly affected by the
presence of dislocations. For example, large collections of dislocations can result in
plastic deformations in solids under applied loads.

In this paper we study the motion of screw dislocations in cylindrical crystalline
materials using a continuum model introduced by Cermelli and Gurtin [12]. One
of our main contributions is the analytical validation to this model by proving local
existence and uniqueness of solutions to the equations of motions for a system of
dislocations. In particular, we prove rigorously the phenomena of cross-slip and fine
cross-slip. We refer the reader to the work of Armano and Cermelli (see [4, 11]) for
the case of a single dislocation.

Following the work of Cermelli and Gurtin [12], we consider an elastic body B :=
Ω×R, where Ω ⊂ R

2 is a bounded simply connected open set with a C2,α boundary.
The body B undergoes antiplane shear deformations Φ : B → B of the form

Φ(x1, x2, x3) := (x1, x2, x3 + u(x1, x2)),

with u : Ω → R. The deformation gradient F is given by

(1.1) F := ∇Φ =

⎛⎝ 1 0 0
0 1 0
∂u
∂x1

∂u
∂x2

1

⎞⎠ = I+ e3⊗
( ∇u

0

)
.
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The assumption of antiplane shear allows us to reduce the three-dimensional problem
to a two-dimensional problem. We will consider strain fields h that are defined on
the cross-section Ω, taking values in R

2. In the absence of dislocations, the strain h is
the gradient of a function, h = ∇u. If dislocations are present, then the strain field is
singular at the sites of the dislocations, and in the case of screw dislocations this will
be a line singularity. In the antiplane shear setting, this line is parallel to the x3 axis
and the screw dislocation is represented as a point singularity on the cross-section Ω.

A screw dislocation is characterized by a position z ∈ Ω and a vector b ∈ R
3,

called the Burgers vector. The position z ∈ Ω is a point where the strain field fails
to be the gradient of a smooth function and the Burgers vector measures the severity
of this failure. To be precise, a strain field associated with a system of N screw
dislocations at positions

Z := {z1, . . . , zN} ⊂ Ω

with corresponding Burgers vectors

B := {b1e3, . . . , bNe3}
satisfies the relation

(1.2) curlh =

N∑
i=1

biδzi in Ω

in the sense of distributions. Here curlh is the scalar curl ∂h2

∂x1
− ∂h1

∂x2
, δx is the Dirac

mass at the point x, and the scalar bi is called the Burgers modulus for the dislocation
at zi, and in view of (1.2) it is given by

bi =

∫
�i

h · t ds,

where �i is any counterclockwise loop surrounding the dislocation point zi and no
other dislocation points, t is the tangent to �i, and ds is the line element.

Note that, following the classical construction of Volterra (see [27, sect. 3-2]),
strain fields h satisfying (1.2) can be obtained from a perfect cylinder by shear dis-
placements in the z direction across the xz plane.

When dislocations are present, (1.1) is replaced with

F = I+ e3⊗
(

h
0

)
.

To derive a motion law for the system of dislocations we need to introduce the
free energy associated with the system. We work in the context of linear elasticity.
The energy density W is given by

W (h) :=
1

2
h · Lh,

where the elasticity tensor L is a symmetric, positive-definite matrix, which, in suit-
able coordinates, can be written in terms of the Lamé moduli λ, μ of the material
as

L :=

(
μ 0
0 μλ2

)
.
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We require μ > 0, and the energy is isotropic if and only if λ2 = 1. The energy of a
strain field h is given by

(1.3) J(h) :=

∫
Ω

W (h(x)) dx,

and the equilibrium equation is

(1.4) divLh = 0 in Ω.

Equations (1.2) and (1.4) provide a characterization of strain fields describing screw
dislocation systems in linearly elastic materials.

To be precise, we say that a strain field h corresponds to a system of dislocations
at the positions Z with Burgers vectors B if h satisfies

(1.5)

{
curlh =

∑N
i=1 biδzi

divLh = 0
in Ω

in the sense of distributions.
In analogy to the theory of Ginzburg–Landau vortices [6], no variational principle

can be associated with (1.5) because the elastic energy of a system of screw disloca-
tions is not finite (see, e.g., [13, 12, 28]), and therefore the study of (1.5) cannot
be undertaken in terms of energy minimization. Indeed, the simultaneous require-
ments of finite energy and (1.2) are incompatible since if curlh = δz0 , z0 ∈ Ω, and if
Bε(z0) ⊂⊂ Ω, then ∫

Ω\Bε(z0)

|h|2dx = O(| log ε|).

In the engineering literature (see, e.g., [12, 28]), this problem is usually overcome by
regularizing the energy, namely, by replacing the energy J in (1.3) with a new energy
Jε obtained by removing small cores of size ε > 0 centered at the dislocations points
zi. This allows one to obtain finite-energy strains hε as minimizers of Jε. It was
shown in [7] (see also [2, 5, 13] and the references therein) that

(1.6) Jε(hε) = C| log ε|+ U(z1, . . . , zN ) +O(ε),

where U is the renormalized energy associated with the limiting strain

(1.7) h0 = lim
ε→0

hε,

satisfying (1.5). The renormalized energy U is a function only of the positions
{z1, . . . , zN} (and of the Burgers moduli) and can be written as the sum of three
energy contributions: a “self” energy associated with the presence of a dislocation, an
energy associated with the interaction between dislocations, and an energy associated
to the elastic medium. See section IV in the supplementary materials file for this
paper, which is linked from the main article webpage.

The force on a dislocation at zi due to the elastic strain is called the Peach–Köhler
force and is denoted by ji (see [12, 29]). It is proved in [7] that ji is given by the
negative gradient of the renormalized energy U with respect to zi. Specifically,

(1.8) ji = −∇ziU =

∫
�i

{W (h0)I− h0⊗(Lh0)}n ds,
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where �i is a suitably chosen loop around zi, h0 is defined in (1.7), and n is the outer
unit normal to the set bounded by �i and containing zi. The quantity W (h0)I −
h0⊗(Lh0) is the Eshelby stress tensor ; see [17, 25].

To study the motion of dislocations it is more convenient to rewrite ji in the form

(1.9) ji(Z) = biJL

⎡⎣∑
j �=i

kj(zi; zj) +∇u0(zi;Z)

⎤⎦
(see [7] for a proof of this derivation). Here Z := (z1, . . . , zN ) ∈ R

2N , kj(·; zj) is the
fundamental singular strain generated by the dislocation zj , where

(1.10) kj(x;y) :=
bj
2π

λJT (x− y)

|Λ(x− y)|2 , (x,y) ∈ R
2×R

2, x �= y,

with

J :=

(
0 1

−1 0

)
, Λ :=

(
λ 0
0 1

)
.(1.11)

Straightforward calculations show that, for (x,y) ∈ R
2×R

2, x �= y, we have

divy(L∇ykj(x;y)) = 0,(1.12a)

divx (Lkj(x;y)) = 0,(1.12b)

and, for (x,y) ∈ R
2×R

2,

curlx kj(x;y) = bjδy(x).(1.12c)

Also, for fixed z1, . . . , zN ∈ Ω, the function u0(·;Z) is a solution of the Neumann
problem

(1.13)

{
divx (L∇xu0(x;Z)) = 0, x ∈ Ω,

L
(∇xu0(x;Z) +

∑N
i=1 ki(x; zi)

) · n(x) = 0, x ∈ ∂Ω.

The expression of (1.9) contains two contributions accounting for the two different
kinds of forces acting on a dislocation when other dislocations are present: the inter-
actions with the other dislocations and the interactions with ∂Ω. The latter balances
the tractions of the forces generated by all the dislocations. Indeed, the function
∇u0(x;Z) represents the elastic strain at the point x ∈ Ω due to the presence of
∂Ω and the dislocations at zi with Burgers moduli bi. For this reason, we refer to
∇u0(x;Z) as the boundary-response strain at x due to Z.

The formula (1.9) gives the force on the dislocation at zi, and it shows that, as a
function of zi, the force ji is smooth in the interior of Ω \ {z1, . . . , zi−1, zi+1, . . . , zN}.
That is, provided zi is not colliding with another dislocation or with ∂Ω, then the
force is given by a smooth function. Of course, ji depends on the positions of all the
dislocations, and the same reasoning applies to ji as a function of any zj .

In the study of the dynamics of the system Z we will neglect inertia and any
external body forces and consider only the Peach–Köhler force ji as given in (1.9).

The motion of dislocations (often called dislocation glide) in crystalline materials
is restricted to a discrete set of crystallographic planes called glide planes, which are
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spanned by e3 and vectors g called glide directions, determined by the lattice structure
of that material. We will consider the glide directions as a fixed finite collection of
unit vectors in R

2, denoted by

(1.14) G := {g1, . . . ,gM} ⊂ S1,

with the requirement that if g ∈ G, then −g ∈ G.
We are interested in the physically realistic case where the span of the glide

directions is all of R2; otherwise dislocations are restricted to one-dimensional motion
and cannot abruptly change direction. Therefore, we assume that

(1.15) span(G) = R
2.

The dislocation glide is restricted to the directions in G, so the equation of motion
for zi has the form

żi = Vigi, gi ∈ G,

and Vi is a scalar velocity.
In [12] motion laws are proposed, where a variable mobility M(g) and Peierls

force P (g) are incorporated to obtain equations of the form

(1.16) żi = M(gi)[max{ji · gi − P (gi), 0}]pgi,

with the exponent p > 0 allowing for various “power-law kinetics.” The mobility
function M favors some directions of dislocation glide. The Peierls force, P � 0, is a
threshold force, acting as a static friction. If the Peach–Köhler force along gi is below
the threshold, then the dislocation will not move. Glide initiates when ji ·gi > P (gi).
In this paper we will assume the simplest form of linear kinetics (p = 1) with vanishing
Peierls force (P ≡ 0) and isotropic mobility (M ≡ 1). Thus (1.16) takes the form

(1.17) żi = (ji(Z) · gi)gi for gi ∈ G.

