POLITECNICO DI TORINO

Repository ISTITUZIONALE

An Existence and Uniqueness Result for the Motion of Self-Propelled Microswimmers

Original
An Existence and Uniqueness Result for the Motion of Self-Propelled Microswimmers / DAL MASO, Gianni; Desimone, Antonio; Morandotti, Marco. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. 43:3(2011), pp. 1345-1368. [10.1137/10080083X]

Availability:

This version is available at: 11583/2722521 since: 2020-02-14T14:10:52Z

Publisher:
Society for Industrial and Applied Mathematics

Published
DOI:10.1137/10080083X

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

GENERICO -- per es. Nature : semplice rinvio dal preprint/submitted, o postprint/AAM [ex default]
The original publication is available at http://epubs.siam.org/doi/abs/10.1137/10080083X /
http://dx.doi.org/10.1137/10080083X.
(Article begins on next page)

AN EXISTENCE AND UNIQUENESS RESULT FOR THE MOTION OF SELF-PROPELLED MICROSWIMMERS*

GIANNI DAL MASO ${ }^{\dagger}$, ANTONIO DESIMONE ${ }^{\dagger}$, AND MARCO MORANDOTTI ${ }^{\dagger}$

Abstract

We present an analytical framework to study the motion of microswimmers in a viscous fluid. Our main result is that, under very mild regularity assumptions, the change of body shape uniquely determines the motion of the swimmer. We assume that the Reynolds number is very small, so that the velocity field of the surrounding infinite fluid is governed by the Stokes system and all inertial effects can be neglected. Moreover, we enforce the self propulsion constraint (no external forces and torques). Therefore, Newton's equations of motion reduce to the vanishing of the viscous force and torque acting on the body. By exploiting an integral representation of viscous force and torque, the equations of motion can be reduced to a system of six ordinary differential equations. Variational techniques are used to prove the boundedness and measurability of this system's coefficients, so that classical results on ordinary differential equations can be invoked to prove existence and uniqueness of the solution.

Key words. swimming, low Reynolds number flows, dependence of solutions of PDEs on domain and boundary data, Stokes equations

AMS subject classifications. 76Z10, 35J47, 76D03, 74F10

DOI. 10.1137/10080083X

1. Introduction. The study of swimming strategies of living organisms is attracting increasing attention, starting from seminal works by Taylor [23], Lighthill [17], and Childress [6]. We refer the reader to the recent review [16] for a comprehensive list of references. Among the more mathematical contributions we quote [14], [9], [20], and [4].

Swimming consists of changing position by changing shape periodically and exploiting the interaction with the surrounding liquid. Shape change induces a flow in the fluid. The propulsive effect arises from the action and reaction principle: the swimmer must exert forces to set the fluid in motion, and hence it receives from the fluid a propulsive force. In the absence of other actions on its body, this is the only force the swimmer can exploit (self propulsion). In what follows we will focus on the case in which the swimmer is completely immersed in the liquid.

Flows generate both inertial and viscous forces. In a Newtonian fluid, their relative importance is measured by the Reynolds number $\operatorname{Re}:=\frac{V L}{\nu}$ and by the Womersley number $\alpha:=\left(\omega \frac{L}{V} \operatorname{Re}\right)^{1 / 2}$, where V is the swimming velocity, L the size of the swimmer, ν the kinematic viscosity of the fluid, and ω the frequency of the motion. Typical swimmers move with a speed which is of the order of some body-lengths per second and execute cyclic shape changes with frequencies not exceeding a few thousand Hertz [6, Table 1.1]. Therefore, for swimmers of sufficiently small size L, both Re and α are small, and all inertial effects are negligible.

Thus, a fish swims by accelerating the surrounding water, while bacteria and other unicellular organisms move by exploiting viscous resistance. The striking difference

[^0]between these two strategies and the subtleties that follow are beautifully illustrated in [19].

In this paper we deal with microswimmers immersed in a viscous liquid; therefore the fluid dynamics is governed by the Stokes system [6, Chapter 2]. Moreover, we assume self propulsion and neglect all external forces acting on the fluid and on the swimmer, including gravity. By a suitable choice of the units, we may assume that the viscosity of the fluid is equal to 1 .