Following the model presented in [12], the choice of glide direction gi in (1.17)
is determined by a maximal dissipation inequality for dislocation glide. At any point
where zi(t) is differentiable and where (1.17) is satisfied, we have żi = −(∇ziU ·gi)gi

(see (1.8)), and the energy dissipation inequality

(1.18)
d

dt
U(Z) =

N∑
i=1

∇ziU · żi = −
N∑
i=1

(∇ziU · gi)
2 � 0

holds. The dissipation in (1.18) is maximal when gi maximizes {ji · g : g ∈ G}, that
is,

(1.19) ji(Z) · gi � ji(Z) · g for all g ∈ G.

When ji(Z) �= 0, there is either only one glide direction gi = gi(Z) that satisfies (1.19)
or two distinct glide directions, denoted by g−

i = g−
i (Z) and g+

i = g+
i (Z), and in this

case ji(Z) is the bisector of the angle formed by g−
i (Z) and g+

i (Z). In the latter case
(1.17) becomes ill-defined and should be replaced by the differential inclusion

(1.20) żi ∈ {(ji(Z) · g+
i )g

−
i , (ji(Z) · g+

i )g
+
i }.
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Simple examples show that, in general, differential inclusions of the type (1.20)
have no solutions. Thus, following the classical theory developed by Filippov [19], it is
customary to replace the set {(ji(Z) ·g+

i )g
−
i , (ji(Z) ·g+

i )g
+
i } with its convex envelope.

Thus in place of (1.20) we consider the differential inclusion

(1.21) żi ∈ the segment of endpoints (ji(Z) · g+
i )g

−
i and (ji(Z) · g+

i )g
+
i .

Local in time existence for the system of differential inclusions (1.21) is proved
in Theorem 2.17 below. Uniqueness for differential inclusions is significantly more
challenging (see, e.g., the recent paper [16] and the references contained therein). In
this paper we consider only a special case; see Theorem 2.17 below and section I in
the supplementary materials file.

It is important to observe that (1.21) allows for motion along directions which are
not glide directions. If a dislocation point zi is moving in the direction gi (according
to (1.17)) and the configuration Z = (z1, . . . , zN ) arrives at a point where g±

i are
two glide directions that are equally favorable to zi, then z� could abruptly transition
from motion along gi to motion along g−

� or g+
� (in this case that motion is governed

by (1.20)). Such a motion is called cross-slip (see Figure 1(a)). This phenomenon
will be proved rigorously in Theorem 2.19 below. We refer the reader to Chapter 9 in
[27] for a discussion of cross-slip in crystals.

Another possibility is that it is more convenient for the system to bounce at a
faster and faster time scale between two glide directions following the motion law in
(1.21). In this last situation, macroscopically, a dislocation is able to move along a
direction which is not in G but belongs to the convex hull of two glide directions (see
Figure 1(b)). This phenomenon is called fine cross-slip and is studied analytically
in Theorem 2.20 below (see also [4, 11]) for the case of a single dislocation). Fine
cross-slip has been observed in aluminum and chromium (see footnote 13 in [12]).

z1

z2

z3

Ω
G z1

z2

z3

Ω
G

(a) (b)

Fig. 1. Cross-slip (a) and fine cross-slip (b). The glide directions are G = {±e1,±e2}, where
ei is the ith basis vector. In (a), dislocation z1 ∈ Ω is undergoing cross-slip, switching direction
from g−

1 = e2 to g+
1 = e1, while dislocations z2 and z3 glide normally along directions g2 = e1 and

g3 = −e2, respectively. In (b), dislocation z1 ∈ Ω is undergoing fine cross-slip, switching direction
from g−

1 = e2 to a curved one which is not in G, while dislocations z2 and z3 glide normally along
directions g2 = e1 and g3 = −e2, respectively. (Here, N = 3.)

Finally, it is important to remark that when many dislocations are present, the
dynamics are nontrivial. Dislocations whose Burgers moduli have the same sign will
repel each other, while attraction occurs if the Burgers moduli have opposite signs.
This can be seen by investigating (1.9) in the case of two dislocations, and extended to
an arbitrary number of dislocations by superposition, since the system (1.5) is linear.
In section 3 below we will study the dynamics in some special cases, namely the unit
disk, the half-plane, and the plane.
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We conclude the introduction with a few remarks on previous work on the math-
ematical analysis of dislocations. The type of asymptotic expansion as in (1.6) was
first proved by Bethuel, Brezis, and Hélein in [5] for Ginzburg–Landau vortices. The
case of edge dislocations was studied in [13]. Asymptotic expansions of the type (1.6)
can also be derived using Γ-convergence techniques (see, e.g., [3, 31] and the refer-
ences therein for Ginzburg–Landau vortices, [15, 24, 21] for edge dislocations, and
[1, 2, 9, 14, 20, 22, 23, 32] for other dislocations models). Finally, it is important to
mention that here we ignore the core energy, that is, the energy contribution coming
from the small cores that were removed to obtain Jε. We refer the reader to [28, 34, 36]
for a more detailed discussion of the core energy.

We refer the reader to [2, 8, 30, 35, 37] and the references contained therein
for other results on the dynamics of dislocations. In particular, it is important to
point out that, due to the discrete set of glide directions and the maximal dissipation
criterion introduced in [25], our analysis significantly departs from that of Ginzburg–
Landau vortices, where the motion of vortices is derived from a gradient flow (see the
review paper of Serfaty [33]; see also [2]).

In forthcoming work and in collaboration with Thomas Hudson, we plan to study
the behavior of dislocations as they approach the boundary and at collisions. In
particular, preliminary results show that dislocations are attracted to the boundary.

The structure of this paper is as follows. Section 2 addresses the dynamics for
a system of dislocations: a brief introduction on differential inclusion is presented in
subsection 2.1, and the framework for the dynamics is presented in subsection 2.2.
Local existence of the solutions to the dynamics problem is addressed in subsection
2.3, while subsection 2.4 deals with local uniqueness of the solution. A description
of cross-slip and fine cross-slip is presented in subsection 2.5, where we give analytic
proofs of the scenarios presented in [12]. In section 3 some special cases, namely the
unit disk, the half-plane, and the plane, are discussed; in section 4 some numerical
simulations are presented. Finally, we collect some technical proofs in the appendix.

In the supplementary materials file, we discuss the case of multiple dislocations
simultaneously exhibiting fine cross-slip and how one can identify a fine cross-slip
curve in the body cross-section, and we present the proof of Lemma 2.10.

2. Dislocation dynamics. We now turn our attention to the dynamics of the
system Z. As explained in the introduction, the direction of the motion of dislocations
can change discontinuously, and this motivates its study using differential inclusions.
We begin this section with some preliminaries on the theory developed by Filippov
[19]. We introduce the setting for dislocation dynamics in subsections 2.1 and 2.2 and
prove local existence and uniqueness in subsections 2.3 and 2.4, respectively.

2.1. Preliminaries on differential inclusions. The theory developed by Fil-
ippov [19] provides a notion of solution to an ordinary differential inclusion. Given
an interval I and a set-valued function H : D → P(Rd), where D ⊂ R

d+1 and P(Rd)
is the power set of Rd, a solution on I of the differential inclusion

(2.1) ẋ ∈ H(t,x)

is an absolutely continuous function x : I → R
d such that (t,x(t)) ∈ D and ẋ(t) ∈

H(t,x(t)) for almost every t ∈ I.

In order to state a local existence theorem for (2.1), we need to introduce the
definition of upper semicontinuity for a set-valued map (see [19]).
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Definition 2.1 (upper semicontinuity). Given D ⊂ R
d+1 and a set-valued

function H : D → P(Rd), we say that H is upper semicontinuous if

sup
a∈H(yn)

dist(a, H(y)) → 0 for every y,yn ∈ D such that yn → y.

The proof of the following theorem can be found in [19, p. 77].
Theorem 2.2 (local existence). Let D ⊂ R

d+1 be open, and let H : D → P(Rd)
be upper semicontinuous and such that H(t,x) is nonempty, closed, bounded, and
convex for every (t,x) ∈ D. Then for every (t0,x0) ∈ D there exist h > 0 and a
solution x : [t0 − h, t0 + h] → R

d of the problem

(2.2) ẋ(t) ∈ H(t,x(t)), x(t0) = x0.

Moreover, if D contains a cylinder C := [t0 − T, t0 + T ]× Br(x0) for some r, T > 0,
then h ≥ min{T, r/m}, where m := sup(t,x)∈C |H(t,x)|.

Next we address uniqueness of solutions to (2.2). We say that right uniqueness
holds for (2.2) at a point (t0,x0) if there exists t1 > t0 such that any two solutions
to the Cauchy problem (2.2) coincide on the subset of [t0, t1] on which they are both
defined. Similarly, we say that left uniqueness holds for (2.2) at a point (t0,x0) if
there exists t1 < t0 such that any two solutions to the Cauchy problem (2.2) coincide
on the subset of [t1, t0] on which they are both defined. We say that uniqueness holds
for (2.2) at a point (t0,x0) if both left and right uniqueness hold for (2.2) at (t0,x0).