Our point of view is similar to that proposed in [21], where the authors exploit a gauge field theory approach in the space of shapes. They give explicit examples in the two-dimensional case and in the case of infinitesimal deformations of a sphere. In the same spirit, axisymmetric swimmers described by finitely many shape parameters have been studied in [1], [2], [3], where energetically optimal strokes are also computed numerically. The novelty in the present work is that we develop a theoretical framework for studying swimmers whose shape changes are completely general and genuinely infinite-dimensional.

The motion of a swimmer is described by a map $t \mapsto \varphi_{t}$, where, for every fixed t, the state φ_{t} is an orientation preserving bijective C^{2} map from the reference configuration $A \subset \mathbb{R}^{3}$ into the current configuration $A_{t} \subset \mathbb{R}^{3}$.

Given a distinguished point $x_{0} \in A$, for every fixed t, we consider the following factorization:

$$
\begin{equation*}
\varphi_{t}=r_{t} \circ s_{t} \tag{1.1}
\end{equation*}
$$

where the position function r_{t} is a rigid deformation and the shape function s_{t} is such that

$$
\begin{gather*}
s_{t}\left(x_{0}\right)=x_{0} \tag{1.2a}\\
\nabla s_{t}\left(x_{0}\right) \quad \text { is symmetric. } \tag{1.2b}
\end{gather*}
$$

In the applications we have in mind, one can choose the map $t \mapsto s_{t}$ in a suitable class of admissible shape changes and use it as a control to achieve propulsion as a consequence of the viscous reaction of the fluid. By contrast, $t \mapsto r_{t}$ is a priori unknown and must be determined by imposing that the resulting $\varphi_{t}=r_{t} \circ s_{t}$ satisfy the equations of motion.

The factorization (1.1) of the motion into data (the freely adjustable shapes s_{t}) and unknowns (the position and orientation r_{t} achieved by the swimmer as a consequence of having executed some strokes) is conceptually appealing and has far reaching consequences in the analysis of biological and engineered systems. Moreover, it simplifies the problem, reducing it to a system of ordinary differential equations since $r_{t}(z)=y_{t}+R_{t} z$ is finite-dimensional; here y_{t} and R_{t} are the translation and rotation characterizing the rigid motion r_{t}. Finally, it is natural, because $t \mapsto s_{t}$ represents the motion as seen by an observer moving with the swimmer, while $t \mapsto r_{t}$ represents the motion of this observer with respect to a fixed frame. To establish a link with the language of [21], notice that conditions (1.2) select one special gauge for the description of the system, that s_{t} describes the standard (unlocated) shape of the swimmer, and φ_{t} gives its located shape.

The equations of motion that the map $t \mapsto \varphi_{t}$ must satisfy are the balance of linear and angular momentum, which, since inertia is negligible, reduce to the vanishing of total force and total torque acting on the swimmer A_{t}. Since we assume self propulsion, there are no external forces applied to A_{t}, so that the total force and
torque reduce to those arising from the viscous resistance exerted by the fluid on the boundary ∂A_{t} :

$$
\begin{align*}
& 0=F_{A_{t}, \dot{\varphi}_{t}}:=\int_{\partial A_{t}} \sigma_{t}(y) n(y) \mathrm{d} S(y) \tag{1.3a}\\
& 0=M_{A_{t}, \dot{\varphi}_{t}}:=\int_{\partial A_{t}} y \times \sigma_{t}(y) n(y) \mathrm{d} S(y) \tag{1.3b}
\end{align*}
$$

Here σ_{t} is the stress tensor, n is the outer unit normal to $\partial A_{t}, \mathrm{~d} S$ indicates the integration with respect to the surface measure, and \times is the cross product in \mathbb{R}^{3}. Since the Reynolds and Womersley numbers are small, stresses are computed by solving the outer Stokes problem in $A_{t}^{\text {ext }}:=\mathbb{R}^{3} \backslash \bar{A}_{t}$:

$$
\left\{\begin{aligned}
\Delta u_{t}(y) & =\nabla p_{t}(y) & & \text { in } A_{t}^{\text {ext }} \\
\operatorname{div} u_{t}(y) & =0 & & \text { in } A_{t}^{\text {ext }} \\
u_{t}(y) & =\left.\dot{\varphi}_{t}(x)\right|_{x=\varphi_{t}^{-1}(y)} & & \text { on } \partial A_{t} \\
u_{t}(y) & \rightarrow 0 & & \text { for }|y| \rightarrow \infty
\end{aligned}\right.
$$

where u_{t} is the velocity and p_{t} is the pressure, so that $\sigma_{t} n=-p_{t} n+\left(\nabla u_{t}+\left(\nabla u_{t}\right)^{T}\right) n$ (recall that the viscosity is assumed to be 1).