Unlike the case of ordinary differential equations, for differential inclusions the
question of uniqueness is significantly more delicate. We will consider here a very
special case. Suppose that V ⊂ R

d is an open set and is separated into open domains
V ± by a (d − 1)-dimensional C2 surface S. Let f : (a, b)× (V \ S) → R

d, and define
f± : (a, b)× V ± → R

d as f±(t,x) := f(t,x) for x ∈ V ±. Assume that f± can both be

extended in a C1 way to (a, b)× V , and denote these extensions by f̂±. Define

(2.3) H(t,x) :=

{ {f(t,x)} for x /∈ S,

co{f̂−(t,x), f̂+(t,x)} for x ∈ S,

and consider the differential inclusion (2.2). Here for a set E ⊂ R
d we denote by coE

the convex hull of E, that is, the smallest convex set that contains E.
It can be shown that the function H defined in (2.3) satisfies the conditions of

Theorem 2.2, and local existence follows. In the following theorems, we denote by
n(x0) the unit normal to S at x0 ∈ S directed from V − to V +. The following theorem
can be found in [19, p. 110].

Theorem 2.3 (local uniqueness). Let H : (a, b)×V → P(Rd) be given as in (2.3),

where f , V , and S are as above. If (t0,x0) ∈ (a, b)×S is such that f̂−(t0,x0)·n(x0) > 0

or f̂+(t0,x0) · n(x0) < 0, then right uniqueness holds for (2.2) at the point (t0,x0).

Similarly, if f̂−(t0,x0) · n(x0) < 0 or f̂+(t0,x0) · n(x0) > 0, then left uniqueness
holds for (2.2) at the point (t0,x0).

Next we discuss cross-slip and fine cross-slip.
Theorem 2.4 (cross-slip; Corollary 1, p. 107 in [19]). Let (t0,x0) ∈ (a, b)×S be

such that f̂−(t0,x0) ·n(x0) > 0 and f̂+(t0,x0) ·n(x0) > 0. Then uniqueness holds for
(2.2) at the point (t0,x0). Moreover, the unique solution x to (2.2) passes from V − to
V +; that is, there exists t1 < t0 < t2 such that x(t) belongs to V − for t ∈ [t1, t0) and

to V + for t ∈ (t0, t2]. Similarly, if f̂−(t0,x0) · n(x0) < 0 and f̂+(t0,x0) · n(x0) < 0,
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then uniqueness holds for (2.2) at the point (t0,x0) and the unique solution passes
from V + to V −.

Theorem 2.5 (Corollary 2, p. 108 in [19]). Let (t0,x0) ∈ (a, b)× S be such that

(2.4) f̂−(t0,x0) · n(x0) > 0 and f̂+(t0,x0) · n(x0) < 0.

Then there exists a ≤ t1 < t0 such that the problem (2.1) admits exactly one solution
curve x− with x−(t) ∈ V − for t ∈ (t1, t0) and x−(t0) = x0 and exactly one solution
curve x+ with x+(t) ∈ V + for t ∈ (t1, t0) and x+(t0) = x0.

Lemma 2.6. Assume that the conditions (2.4) hold for (t0,x0) ∈ (a, b) × S.

Let x(t) be a solution to ẋ = f̂+(t,x) on an interval [t0, T ] with x(t0) = x0 ∈ S.
Then there exists δ > 0 such that x(t) ∈ V − ∩ U for t ∈ (t0, t0 + δ). Similarly, if

ẋ = f̂−(t,x) on an interval [t0, T ] with x(t0) = x0 ∈ S, then there exists δ > 0 such
that x(t) ∈ V + ∩ U for t ∈ (t0, t0 + δ).

Proof. Let h := min{−f̂+(t0,x0) · n(x0), f̂
−(t0x0) · n(x0)}. Then h > 0 by

hypothesis, and therefore, by continuity of f̂± and n, there exist neighborhoods I0 and
U0 of t0 and x0, respectively, such that f̂+(t,x) ·n(x̃) < − 1

2h and f̂−(t,x) ·n(x̃) > 1
2h

for (t,x) ∈ I0 × U0 and x̃ ∈ U0 ∩ S.
We can write S locally as the graph of a function. Denoting points x = (ξ, y) ∈

R
d−1×R, there is r > 0 such that we can write (without loss of generality) S∩Br(x0) =

{(ξ, y) ∈ Br(x0) : y = Φ(ξ)} for some Φ of class C2. The sets V ± are locally defined
as V + ∩ Br(x0) = {(ξ, y) ∈ Br(Z0) : y > Φ(ξ)} and V − ∩ Br(x0) = {(ξ, y) ∈
Br(Z0) : y < Φ(ξ)}. By rotating the coordinate axes, if necessary, we can assume
that the tangent hyperplane to S at x0 is {(ξ, y) : y = 0} so that ∇Φ(ξ0) = 0, where
x0 = (ξ0, y0). Then the unit normal to S at x0 is n(x0) = n(ξ0,Φ(ξ0)) = (0, 1).

Consider the solution to ẋ = f̂+(t,x) with x(t0) = x0. Since x is continuous,
there is δ1 > 0 such that x(t) ∈ U0 for t ∈ (t0, t0 + δ1), and in this interval it satisfies

x(t) = x0 +
∫ t

t0
f̂+(s,x(s))ds. Hence,

(2.5) y(t) = x(t) · n(x0) = x0 · n(x0) +

∫ t

t0

f̂+(s,x(s)) · n(x0) ds < y0 − h

2
(t− t0).

Writing x(t) = (ξ(t), y(t)), we have x(t) · n(x0) = y(t). Additionally, Φ(ξ(t)) =
Φ(ξ(t0)) + ∇Φ(ξ(t0)) · (ξ(t) − ξ(t0)) + o(t − t0) = y0 + o(t − t0). Therefore, (2.5)
implies there is δ < δ1 such that

y(t) < Φ(ξ(t))− h

2
(t− t0) + o(t− t0) < Φ(ξ(t))

for t ∈ (t0, t0 + δ). Thus, x(t) = (ξ(t), y(t)) ∈ V − ∩ Br(x0) for t ∈ (t0, t0 + δ). The

proof of the result for solutions to ẋ = f̂−(t,x) is similar.
Corollary 2.7 (fine cross-slip). Assume that the conditions (2.4) hold for

(t0,x0) ∈ (a, b) × S. Then there exist δ > 0 and a unique solution x defined on
[t0, t0 + δ) to the initial value problem (2.2) that is confined to S.

Proof. Existence and uniqueness are consequences of Theorems 2.2 and 2.3. Let
T be the maximal existence time provided by Theorem 2.2.

As in the proof of Lemma 2.6, there are neighborhoods I0 and U0 of t0 and x0,
respectively, such that f̂+(t,x)·n(x̃) < − 1

2h and f̂−(t,x)·n(x̃) > 1
2h for (t,x) ∈ I0×U0

and x̃ ∈ U0 ∩ S, with h = min{−f̂+(t0,x0) · n(x0), f̂
−(t0x0) · n(x0)}. By continuity

of x(t), there exists δ > 0 such that x(t) ∈ U0 for t ∈ (t0, t0 + δ). Suppose there
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is t1 ∈ (t0, t0 + δ) such that x(t1) /∈ S. Without loss of generality, we can assume
x(t1) ∈ V +, and we define

s1 := sup{s ∈ [t0, t1) : x(s) /∈ V +};
i.e., s1 is the last time x(t) belongs to S before entering V + and remaining in V + for

t ∈ (s1, t1]. It follows that x(t) solves ẋ = f̂+(t,x) on [s1, t1] with x(s1) ∈ S. Since

the hypotheses of Lemma 2.6 are satisfied, there is a unique solution to ẋ = f̂+(t,x)

on [s1, s1 + δ̂] for some δ̂ > 0, where x(t) ∈ V − for t ∈ (s1, s1 + δ̂). This contradicts
the fact that x(t) ∈ V + on [s1, t1]. We conclude that x(t) ∈ S for t ∈ [t0, t0+δ).

Remark 2.8. In view of Corollary 2.7, the velocity field ẋ is tangent to S, and
therefore it must be orthogonal to n(x) for x ∈ S. Moreover, by (2.3), ẋ belongs to

co{f̂−(t,x), f̂+(t,x)}, and so

ẋ = f0(t,x) ∈ H(t,x), where f0(t,x) := αf̂+(t,x) + (1 − α)f̂−(t,x)

and α = α(t,x) ∈ (0, 1) is given by

α =
f̂−(t,x) · n(x)

f̂−(t,x) · n(x)− f̂+(t,x) · n(x)
,

since f0(t,x) · n(x) = 0.

2.2. Setting for the dynamics. We now turn our attention to the dynamics
of the system Z. As described in the introduction (see (1.20)) the problem consists
in solving the system of differential inclusions{

ż� ∈ F�(Z),
z�(0) = z�,0,

where

Z := (z1, . . . , zN ) and Z0 := (z1,0, . . . , zN,0)

belong to ΩN ⊂ R
2N and, for � = 1, . . . , N ,

(2.6) F�(Z) :=
{
(j�(Z) · g)g : g ∈ argmax

g′∈G
{j�(Z) · g′}

}
,

where we recall that

(2.7) ji(zi) = biJL

⎡⎣∑
j �=i

kj(zi; zj) +∇u0(zi; z1, . . . , zN )

⎤⎦ ,
with kj and u0 given in (1.10) and (1.13), respectively.

Setting

(2.8) G�(Z) := argmax
g′∈G

{j�(Z) · g′},

the unit vectors g ∈ G�(Z) represent the glide directions closest to j�(Z) (see [12]),
that is,

(2.9) j�(Z) · g � j�(Z) · g′ for all g′ ∈ G.
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We recall that when j�(Z) �= 0, the set F� can either contain a single element, which
we will call g�(Z), or two distinct elements, denoted by g−

� (Z) and g+
� (Z), and in this

case j�(z�) is the bisector of the angle formed by g−
� and g+

� .
Remark 2.9. Notice that if j�(Z) = 0, then any glide direction g ∈ G satisfies

(2.9), and therefore G�(Z) = G.
In view of the comments above, we have

(2.10) F�(Z) =

⎧⎪⎨⎪⎩
{0} if j�(Z) = 0,

{(j�(Z) · g�(Z))g�(Z)} if j�(Z) �= 0 and G�(Z) = {g�(Z)},
{(j�(Z) · g±

� (Z))g
±
� (Z)} if j�(Z) �= 0 and G�(Z) = {g±

� (Z)},
and the problem becomes

(2.11)

{
Ż ∈ F (Z),

Z(0) = Z0,

where

(2.12) F (Z) := F1(Z)× · · · ×FN (Z) ⊂ R
2N .

The domain of the set-valued function F must be chosen in such a way that the
forces j�(Z) are well defined, and so collisions must be avoided. We denote by

(2.13) Πjk := {Z ∈ ΩN : zj = zk, j �= k}
the set where dislocations zj and zk collide, and we define the domain of F to be

(2.14) D(F ) := ΩN \
⋃
j<k

Πjk.

Recall that the force ji is not defined for z� ∈ ∂Ω. Since Ω is open, boundary collisions
are also excluded from D(F ).

2.3. Local existence. Following section 2.2, and in view of (2.11) and (2.12),
we consider the differential inclusion

(2.15)

{
Ż ∈ coF (Z),
Z(0) = Z0.

The following lemma shows that the convex hull of F (Z) is given by

(2.16) F̂ (Z) := (coF1(Z))× · · · ×(coFN (Z)),

where, by (2.10),

(2.17) coF�(Z) =

⎧⎪⎨⎪⎩
{0} if j�(Z) = 0,

{(j�(Z) · g�(Z))g�(Z)} if j�(Z) �= 0 and G�(Z) = {g�(Z)},
Σ�(Z) if j�(Z) �= 0 and G�(Z) = {g±

� (Z)},

with Σ�(Z) the segment of endpoints (j�(Z) ·g−
� (Z))g

−
� (Z) and (j�(Z) ·g+

� (Z))g
+
� (Z).

The proof is simple, and for the convenience of the reader it can be found in the
supplementary materials file.

Lemma 2.10. Let F�(Z) be defined as in (2.6) for � = 1, . . . , N , and let F (Z) be
as in (2.12). Then coF (Z) = F̂ (Z), where F̂ (Z) is defined in (2.16).
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Lemma 2.10 is useful for understanding the dynamics in Ω rather than in ΩN .
Each zi moves in some direction gi ∈ G, unless the argmax in (2.8) is multivalued, in
which case zi moves in a direction belonging to the convex hull of g+

i and g−
i . Lemma

2.10 makes this precise and validates the use of (2.15) as our model for dislocation
motion.

Lemma 2.11. Let D(F ) be as defined in (2.14). Then the set-valued map F :
D(F ) → P(R2N ) defined in (2.12) is upper semicontinuous (according to Definition
2.1).

Proof. Let Z∗,Zn ∈ D(F ) be such that Zn → Z∗ as n → ∞. We need to show
that

sup
Z∈F (Zn)

dist(Z, F (Z∗)) → 0 as n → ∞.

Since Z = (z1, . . . , zN ), z� ∈ R
2, and F (Z) is a Cartesian product (see (2.12)), it

suffices to show that for every � ∈ {1, . . . , N},
sup

z∈F�(Zn)

dist(z, F�(Z∗)) → 0 as n → ∞.

Fix � ∈ {1, . . . , N}. We consider the two cases j�(Z∗) = 0 and j�(Z∗) �= 0.
If j�(Z∗) = 0, then by (2.10), F�(Z∗) = {0}. In turn, again by (2.10), the

continuity of j� (cf. (2.14)) shows that

sup
z∈F�(Zn)

||z|| � ||j�(Zn)|| → 0 as n → ∞.

If j�(Z∗) �= 0, then, again by continuity of j�, j�(Zn) �= 0 for all n � n̄ and
for some n̄ ∈ N. Taking n̄ larger, if necessary, we claim that g−

� (Zn),g
+
� (Zn) ∈

{g−
� (Z∗),g+

� (Z∗)} for n � n̄. Arguing by contradiction, if the claim fails, since G is
finite, there exists e ∈ G\{g±

� (Z∗)} such that g−
� (Zn) = e or g+

� (Zn) = e for infinitely
many n. By (2.9) and (2.8), j�(Zn) ·e � j�(Zn) ·g for all g ∈ G and for infinitely many
n. Letting n → ∞ and using the continuity of j�, it follows that j�(Z∗) · e � j�(Z∗) ·g
for all g ∈ G, which implies that e ∈ G�(Z∗), which is a contradiction. Thus the claim
holds.

In particular, we have shown that F�(Zn) = {(j�(Zn) ·g±
� (Z∗))g±

� (Z∗)} for n � n̄,
and hence

sup
z∈F�(Zn)

dist(z, F�(Z∗)) � ||j�(Zn)− j�(Z∗)|| → 0 as n → ∞.

This concludes the proof.
Corollary 2.12. Let F : D(F ) → P(R2N ) be defined by (2.12) and (2.14), and

consider the set-valued map coF (Z), Z ∈ D(G). Then coF (Z) is nonempty, closed,
and convex for every Z ∈ D(F ), and coF is upper semicontinuous.

Proof. For all Z ∈ D(F ), the set coF (Z) is nonempty because F (Z) is nonempty.
By definition of convexification, coF (Z) is closed and convex. By Lemma 2.11, the
set-valued map F is upper semicontinuous, and therefore so is coF (see Lemma 16,
p. 66 in [19]). This corollary is proved.

Note that coF is not bounded on D(F ) because |zi − zj | and dist(zi, ∂Ω) can
become arbitrarily small, and thus ji can become unbounded (see (1.9) and (1.10)).

Theorem 2.13 (local existence). Let Ω ⊂ R
2 be a connected open set. Let

F : D(F ) → P(R2N ) be defined as in (2.12) and (2.14) with each F� as in (2.10),
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and let Z0 ∈ D(F ) be a given initial configuration of dislocations. Then there exists a
solution Z : [−T, T ] → D(F ) to (2.15), with T ≥ r0/m0, where

(2.18) 0 < r0 < dist(Z0, ∂D(F )) and m0 := max
Z∈B(Z0,r0)

(
N∑
�=1

|j�(Z)|2
)1/2

.

Proof. The function F is bounded on the ball B(Z0, r0) ⊂ D(F ). Hence, by
Corollary 2.12, the set-valued map coF satisfies the conditions of Theorem 2.2 in
B(Z0, r0), and thus local existence holds.

Remark 2.14. In view of (2.14) and (2.18), solutions to the problem (2.15) exist
as long as dislocations stay away from ∂Ω and do not collide.

2.4. Local uniqueness. The set where dislocations can move in either of two
different glide directions is called the ambiguity set and is denoted byA. To be precise,
we define

(2.19) A :=

N⋃
�=1

A�, where A� := {Z ∈ D(F ) : card(G�(Z)) = 2} ,

and G�(Z) is defined in (2.8). On A� the direction of the Peach–Köhler force j� bisects
two different glide directions that are closest to it. Note that j�(Z) �= 0 for Z ∈ A�

because card(G) � 4 by assumption (1.15) and since g ∈ G implies −g ∈ G.
The uniqueness results in subsection 2.1 can only be applied at points Z0 ∈ A in

which the ambiguity set A is locally a (2N−1)-dimensional smooth surface separating
D(F ) into two open sets in a neighborhood of Z0. In this subsection, we show that A
is a (2N − 1)-dimensional smooth surface outside of a “singular set” and we estimate
the Hausdorff dimension of this set.

Lemma 2.15. For all � ∈ {1, . . . , N} the functions j�(z1, . . . , zN ) are analytic on
any compact subset of D(F ).

Proof. Observe that if a smooth function v satisfies the partial differential equa-
tion div (L∇v) = 0 in Ω, then the function w(x1, x2) := v(λx1, x2) satisfies the partial
differential equation Δw = 0 in an open set U . Hence, without loss of generality, we
may assume that λ = 1 (i.e., L = μI) so that (1.12a) and (1.13) reduce to

(2.20) Δykj(x;y) = 0, (x,y) ∈ R
2×R

2, x �= y,

and, for fixed z1, . . . , zN ∈ Ω,

(2.21)

{
Δxu0(x; z1, . . . , zN ) = 0, x ∈ Ω,

∇xu0(x; z1, . . . , zN ) · n(x) = −∑N
i=1 ki(x; zi) · n(x), x ∈ ∂Ω.

A solution to (2.21) is given by

(2.22) u0(x; z1, . . . , zN ) =

∫
∂Ω

G(x,y)

N∑
i=1

ki(y; zi) · n(y) ds(y),

where G is the Green’s function for the Neumann problem. Consider u0 as a function
in ΩN+1 ⊂ R

2N+2. FixKi ⊂⊂ Ω for i = 0, . . . , N . If (x,Z) ∈ K := K0×K1×· · ·×KN ,
then the integrand in (2.22) is uniformly bounded, and we can find the derivatives of
u0 with respect to each zi,m by differentiating under the integral sign in (2.22).
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Using (2.20), (2.21), and (2.22) we have

Δ(x,Z)u0 = Δxu0 +Δz1u0 + · · ·+ΔzNu0

= 0 +

N∑
i=1

∫
∂Ω

G(x,y)Δzi (ki(y; zi) · n(y)) ds(y) = 0.