Our main result is Theorem 6.4, which states that for every sufficiently smooth shape change $t \mapsto s_{t}$ the position functions $t \mapsto r_{t}$ are uniquely determined by the initial conditions at $t=0$. More precisely, there exists a unique family of rigid motions $t \mapsto r_{t}$ such that the state functions $t \mapsto \varphi_{t}:=r_{t} \circ s_{t}$ satisfy the equations of motion (1.3), and φ_{t} (or equivalently r_{t}) takes a prescribed value at $t=0$. This result provides a rigorous mathematical justification for the viewpoint pioneered in [21]: the motion of a microswimmer is uniquely determined by the history of its shapes.

The main ingredients in the proof are the following. By exploiting the linearity of the Stokes system, we reduce the equations of motion (1.3) to (4.6), namely,

$$
\dot{y}_{t}=R_{t} b_{t}, \quad \dot{R}_{t}=R_{t} \Omega_{t}
$$

a system of ordinary differential equations involving the translational and rotational velocities associated with the rigid motion $t \mapsto r_{t}$. The coefficients b_{t} and Ω_{t} of these equations, given in (4.5), depend only on s_{t} and \dot{s}_{t}. They are obtained from the shape function $t \mapsto s_{t}$ by solving some auxiliary outer Stokes problems on $A_{t}^{\text {ext }}$.

The main difficulty is in proving the continuity, or at least the measurability, of these coefficients. To this aim, we have to obtain the continuous dependence of the solutions of the outer Stokes problems on their domains and on their boundary data; the main technical issue is the fact that they both depend on time.

Once continuity of the coefficients and measurability of the data of the equations of motion are proved, our existence and uniqueness problem can be solved by using classical techniques for ordinary differential equations.

We close by noticing that several interesting questions related to swimming can be phrased as control problems where the function $t \mapsto \dot{s}_{t}$ is the input and the function $t \mapsto r_{t}$ is the output. For example: which net positional and orientational changes can be achieved within a given class of time-periodic shape changes? Problems of this type have been solved, e.g., in [1], [2], [3] for swimmers described by finitely many shape parameters.

In the context of control problems, it is very useful that the input variables are allowed to be discontinuous in time. This is the main reason why we have insisted on
proving our result for the case of Lipschitz continuous $t \mapsto s_{t}$, even though a C^{1} regularity in time would have simplified the proofs very much. Infinite-dimensional control problems for swimmers of fixed shape that can control the velocity of the surrounding fluid at points in contact with the swimmer's boundary have been considered, e.g., in [9], [20]. We plan in future work to address control problems for swimmers of variable shape, possibly described by infinitely many shape parameters.
2. Stokes problem. In this section we recall some known results on the exterior Stokes problem. In addition, we introduce a weak definition of the viscous force and torque, which does not require any regularity assumption on the velocity field. Finally, we prove that the solutions depend continuously on the domains for special boundary conditions.

Let Ω be an exterior domain with Lipschitz boundary; i.e., Ω is an unbounded connected open set whose boundary $\partial \Omega$ is bounded and Lipschitz. The strong formulation of the exterior Stokes problem is

$$
\left\{\begin{align*}
\Delta u=\nabla p & \text { in } \Omega, \tag{2.1}\\
\operatorname{div} u=0 & \text { in } \Omega, \\
u=U & \text { on } \partial \Omega, \\
u=0 & \text { at } \infty,
\end{align*}\right.
$$

which includes a decay condition at infinity.
To write the weak formulation of this problem, we consider the Deny-Lions space

$$
D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right):=\left\{u \in L^{6}\left(\Omega ; \mathbb{R}^{3}\right): \nabla u \in L^{2}\left(\Omega ; \mathbb{M}^{3 \times 3}\right)\right\}
$$

where $\mathbb{M}^{3 \times 3}$ is the Hilbert space of 3×3 real matrices endowed with the Euclidean norm $\sigma: \xi:=\sum_{i, j} \sigma_{i j} \xi_{i j}$. The space $D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ is endowed with the norm

$$
\begin{equation*}
\|u\|_{D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)}:=\|\nabla u\|_{L^{2}\left(\Omega ; \mathbb{M}^{3 \times 3}\right)} \tag{2.2}
\end{equation*}
$$