Observe that in a small ball around (x,Z) ∈ K, u0 is a C2 function in each
variable because the formula (2.22) has singularities only on the boundary. Since a
harmonic C2 function on an open set is analytic in that set (cf. [18, Chapter 2]), we
deduce that u0 is analytic in the interior of ΩN+1, and thus u0(zi;Z) is also analytic
(though possibly no longer harmonic). By (2.7) we have that j� is analytic away from
the boundary and away from collisions because in this case each ki(z�; zi) is harmonic
in both z� and zi.

Fix Z∗ ∈ A�. There are two maximizing glide directions for z�, denoted by g+
� (Z

∗)
and g−

� (Z
∗) (i.e., G�(Z

∗) = {g+
� (Z

∗),g−
� (Z

∗)}, as defined in (2.8)). For simplicity we
will write g±

� := g±
� (Z

∗). Let Bh(Z
∗) be a ball around Z∗ with radius h > 0 small

enough so that Bh(Z
∗) ⊂ D(F ), and for any Z ∈ Bh(Z

∗) one of the following three
possibilities holds: G�(Z) = {g+

� }, G�(Z) = {g−
� }, or G�(Z) = {g+

� ,g
−
� }. Such an h

exists because of the continuity of j� and the fact that j�(Z
∗) �= 0 (cf. the discussion

following (2.19)). We denote by g0 ∈ R
2 the vector

(2.23) g0 := g+
� − g−

� ,

which is a well-defined constant vector for Z ∈ Bh(Z
∗) (see the proof of Lemma 2.11).

Note that if ∂βj�(Z
∗) · g0 �= 0 for some multi-index β = (β1, . . . , βN) ∈ NN

0 with
|β| = 1, then A� is locally a smooth manifold. With g0 as in (2.23), we define the
singular sets

(2.24) S� := {Z ∈ A� : j�(Z) · g0 = 0, ∇Z(j�(Z) · g0) = 0}, � = 1, . . . , N.

Each S� contains the points where A� could fail to be a manifold and is an obstruction
to uniqueness of solutions to (2.15).

We now estimate the Hausdorff dimension of the singular sets. We adapt an
argument from [26], which follows [10]; recall that S� ⊂ R

2N , � = 1, . . . , N .
Lemma 2.16. Let S� be defined as in (2.24). Then dim(S�) � 2N − 2.
Proof. Fix � ∈ {1, . . . , N} and Z∗ ∈ A�. As in the discussion above, set g0 :=

g+
� −g−

� ∈ R
2 \{0}, where g±

� are uniquely defined in Bh(Z
∗) for h > 0 small enough.

We will be considering derivatives in all the zi directions except for i = �. For
this purpose, we introduce the notations Δ

̂Z�
, ∇

̂Z�
, and D2

̂Z�
to denote the Laplacian,

the gradient, and the Hessian with respect to z1, . . . , z�−1, z�+1, . . . , zN , respectively.
We also write N� for the set of multi-indices α such that ∂α does not contain any
derivatives in the z� directions, that is,

(2.25) N� := {α ∈ N
2N
0 : α = (α1, . . . ,α�−1,0,α�+1, . . . ,αN )}.

For m � 2 we define

M̃m
� := {Z : j�(Z) · g0 = 0, ∂α(j�(Z) · g0) = 0 for all α ∈ N� such that |α| < m,

and ∂α(j�(Z) · g0) �= 0 for some α ∈ N�, with |α| = m}
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and also

(2.26) M̃∞
� := {Z : j�(Z) · g0 = 0, ∂α(j�(Z) · g0) = 0 for all α ∈ N�}.

Therefore

S� ⊂ {Z : j�(Z) · g0 = 0, ∇
̂Z�
(j�(Z) · g0) = 0} = M̃∞

� ∪
( ⋃

m�2

M̃m
�

)
.

By Lemma A.3 in the appendix, we have that M̃∞
� = ∅.

Let m � 2, and let Z0 ∈ M̃m
� . Then there exists β ∈ N� such that |β| = m− 2,

and

D2
̂Z�
(∂βj�(Z0) · g0) �= 0.

Thus, if we define v(Z) := ∂βj�(Z) · g0, then D2
̂Z�
v(Z0) is a symmetric matrix that is

not identically zero, so it must have at least one nonzero eigenvalue, say λi.
Observe that Trace(D2

̂Z�
v(Z)) = Δ

̂Z�
(∂βj�(Z)·g0) = 0 because Δ

̂Z�
(j�(Z)·g0) = 0.

But Trace(D2
̂Z�
v(Z0)) =

∑2N−2
k=1 λk, where λk are the eigenvalues, and λi �= 0, and

so there is another nonzero eigenvalue, say λj . Define w(Y) := v(RY), where R is a
rotation matrix such that

D2
̂Y�
w(Y0) =

⎛⎜⎝ λ1 · · · 0
...

. . .
...

0 · · · λ2N−2

⎞⎟⎠ ,

where Y0 := R−1Z0. Since λi and λj are different from zero, there are two distinct
multi-indices α1,α2 ∈ N� with |αk| = 1 such that

∇
̂Y�
∂αkw(Y0) �= 0, k = 1, 2.

Hence, applying the implicit function theorem to ∂α1w and ∂α2w, we conclude that
M = {Y : ∂α1w(Y) = 0, ∂α2w(Y) = 0} is a (2N − 2)-dimensional manifold in a

neighborhood of Y0. Since M̃m
� ⊂ M, we have that S� is contained in a countable

union of manifolds with dimension at most 2N − 2.
We proved that the collection of singular points

Esing :=

N⋃
�=1

S�,

with S� defined in (2.24), has dimension at most 2N − 2. Further, each A� is a
(2N − 1)-dimensional smooth manifold away from points on S�, but, in general, the
set A defined in (2.19) will not be a manifold at points Z ∈ A� ∩ Aj for � �= j. For
this reason we need to exclude the set

(2.27) Eint := {Z ∈ R
2N : Z ∈ A� ∩ Aj for some �, j ∈ {1, . . . , N}, � �= j}.

Uniqueness at points in Eint is significantly more delicate and will be discussed in
section I in the supplementary materials file.
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If Z ∈ A�, then j�(Z) �= 0, but it could be that ji(Z) = 0 for some i �= �. This
would mean that the glide direction for zi would not be well defined at Z and could
cause an obstruction to uniqueness. In view of this, we set

Ezero := {Z ∈ D(F ) : jk(Z) = 0 for some k ∈ {1, . . . , N}} .
Reasoning as in Lemma 2.16, dim(Ezero ∩ {∇jk has rank 0}) � 2N − 2. On the other
hand, dim(Ezero∩{∇jk has rank 2}) = 2N −2, by the implicit function theorem. The
set Ezero ∩ {∇jk has rank 1} could have dimension at most 2N − 1.

For each � ∈ {1, . . . , N} define

(2.28) I� := A� \ (S� ∪ Eint ∪ Ezero).
Let Ẑ ∈ I�. Since Ẑ /∈ S� (see (2.24)), there is an r > 0 so that Br(Ẑ) ∩ A� is a

(2N − 1)-dimensional smooth manifold, and A� divides Br(Ẑ) into two disjoint, open
sets V ±. Since the functions jk are continuous by Lemma 2.15 for all k ∈ {1, . . . , N},
and Ẑ /∈ Ezero, by taking r smaller, if necessary, we can assume that jk(Z) �= 0 for all

Z ∈ Br(Ẑ) and for all k ∈ {1, . . . , N}. In turn, since Ẑ /∈ Eint, again by continuity

and by taking r even smaller, gk(Z) ≡ gk(Ẑ) for all Z ∈ Br(Ẑ) and for all k �= �, and

g�(Z) ≡ g±
� (Ẑ) for Z ∈ V ±. Now let f : Br(Ẑ) \ A� → R

2N , f = (f1, . . . , fN ), be the
function defined by

(2.29)
fk(Z) := (jk(Z) · gk(Ẑ))gk(Ẑ) if k �= �,

f�(Z) := (j�(Z) · g±
� (Ẑ))g

±
� (Ẑ) if Z ∈ V ±.

We define f± as the restrictions of f to V ±, and we extend them smoothly to the ball
Br(Ẑ) by setting f̂±k (Z) := fk(Z) if k �= � and f̂±� (Z) := (j�(Z) · g±

� (Ẑ))g
±
� (Ẑ).

Let n(Ẑ) denote the unit normal vector to A� at Ẑ directed from V − to V +.
Motions starting in V + will move towards or away from A� according to whether
f̂+(Ẑ) · n(Ẑ) < 0 or f̂+(Ẑ) · n(Ẑ) > 0. Similarly, motions starting in V − will move

towards or away from A� according to whether f̂−(Ẑ) · n(Ẑ) > 0 or f̂−(Ẑ) · n(Ẑ) < 0.
We define the set of source points

Esrc :=
{
Z ∈ ΩN :Z ∈ I� for some � ∈ {1, . . . , N},

f̂+(Z)·n(Z) > 0 and f̂−(Z)·n(Z) < 0
}
.

If Ẑ ∈ Esrc, there are two solution curves originating at Ẑ, one that moves into V +

and one that moves into V −. Thus there is no uniqueness at source points.
Theorem 2.17 (local uniqueness). Let T > 0, and let Z : [−T, T ] → R

2N be
a solution to (2.15). Assume that there exist t1 ∈ [−T, T ) and Z1 ∈ I�, for some
� ∈ {1, . . . , N}, such that Z(t1) = Z1 and

(2.30) f̂−(Z1) · n(Z1) > 0 or f̂+(Z1) · n(Z1) < 0,

where f̂± are the extensions of the functions f± defined in terms of the function f
given in (2.29) with Ẑ = Z1. Then right uniqueness holds for (2.15) at the point
(t1,Z1).

Proof. By (2.30), Z0 /∈ Esrc, and therefore, by the previous discussion, the result
follows from Theorem 2.3.

Remark 2.18. Existence time is limited by the possibility of collisions between
dislocations, that is, |zi−zj | → 0, or between a dislocation and ∂Ω, that is, dist(zi, ∂Ω)
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approaches 0. Additionally, uniqueness is limited by possible intersections of Z(t) with
S� ∪Eint ∪Ezero ∪Esrc. The ambiguity set A is smooth except possibly on the singular
sets S�, which are at most (2N − 2)-dimensional by Lemma 2.16, or points in Eint.

2.5. Cross-slip and fine cross-slip. We expect to see two kinds of motion at
points where the force is not single valued. If a dislocation point z� is moving in the
direction g−

� and the configuration Z = (z1, . . . , zN ) arrives at a point on A� where
g±
� are two glide directions that are equally favorable to z�, then z� could abruptly

transition from motion along g−
� to motion along g+

� . Such a motion is called cross-
slip (see Figure 2(a)). Heuristically, cross-slip occurs when, on one side of A�, the
vector field F (see (2.15)) is pointing toward A�, while the other side F is pointing
away from A�. If the configuration Z is in the region where F points towards A�,
then Z approaches A� and arrives at it in a finite time. The configuration then leaves
A�, moving into the region where F points away from A�.

R
2NZ

V +

V −

A1

Z

V +

V −

A1

(a) (b)

Fig. 2. Cross-slip (a) and fine cross-slip (b) in R
2N . The glide directions are G = {±e1,±e2},

where ei is the ith basis vector. In (a) the motion of Z changes direction while crossing the surface
A1, where the velocity field is multivalued. In (b) the motion of Z, after hitting the surface A1,
continues on the surface following the tangent direction. (Here, N = 3.)

Another possibility is that the vector field F points towards A� on both sides of
A�. In this case, at a point on A�, a motion by z� in the g+

� direction will drive the
configuration Z to a region where j� is most closely aligned with g−

� , but then motion
by z� along g−

� immediately forces Z to intersect the surface A� again. Motion by z�
along g−

� then pushes Z into a region where j� is most closely aligned with g+
� , which

forces Z back to A�. A motion such as this one on a finer and finer scale will appear
as motion along the surface A�. Following [12], such a motion is called fine cross-slip.
See Figure 2(b), where the dislocation z1 is undergoing fine cross-slip. In part (a) it
is shown how it follows a curve l rather than one of the glide directions g ∈ G. In
part (b) the same phenomenon is shown in R

2N (N = 3), where the point Z hits A1

and starts moving along it.
The following theorems formalize the behaviors described above and provide an

analytical validation of the notions of cross-slip and fine cross-slip introduced in [12].
We refer the reader to the discussion preceding Theorem 2.17 for the definitions of
n(Z) and V ± for Z ∈ I�.

Theorem 2.19 (cross-slip). Let T > 0, and let Z : [−T, T ] → R
2N be a solution

to (2.15). Assume that there exist t1 ∈ (−T, T ) and Z1 ∈ I�, for some � ∈ {1, . . . , N},
such that Z(t1) = Z1 and

(2.31) f̂−(Z1) · n(Z1) > 0 and f̂+(Z1) · n(Z1) > 0,

where f is the function defined in (2.29). Then uniqueness holds for (2.15) at the
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point (t1,Z1), and the solution passes from V − to V +. Similarly, if

(2.32) f̂−(Z1) · n(Z1) < 0 and f̂+(Z1) · n(Z1) < 0,

then uniqueness holds for (2.15) at the point (t1,Z1) and the solution passes from V +

to V −.
Proof. Since f̂± are C1 extensions of f± := f

∣∣
V ± , the result follows from Theorem

2.4.
Theorem 2.20 (fine cross-slip). Let T > 0, and let Z : [−T, T ] → R

2N be
a solution to (2.15). Assume that there exist t1 ∈ (−T, T ) and Z1 ∈ I�, for some
� ∈ {1, . . . , N}, such that Z(t1) = Z1 and

f̂−(Z1) · n(Z1) > 0 and f̂+(Z1) · n(Z1) < 0,

where f is the function defined in (2.29). Then right uniqueness holds for (2.15) at
the point (t1,Z1) and there exists δ > 0 such that Z belongs to A� and solves the
ordinary differential equation for all t ∈ [t1, t1 + δ],

Ż = f0(Z) ∈ coF (Z), where f0(Z) := α(Z)f̂+(Z) + (1− α(Z))f̂−(Z)

and α(Z) ∈ (0, 1) is defined by

α(Z) :=
f̂−(Z) · n(Z)

f̂−(Z) · n(Z)− f̂+(Z) · n(Z) .

Proof. The result follows from Corollary 2.7.
Note that the cross-slip and fine cross-slip trajectories that we have described in

Theorems 2.19 and 2.20 satisfy the conditions for right uniqueness in Theorem 2.17.
Specifically, if (2.31) or (2.32) holds, then (2.30) holds (i.e., Z1 /∈ Esrc).

3. Special cases. In this section we consider some special domains Ω for which
the Peach–Köhler force can be explicitly determined (i.e., the solution to the Neumann
problem (1.12) is known), specifically the unit disk B1, the half-plane R

2
+, and the

plane R2. The last two cases do not technically fit into our previous discussion because
Ω is unbounded. However, the Neumann problem is well defined for these settings
and we are able to discuss the dislocation dynamics.

In what follows we will use the fact that the boundary-response strains generated
from each dislocation are “decoupled” in the following sense. Define ui

0 as

ui
0(x; zi) :=

∫
∂Ω

G(x,y)Lki(y; zi) · n(y) ds(y),

where G is the Green’s function for the Neumann problem. Then ui
0(·; zi) solves (1.12)

with only one dislocation, i.e.,{
divx

(
L∇xu

i
0(x; zi)

)
= 0, x ∈ Ω,

L
(∇xu

i
0(x; zi) + ki(x; zi)

) · n(x) = 0, x ∈ ∂Ω.

Thus the boundary-response strain at x due to a dislocation at zi with Burgers mod-
ulus bi is given by ∇xu

i
0(x; zi), and the total boundary-response strain at x due to

the system Z is ∇xu0(x; z1, . . . , zN ) =
∑N

i=1 ∇xu
i
0(x; zi).



SCREW DISLOCATION DYNAMICS 411

If we consider two dislocations z1 and z2 with Burgers moduli b1 and b2, respec-
tively, that collide in Ω, then by the definition of kj the boundary data in (1.12)
satisfies

L(k1(x; z1) + k2(x; z2)) · n(x) → L

(
k1(x; z1) +

b2
b1
k1(x; z1)

)
· n(x) as z2 → z1.

Notice that k1(·; z1) + (b2/b1)k1(·; z1) is the singular strain generated by a single
dislocation located at z1 with Burgers modulus b1 + b2. The same argument applies
to an arbitrary number N of dislocation by linearity of (1.12). Thus, unlike the
singular strain which becomes infinite if any two dislocations collide in Ω (see (1.9)),
the boundary-response strain is oblivious to collisions between dislocations. Although
the boundary-response strain is well defined when dislocations collide with each other,
it is not well defined if a dislocation collides with ∂Ω.

3.1. The unit disk. Consider the case Ω = B1 = {x ∈ R
2 : |x| < 1} and

λ = μ = 1 so that L = I. For z ∈ B1 we define z ∈ Bc
1 to be the reflection of z across

the unit circle ∂B1,

z :=

⎧⎨⎩
z

|z|2 if z ∈ B1 \ {0},
∞ if z = 0.

For fixed zi ∈ B1, it can be seen that the function

(3.1) ui
0(x; zi) :=

⎧⎨⎩−bi
π
arctan

(
x2 − zi,2

x1 − zi,1 + |x− zi|
)

if z �= 0,

0 if z = 0

satisfies {
Δxu

i
0(x; zi) = 0, x ∈ B1,

∇xu
i
0(x; zi) · n(x) = −ki(x; zi) · n(x), x ∈ ∂B1,

and

(3.2) ∇xu
i
0(x; zi) = −ki(x; zi) for all x ∈ B1.

Note that ∇ui
0 is singular only at the point x = zi /∈ B1.

As discussed at the beginning of section 3, for a system of dislocations given by
Z and B, the solution to the Neumann problem (1.12) is given by

u0(x; z1, . . . , zN ) =

N∑
i=1

ui
0(x; zi)

with ui
0 as in (3.1). Thus, combining (2.9) and (3.2), we have

(3.3) j�(z1, . . . , zN ) = b�J

(∑
i�=�

ki(z�; zi)−
N∑
i=1

ki(z�; zi)

)
.

Formula (3.3) greatly simplifies numerical simulations of the dislocation dynamics.
Without an explicit formula, one must solve the Neumann problem at each time step.
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From (3.3), we can see that the boundary of B1 attracts dislocations. If N = 1
and z1 ∈ B1 \ {0}, then

j1(z1) = −b1Jk1(z1; z1) = − b21
2π

z1 − z1
|z1 − z1|2 =

b21
2π

z1
(1 − |z1|2)

since z − z = z(1 − |z|−2). Thus, the force is directed radially outward (toward the
nearest boundary point to z1) and diverges as z1 → ∂B1. If z1 = 0, then j1 = 0
and z1 will not move. Otherwise, a single dislocation in B1 will be pulled to ∂B1

and will collide with ∂B1 in a finite time (assuming the glide directions span R
2). If

N > 1, then the other dislocations produce boundary forces that will pull on z� in
the directions −b�bi(z� − zi) for each i.

The sets A� as given in (2.24) are smooth because they are locally given by
j� · g0 = 0 for a fixed vector g0 (cf. (2.28)), and by (3.3), j� · g0 is a rational function
with singularities only at collision points.