It is well known that $D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ is a Hilbert space and that there exists a constant $C(\Omega)$ such that

$$
\|u\|_{L^{6}\left(\Omega ; \mathbb{R}^{3}\right)} \leqslant C(\Omega)\|u\|_{D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)}
$$

for all $u \in D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$. For a thorough exposition on these spaces, see the classical work by Deny and Lions [7].

Let $\mathrm{E} u:=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right)$ denote the symmetric gradient of u. The inequality

$$
\begin{equation*}
\|\nabla u\|_{L^{2}\left(\Omega ; \mathbb{M}^{3} \times 3\right)}^{2} \leqslant C(\Omega)\|\mathrm{E} u\|_{L^{2}\left(\Omega ; \mathbb{M}^{3} \times 3\right)}^{2} \tag{2.3}
\end{equation*}
$$

proved in a more general setting for weighted spaces of functions defined on unbounded domains [15, section 3, Theorem 1], shows that $\|E u\|_{L^{2}\left(\Omega ; \mathbb{M}^{3} \times 3\right)}$ is an equivalent norm on $D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$. Since $\partial \Omega$ is bounded, for every $u \in D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right)$ the trace of u on $\partial \Omega$, still denoted by u, belongs to $H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, and the trace operator is continuous between these two spaces.

The following density result plays a crucial role in the theory.
Theorem 2.1 (density; see [13]). Let $\Omega \subset \mathbb{R}^{3}$ be an exterior domain with Lipschitz boundary. Then the space

$$
\left\{u \in C_{\mathrm{c}}^{\infty}\left(\Omega ; \mathbb{R}^{3}\right): \operatorname{div} u=0 \text { in } \Omega\right\}
$$

is dense in $\left\{u \in D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right): \operatorname{div} u=0\right.$ in $\Omega, u=0$ on $\left.\partial \Omega\right\}$ for the norm (2.2).

To write the weak formulation of the exterior Stokes problem, we introduce the spaces

$$
\begin{aligned}
\mathcal{V}(\Omega) & :=\left\{u \in D^{1,2}\left(\Omega ; \mathbb{R}^{3}\right): \operatorname{div} u=0 \text { in } \Omega\right\} \\
\mathcal{V}_{0}(\Omega) & :=\{u \in \mathcal{V}(\Omega): u=0 \text { on } \partial \Omega\}
\end{aligned}
$$

Given a function $U \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, which plays the role of the boundary condition, the weak formulation of (2.1) is given by

$$
\left\{\begin{align*}
u \in \mathcal{V}(\Omega), \quad u=U & \text { on } \partial \Omega \tag{2.4}\\
\int_{\Omega} \mathrm{E} u: \mathrm{E} w \mathrm{~d} x=0 & \text { for every } w \in \mathcal{V}_{0}(\Omega)
\end{align*}\right.
$$

Remark. We note that no other assumptions are to be made on the boundary velocity field. If Ω were a bounded domain, then the following condition would have been necessary:

$$
\begin{equation*}
\int_{\partial \Omega} U \cdot n \mathrm{~d} S=0 \tag{2.5}
\end{equation*}
$$

Now we state the main existence and uniqueness result for the exterior Stokes problem. Its proof is classical and can be found in the books by Galdi [8], Sohr [22], and Temam [24].

ThEOREM 2.2. Let $\Omega \subset \mathbb{R}^{3}$ be an exterior domain with Lipschitz boundary, and let $U \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$. Then problem (2.4) has a solution. Moreover, there exists $p \in L_{\mathrm{loc}}^{2}(\Omega)$, with $p \in L^{2}\left(\Omega \cap \Sigma_{\rho}\right)$ for every ball Σ_{ρ} centered at the origin and of radius $\rho>0$, such that $\Delta u=\nabla p$ in $\mathcal{D}^{\prime}\left(\Omega ; \mathbb{R}^{3}\right)$.