3.2. The half-plane. Although the theory developed in this paper applies only
to bounded domains, the equation for the Peach–Köhler force (1.8) is still well defined,
provided there is a weak solution to the Neumann problem (1.12). For the special cases
of the half-plane and the plane we present an explicit expression for the Peach–Köhler
force without resorting to the renormalized energy.

Let Ω = R
2
+ := {x ∈ R

2 : x2 > 0}, and let λ = μ = 1. The solution to (1.12) is
given in terms of the inverse tangent, using a reflected point across ∂R2

+ = {x2 = 0}.
For all z = (z1, z2) ∈ R

2 define z̃ := (z1,−z2). Then for zi ∈ R
2
+,

(3.4) ui
0(x; zi) := −bi

π
arctan

(
x2 − z̃i,2

x1 − z̃i,1 + |x− z̃i|
)

satisfies {
Δxu

i
0(x; zi) = 0, x ∈ R

2
+,

∇xu
i
0(x; zi) · n(x) = −ki(x; zi) · n(x), x ∈ ∂R2

+,

and

∇xu
i
0(x; zi) = −ki(x; z̃i) for all x ∈ R

2
+.

Again, we have u0(x; z1, . . . , zN ) =
∑N

i=1 u
i
0(x; zi) with ui

0 as in (3.4), and the Peach–
Köhler force is

(3.5) j�(z1, . . . , zN ) = b�J

(∑
i�=�

ki(z�; zi)−
N∑
i=1

ki(z�; z̃i)

)
.

From (3.5), it is again not difficult to see that a single dislocation z1 in R
2
+ with

Burgers modulus b1 is attracted to ∂R2
+. As in the case of the disk, the ambiguity set

A is smooth except at the intersections of the A�.

3.3. The plane. The case Ω = R
2 and λ = μ = 1 is the simplest case. There is

no boundary so that u0 ≡ 0, and, by (1.8), the Peach–Köhler force is then

(3.6) j�(z1, . . . , zN ) = b�J
∑
i�=�

ki(z�; zi).
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Even though the renormalized energy has not been defined for unbounded domains,
in the case of the plane we can formally write j� = −∇z�U , where, up to an additive
constant,

U(z1, . . . , zN ) = −
N−1∑
i=1

N∑
j=i+1

bibj
2π

log |Λ(zi − zj)|,

with Λ defined in (1.10).

In general, it can be difficult to exhibit an example that shows analytically fine
cross-slip (though it is regularly observed in numerical simulations). However, in the
case Ω = R

2, this can be done with two dislocations as follows. Suppose we have a
system of two dislocations Z = (z,w) ∈ R

4 with Burgers moduli b1 = −b2 =: b > 0,
respectively. Under these assumptions, (3.6) reduces to

(3.7) j1(z,w) = − b2

2π

z−w

|z−w|2 = −j2(z,w).

Assume that the glide directions are along the lines x2 = ±x1,

(3.8) G = {±g1, ±g2} , g1 :=
1√
2

(
1
1

)
, g2 :=

1√
2

(
1

−1

)
.

There are two cases of initial conditions Z0 = (z0,w0) with z0 = (z0,1, z0,2), w0 =
(w0,1, w0,2) to consider: either z0 and w0 are aligned along a vertical or horizontal
line, or they are not. That is, either z0,1 = w0,1 or z0,2 = w0,2 (but not both), or
z0,i �= w0,i for i = 1, 2.

We begin by considering the case z0,2 = w0,2. Let y := z0,2 = w0,2, and without
loss of generality take w0,1 > z0,1. From (3.7), we have

(3.9) j1(Z0) = j1(z0,1, y, w0,1, y) =
b2

2π

1

w0,1 − z0,1

(
1
0

)
= −j2(Z0).

Since w0,1 − z0,1 > 0, we see that j1(Z0) is aligned with (1, 0) and j2(Z0) is aligned
with (−1, 0). Thus, the maximally dissipative glide directions for z are g1 and g2 (see
(3.8)) and the maximally dissipative glide directions for w are −g1 and −g2. Define
g0
1 := g1 − g2 = (0,

√
2) and g0

2 := −g1 + g2 = −g0
1 so that locally, near Z0, the

ambiguity surfaces are A1 ∩ Br(Z0) = {Z : j1(Z) · g0
1 = 0}, A2 ∩ Br(Z0) = {Z :

j2(Z) · g0
2 = 0} for some small r > 0. From (3.7), we see that j1(Z) · g0

1 = 0 if and
only if z2 = w2, and the same holds for j2(Z) · g0

2 = 0, so that

A1 ∩Br(Z0) = A2 ∩Br(Z0) = {Z = (z,w) ∈ Br(Z0) : z2 = w2}.

This is a degenerate situation since the ambiguity surfaces A1 and A2 coincide locally,
and instead of having four vector fields near the intersection, we have two vector
fields. That is, the fields f (+,+) and f (−,−) (see (3.1)) are defined on either side of the
surface A1, but since A1 = A2, there are no regions where the fields f (−,+) or f (+,−)

are defined. We choose a sign for the normal to A1 and A2 at Z0 and set

(3.10) n :=
1√
2
(0, 1, 0,−1).
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Recall the convention that A1 (and A2) divides Br(Z0) into two regions, V ±

and n points from V − to V +. A point in V + is of the form Z0 + εn = (z0,1, y +
ε/
√
2, w0,1, y − ε/

√
2), and from (3.7),

j1(Z0 + εn) =
b2

2π

1

(z0,1 − w0,1)2 + 2ε2

(
w0,1 − z0,1
−√

2ε

)
= −j2(Z0 + εn),

so g2 is the maximally dissipative glide direction for z, and −g2 is the maximally
dissipative glide direction forw if Z ∈ V +. Similarly, a point in V − is of the form Z0−
εn = (z0,1, y − ε/

√
2, w0,1, y + ε/

√
2), and the maximally dissipative glide directions

for z and w in this case are g1 and −g1, respectively. Thus, we have for Z ∈ Br(Z0),

f (+,+)(Z) := ((j1(Z) · g2)g2 , (j2(Z) · (−g2))(−g2)),

f (−,−)(Z) := ((j1(Z) · g1)g1 , (j2(Z) · (−g1))(−g1)).

Since j1(Z) = −j2(Z), we have

f (+,+)(Z) := (j1(Z) · g2)(g2 , −g2), f (−,−)(Z) := (j1(Z) · g1)(g1 , −g1).(3.11)

From (3.8) and (3.9), we have j1(Z0) ·g1 = j1(Z0) ·g2 = b2

2
√
2π

(w0,1− z0,1)
−1 > 0, and

from (3.8) and (3.10), we have n · (g2,−g2) = −1 and n · (g1,−g1) = 1. Thus,

n · f (+,+)(Z0) = − b2

2
√
2π(w0,1 − z0,1)

< 0, n · f (−,−)(Z0) =
b2

2
√
2π(w0,1 − z0,1)

> 0,

so the fine cross-slip conditions (3.2) are satisfied (there are no conditions for f (+,−)

or f (−,+) since locally A1 = A2). By (3.6), Ż must be a convex combination of f (+,+)

and f (−,−), Ż = αf (+,+)(Z)+(1−α)f (−,−)(Z), and the trajectory Z(t) ∈ A1 = A2 for
some time interval [0, T ]. Therefore, Z(t) = (z(t),w(t)) = (z1(t), z2(t), w1(t), w2(t))
and z2(t) = w2(t) for t ∈ [0, T ]. From (3.11) and the fact that j1(Z) · g1 = j1(Z) · g2

whenever z2 = w2, we have

Ż = α(j1(Z) · g2)(g2 , −g2) + (1− α)(j1(Z) · g1)(g1 , −g1)

=
b2

4π(w1 − z1)
(1, 1− 2α,−1, 2α− 1) .

The condition n · Ż = 0 yields α = 1
2 , so the equations of motion (3.6) are

Ż = (ż1, ż2, ẇ1, ẇ2) =
1

2

(
f (+,+)(Z) + f (−,−)(Z)

)
=

b2

4π(w1 − z1)
(1, 0,−1, 0).

In particular, ż2 = 0, ẇ2 = 0, and z2(0) = y = w2(0), so z2(t) = y = w2(t) for
t ∈ [0, T ]. The equations for z1 and w1 are easily solved with

z1(t) = −1

2

(
(w0,1 − z0,1)

2 − b2

π
t

) 1
2

+
1

2
(z0,1 + w0,1),

w1(t) =
1

2

(
(w0,1 − z0,1)

2 − b2

π
t

) 1
2

+
1

2
(z0,1 + w0,1).
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This implies that the trajectory Z(t) moves on A1 = A2 up to the maximal time
T = π

b2 (w0,1 − z0,1)
2, and z1(t) increases from z0,1 while w1(t) decreases from w0,1,

with the two meeting at z1(T ) = w1(T ) = 1
2 (z0,1 + w0,1). At this collision, the

dynamics are no longer well defined.

If the initial condition has z0 and w0 vertically aligned, then the same analysis
applies, but the situation is rotated.

If z0 and w0 are not aligned vertically or horizontally, then a regular glide motion
occurs until either z1 = w1 or z2 = w2, and then the above analysis applies. To see
this, consider z0 = (z0,1, z0,2) and w0 = (w0,1, w0,2), and without loss of generality,
assume that w0,1 > z0,1 and w0,2 > z0,2 (the other cases are similar). In this case

j1(Z0) =
b2

2π|z0 −w0|2
(

w0,1 − z0,1
w0,2 − z0,2

)
= −j2(Z0).