If u and p are the velocity and pressure fields of problem (2.1), the stress tensor is given by

$$
\begin{equation*}
\sigma:=-p \mathrm{I}+2 \mathrm{E} u \tag{2.6}
\end{equation*}
$$

where I is the identity matrix. (Recall, again, that the viscosity is equal to 1.) Note that if u satisfies (2.4), then

$$
\begin{equation*}
\operatorname{div} \sigma=-\nabla p+\Delta u+\nabla(\operatorname{div} u)=0 \tag{2.7}
\end{equation*}
$$

If σn has a trace in $L^{1}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, then the viscous force, defined as the resultant of the forces acting on the boundary $\partial \Omega$, is given by

$$
\begin{equation*}
F:=\int_{\partial \Omega} \sigma(x) n(x) \mathrm{d} S(x) \tag{2.8}
\end{equation*}
$$

while the viscous torque, defined as the resultant of the corresponding momenta with respect to the origin, is given by

$$
\begin{equation*}
M:=\int_{\partial \Omega} x \times \sigma(x) n(x) \mathrm{d} S(x) . \tag{2.9}
\end{equation*}
$$

A technical problem arises from the fact that σn does not, in general, have a trace in $L^{1}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, even if u satisfies the outer Stokes problem as in Theorem 2.2 , so that F and M cannot be defined via (2.8) and (2.9). Thanks to (2.7), the following
definition allows us to introduce the trace of σn as an element of $H^{-1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$. Through this we can define in a consistent way the power of the viscous force and of the torque.

Let $\mathbb{M}_{\text {sym }}^{3 \times 3}$ be the space of 3×3 symmetric matrices. Every $\sigma \in \mathbb{M}_{\text {sym }}^{3 \times 3}$ can be orthogonally decomposed as

$$
\sigma=\frac{\operatorname{tr} \sigma}{3} \mathrm{I}+\sigma_{D}
$$

where the deviatoric part σ_{D} satisfies $\operatorname{tr} \sigma_{D}=0$.
Definition 2.3. Let Ω be an exterior domain with Lipschitz boundary, and let $\sigma \in L_{\mathrm{loc}}^{1}\left(\Omega ; \mathbb{M}_{\mathrm{sym}}^{3 \times 3}\right)$ be such that $\sigma_{D} \in L^{2}\left(\Omega ; \mathbb{M}_{\mathrm{sym}}^{3 \times 3}\right)$ and $\operatorname{div} \sigma \in L^{6 / 5}\left(\Omega ; \mathbb{R}^{3}\right)$. We define the trace of σn on $\partial \Omega$, still denoted by σn, as the unique element of $H^{-1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ satisfying

$$
\begin{equation*}
\langle\sigma n, V\rangle_{\Omega}:=\int_{\Omega}(\operatorname{div} \sigma) \cdot v \mathrm{~d} x+\int_{\Omega} \sigma: \mathrm{E} v \mathrm{~d} x \tag{2.10}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{\Omega}$ denotes the duality pairing between $H^{-1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ and $H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ and v is any function in $\mathcal{V}(\Omega)$ such that $v=V$ on $\partial \Omega$.

We will drop the subscript Ω whenever the domain of integration is understood. If σ is sufficiently smooth, then an integration by parts shows that

$$
\langle\sigma n, V\rangle_{\Omega}=\int_{\partial \Omega} \sigma n \cdot V \mathrm{~d} S
$$

for every $V \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$.
Returning to the general case, it is easy to see that the right-hand side of (2.10) is well defined, since $\operatorname{div} \sigma \in L^{6 / 5}\left(\Omega ; \mathbb{R}^{3}\right)$, $v \in L^{6}\left(\Omega ; \mathbb{R}^{3}\right), \sigma: \mathrm{E} v=\sigma_{D}: \mathrm{E} v, \sigma_{D} \in$ $L^{2}\left(\Omega ; \mathbb{M}_{\text {sym }}^{3 \times 3}\right)$, and $\mathrm{E} v \in L^{2}\left(\Omega ; \mathbb{M}_{\text {sym }}^{3 \times 3}\right)$. Moreover, the definition of σn does not depend on the choice of v, since the right-hand side of (2.10) vanishes whenever $v \in \mathcal{V}_{0}(\Omega)$. This follows from the distributional definition of $\operatorname{div} \sigma$ whenever $v \in C_{\mathrm{c}}^{\infty}\left(\Omega ; \mathbb{R}^{3}\right)$ and $\operatorname{div} v=0$, and can be obtained by approximation in the general case using the density theorem, Theorem 2.1. Finally, by choosing $v \in \mathcal{V}(\Omega)$ as the solution to problem (2.1) with boundary datum V on $\partial \Omega$, we conclude that (2.10) defines a continuous linear functional on $H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$.