Since w0,1 − z0,1 > 0 and w0,2 − z0,2 > 0, the maximally dissipative glide directions
for j1 and j2 are g1 and −g1, respectively. Thus, z glides in the g1 direction so
that z1 and z2 increase from z0,1 and z0,2, while w glides in the −g1 direction so
that w1 and w2 decrease from w0,1 and w0,2. At some time t1 we must obtain either
z1(t1) = w1(t1) or z2(t1) = w2(t1). If only one of these equalities holds, we are in the
situations described above and fine cross-slip occurs. If both of these equalities hold,
then z and w have collided and the dynamics is no longer defined.

Remark 3.1 (mirror dislocations). A direct inspection of (3.3) and (3.5) shows
that the force on z� in Ω = B1 and Ω = R

2
+ is the same as the force on z� in R

2 if
one adds N dislocations with opposite Burgers moduli at the points z̄i in the case
Ω = B1, and at z̃i in the case Ω = R

2
+, for i = 1, . . . , N .

4. Numerical simulations. The simulation of (2.20) may be undertaken using
standard numerical ODE integrators, provided sufficient care is taken in resolving the
evolution near the “ambiguity surfaces” A�. A discrete time step leads to a numerical
integration that oscillates back and forth across an attracting ambiguity surface in the
case of fine cross-slip. On the macroscale, this appears as fine cross-slip since the small
oscillations across the surface average out and what remains is motion approximately
tangent to A�. To compute the vector field, one must solve the Neumann problem
(1.12) at each time step, so a fast elliptic PDE solver is needed in practice.

An example is shown in Figures 3 and 4, where we have simulated a system of
N = 12 screw dislocations with each Burgers modulus bi = 1 for i = 1, . . . , 12 and
where the domain is the unit disk. The integration is done in Ω12 ⊂ R

24, but the
graphics depict the path each zi takes in Ω ⊂ R

2. All but one dislocation exhibit
normal glide motions, while the dislocation at the center exhibits fine cross-slip, as is
visible in Figure 4. In this case, the solution to the Neumann problem is explicit (cf.
(3.3)), so it is not difficult to simulate systems with more dislocations and observe
more complicated behavior, such as multiple dislocations simultaneously exhibiting
fine cross-slip, corresponding to motion along the intersection of multiple ambiguity
surfaces in the full space ΩN . The simulation depicted in Figures 3 and 4 was run
until a dislocation collided with the boundary. Since all dislocations have positive
Burgers moduli, they repel each other, and no collision between dislocations occurs,
and the dynamics can be continued until a boundary collision.

Appendix. We collect some technical results that are needed in the proofs from
section 2.
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z1↘
z2

z3

z4 z5 z6

z7

z8

z9

z10

z11z12

G

Fig. 3. The forces are repulsive, and the dislocations move mostly along the glide directions
G = {±e1,±e2,± 1√

2
(e1 + e2)}. All but one (the one at the center) move along a glide direction

until one of them hits the boundary. The dislocation in the middle moves along −e1 but then exhibits
fine cross-slip.

z1(0)
z1(T )

G

z1(0)
z1(T )

z3(0)

z4(0)
z5(0) z6(0)

z9(0)

z10(0)

G

Fig. 4. These plots are magnified views of the motion of z1. The motion begins at the dot
on the right and ends at the square on the left. The motion abruptly begins to fine cross-slip and
eventually moves back to a gliding motion as the fine cross-slip motion becomes aligned with −e1.

A.1. Lemmas on the singular set.

Lemma A.1. The set D(F ), as defined in (2.14), is open and connected.

Proof. From (2.14) and (2.13), it is clear that D(F ) is open. We will now show
that D(F ) is path connected. Let w, z1, . . . , zN ∈ Ω be distinct points, and let

Z, Ẑ ∈ D(F ) be given by Z = (z1, . . . , zN ) and Ẑ = (z1, . . . , z�−1,w, z�+1, . . . , zN ).

We construct a continuous path γ : [0, 1] → D(F ) with γ(0) = Z and γ(1) = Ẑ as
follows.

Note that Ω\{z1, . . . , z�−1, z�+1, . . . , zN} is path connected. Thus there is a path
γ� : [0, 1] → Ω \ {z1, . . . , z�−1, z�+1, . . . , zN} with γ�(0) = z� and γ�(1) = w. Then
setting γ(t) = (z1, . . . , z�−1, γ�(t), z�+1, . . . , zN ) for each t ∈ [0, 1] gives a path in D(F )

from Z to Ẑ.

We can now connect any vector Z = (z1, . . . , zN ) ∈ D(F ) to any other vector
W = (w1, . . . ,wN ) ∈ D(F ) by first moving z1 to w1 as above, then z2 to w2, and so
on, until all the zi are moved to wi, producing a path from Z to W.

To prove the following lemma we will use the fact that the renormalized energy
(see (1.6)) diverges logarithmically with the relative distance between the dislocations,
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that is,

(A.1) U(z1, . . . , zN ) = −
N−1∑
i=1

N∑
j=i+1

μλbibj
4π

log |Λ(zi − zj)|+O(1)

as |zi − zj | −→ 0. We refer the reader to [7] for a proof.
Lemma A.2. Fix � ∈ {1, . . . , N}, and let e ∈ R

2 \ {0} be fixed. Then the set
V = {Z ∈ D(F ) : j�(Z) · e = 0} has an empty interior.

Proof. The set V is closed because j� is continuous. Suppose there is a ball
B ⊂ V . From Lemma 2.15, we have that j�(Z) · e is analytic in B and is constant;
therefore j�(Z) · e is constant in the largest connected component of D(F ) containing
B. Hence, by Lemma A.1, j�(Z) · e = 0 in D(F ). From (1.8), we have that

(A.2) ∇z�U(Z) · e = 0 in D(F ),

so U is constant when z� varies along the direction e.
Consider a fixed Z∗ = (z1, z2, . . . , zN ) ∈ D(F ). Let h > 0, and for δ ∈ (0, h]

define zδ� := z�+ δe. We assume that h0 is small enough so that zδ� ∈ Ω\ {z1, . . . , zN}
for δ ∈ (0, h0]. Fix a k �= � and h ∈ (0, h0], and let Zh be the point in D(F ) obtained
by replacing zk in Z∗ with zh� , i.e.,

Zh := {z1, . . . , z�, . . . , zk−1, z
h
� , zk+1, . . . , zN}.

Letting δn =
(
1− 1

n

)
h, we construct the sequence {Zn} ⊂ D(F ) given by

Zn :=
{
z1, . . . , z� + δne, . . . , zk−1, z

h
� , zk+1, . . . , zN

}
.

We have Z1 = Zh, and

Zn → Z∞ := {z1, . . . , zh� , . . . , zk−1, z
h
� , zk+1, . . . , zN} as n → ∞.

Note that Z∞ /∈ D(F ) because z� and zk are colliding as n → ∞. In particular, by
(A.1), |U(Zn)| → ∞ as n → ∞. On the other hand, in the sequence {Zn}, only the
�th dislocation is moving, and it is moving along the direction e, so from (A.2), U(Zn)
remains constant for all n. We have reached a contradiction, and we conclude that V
does not contain any ball.

Lemma A.3. The set M̃∞
� , as defined in (2.26), is empty.

Proof. Without loss of generality, let � = 1. Recall that

M̃∞
1 = {Z : j1(Z) · g0 = 0, ∂α(j1(Z) · g0) = 0 for all α ∈ N1},

with N1 defined in (2.25). Suppose that M̃∞
1 �= ∅ and Z̃ = (z̃1, . . . , z̃N ) ∈ M̃∞

1 . Since

j1 · g0 is analytic and Z̃ ∈ M̃∞
1 , we have that j1(Z) · g0 = j1(Z̃) · g0 for Z ∈ {z̃1}× V ,

where V is open in R
2N−2. Take V to be the largest connected component of D(F )

with z1 = z̃1, which, by the same argument as in Lemma A.1, can be written as
{z̃1}× V = {Z ∈ D(F ) : z1 = z̃1}. We cannot follow the energy approach of Lemma
A.2 because that would require moving z1, which is fixed. Instead, let 0 < ε0 � 1
and construct a sequence {Zn} ⊂ V0, where

V0 :=

{
Z ∈ V : min

i∈{1,...,N}
dist(zi, ∂Ω) > ε0

}
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(ε0 is only required to ensure we do not have boundary collisions). To be precise,
choose z3, . . . , zN ∈ Ω pairwise distinct and such that zk �= z̃1 and dist(zk, ∂Ω) > ε0
for every k = 3, . . . , N . Therefore, for n � 1 and δ0 > 0 sufficiently small, Zn :=
(z̃1, z̃1+δng0, z3, . . . , zN ) belongs to V0, where δn = δ0/n. Then j1(Zn)·g0 = j1(Z̃)·g0

by construction, but Z∞ /∈ D(F ), where Z∞ = limn→∞ Zn, because the first and
second dislocations have collided.

For each n, all the components of Zn are a bounded distance from ∂Ω. Thus,
by (1.10), (1.13), and standard elliptic estimates, there exists C > 0 such that
|∇u(z̃1;Zn)| � C for all n. For each n, the singular strains |ki(z̃1; zi)| are bounded for
i � 3. However, |k2(z̃1; z̃1 + δng0)| � c/δn → ∞ as n → ∞ for some c > 0. Thus, we
see from (1.10) and (1.9) that for large n, the force j1(Zn) will be large in magnitude
and aligned closely with b1b2

(
z̃1 − (z̃1 + δng0)

)
(i.e., j1(Zn) will be nearly parallel or

antiparallel to g0). Therefore, 0 = j1(Z̃) · g0 = j1(Zn) · g0 � c1|j1(Zn)|·|g0| → ∞ as
n → ∞ for some c1 > 0, which contradicts the fact that j1(Zn) · g0 = j1(Z̃) · g0. We

conclude that M̃∞
1 = ∅.
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