Let $U \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, let u be the solution to the Stokes problem (2.4) with boundary datum U, and let σ be the corresponding stress tensors defined by (2.6). Since $\sigma \in L_{\text {loc }}^{2}\left(\Omega ; \mathbb{M}^{3 \times 3}\right), \sigma_{D} \in L^{2}\left(\Omega ; \mathbb{M}_{\text {sym }}^{3 \times 3}\right)$, and $\operatorname{div} \sigma=0$ by (2.7), we can apply Definition 2.3, and for every $V \in H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ we obtain

$$
\begin{align*}
\langle\sigma n, V\rangle & =\int_{\Omega} \sigma: \mathrm{E} v \mathrm{~d} x=\int_{\Omega}[-p I: \mathrm{E} v+2 \mathrm{E} u: \mathrm{E} v] \mathrm{d} x \\
& =-\int_{\Omega} p \operatorname{div} v \mathrm{~d} x+2 \int_{\Omega} \mathrm{E} u: \mathrm{E} v \mathrm{~d} x=2 \int_{\Omega} \mathrm{E} u: \mathrm{E} v \mathrm{~d} x \tag{2.11}
\end{align*}
$$

where v is an arbitrary element of $\mathcal{V}(\Omega)$ such that $v=V$ on $\partial \Omega$. In particular, we can take as v the solution to the Stokes problem (2.4) with boundary datum V. This leads to the reciprocity condition,

$$
\langle\sigma n, V\rangle=\langle\tau n, U\rangle
$$

where τ is the stress tensor corresponding to v. By taking $U=V$ in (2.11), we get

$$
\begin{equation*}
\langle\sigma n, U\rangle=2\|\mathrm{E} u\|_{L^{2}\left(\Omega ; \mathbb{M}_{\mathrm{sym}}^{3 \times 3}\right)}^{2 \times} \tag{2.12}
\end{equation*}
$$

We now show that the quadratic form $\langle\sigma n, U\rangle$ is positive definite. Indeed, if $\langle\sigma n, U\rangle=$ 0 , by (2.12) we obtain $\mathrm{E} u=0$ almost everywhere on Ω. This implies that $u(x)=$ $c+A x$, where $c \in \mathbb{R}^{3}$ and A is a skew symmetric 3×3 matrix. Since $u \in L^{6}\left(\Omega ; \mathbb{R}^{3}\right)$, we have $c=0$ and $A=0$, so that $U=0$.

By using the duality product $\langle\sigma n, V\rangle$ for a suitable choice of V, one can define the viscous force F and the torque M in a rigorous way, extending (2.8) and (2.9) to the general case where the trace σn is not necessarily integrable on $\partial \Omega$.

Definition 2.4. Let Ω be an exterior domain with Lipschitz boundary, let $u \in \mathcal{V}(\Omega)$ be the solution of the Stokes problem (2.4) with boundary datum $U \in$ $H^{1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$, let σ be the corresponding stress tensor defined by (2.6), and let $\sigma n \in$ $H^{-1 / 2}\left(\partial \Omega ; \mathbb{R}^{3}\right)$ be the trace on $\partial \Omega$ introduced in Definition 2.3. The viscous force exerted by the fluid on the boundary $\partial \Omega$ is defined as the unique vector $F \in \mathbb{R}^{3}$ such that

$$
\begin{equation*}
F \cdot V=\langle\sigma n, V\rangle \quad \text { for every } V \in \mathbb{R}^{3} \tag{2.13}
\end{equation*}
$$

The viscous torque exerted by the fluid on the boundary $\partial \Omega$ is defined as the unique vector $M \in \mathbb{R}^{3}$ such that

$$
\begin{equation*}
M \cdot \omega=\left\langle\sigma n, W_{\omega}\right\rangle \quad \text { for every } \omega \in \mathbb{R}^{3} \tag{2.14}
\end{equation*}
$$

where $W_{\omega}(x):=\omega \times x$ is the velocity field generated by the angular velocity ω.
We conclude this section by proving the continuous dependence on the domains of the solutions to the Stokes problems. To this aim, we introduce a notion of convergence for subsets of \mathbb{R}^{3}. We say that a sequence of sets $\left(S_{k}\right)_{k}$ converges to S_{∞}, and we write $S_{k} \rightarrow S_{\infty}$, if for every $\varepsilon>0$ there exists m such that for every $k \geqslant m$

$$
\begin{equation*}
S_{\infty}^{-\varepsilon} \subset S_{k} \subset S_{\infty}^{+\varepsilon} \tag{2.15}
\end{equation*}
$$

where $S_{\infty}^{-\varepsilon}=\left\{y \in \mathbb{R}^{3}: \operatorname{dist}\left(y, \mathbb{R}^{3} \backslash S_{\infty}\right) \geqslant \varepsilon\right\}$ and $S_{\infty}^{+\varepsilon}=\left\{y \in \mathbb{R}^{3}: \operatorname{dist}\left(y, S_{\infty}\right) \leqslant \varepsilon\right\}$.
THEOREM 2.5. For $k=1,2, \ldots, \infty$, let S_{k} be a bounded connected open set of class C^{1}, and let w_{k} be the solution to the minimum problem

$$
\begin{equation*}
\min \left\{\int_{\mathbb{R}^{3}}|\mathrm{E} w|^{2} \mathrm{~d} x: w \in \mathcal{V}\left(\mathbb{R}^{3}\right), w=W \text { on } \partial S_{k}\right\} \tag{2.16}
\end{equation*}
$$

where W denotes either a constant vector $a \in \mathbb{R}^{3}$ or the affine function $W_{\omega}(x)=\omega \times x$ for some $\omega \in \mathbb{R}^{3}$. Assume that $S_{k} \rightarrow S_{\infty}$ in the sense of (2.15). Then $w_{k} \rightarrow w_{\infty}$ strongly in $\mathcal{V}\left(\mathbb{R}^{3}\right)$.

Notice that w_{k} coincides in $S_{k}^{\text {ext }}:=\mathbb{R}^{3} \backslash \bar{S}_{k}$ with the solution to the Stokes problem (2.4) in $\Omega=S_{k}^{\text {ext }}$ with boundary condition $w_{k}=W$ on ∂S_{k}, while $w_{k}=W$ in S_{k}.

Proof. Consider a ball Σ_{ρ} centered at 0 and containing the closures of all the S_{k} 's. It is possible to find a solenoidal function $\Psi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ such that $\Psi=W$ in ∂S_{k}.

When W is a constant vector a, we consider a smooth closed curve Γ passing through the origin, whose tangent vector coincides with a in all points of $\Gamma \cap \Sigma_{\rho}$, and with curvature less than $1 /(2 \rho)$. In the tubular neighborhood $\Gamma+\Sigma_{2 \rho}$, we consider the vector field $\Psi(x):=\psi(\operatorname{dist}(x, \Gamma)) \tau\left(\pi_{\Gamma}(x)\right)$, where π_{Γ} is the projection on Γ, τ returns the tangential component, and $\psi \in C_{\mathrm{c}}^{\infty}([0,2 \rho[)$ with $\psi(r)=1$ for $0 \leqslant r \leqslant \rho$. It is easy to see that Ψ is solenoidal, coincides with a on Σ_{ρ}, and vanishes near the boundary of the tubular neighborhood. Its extension by 0 provides the required function in $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$.

In the case $W=W_{\omega}$, it is enough to take $\Psi(x)=\omega \times \phi(x) x$, with ϕ a radial scalar function with compact support such that $\phi(x)=1$ for $x \in \Sigma_{\rho}$.

By minimality,

$$
\int_{\mathbb{R}^{3}}\left|\mathrm{E} w_{k}\right|^{2} \mathrm{~d} x \leqslant \int_{\mathbb{R}^{3}}|\mathrm{E} \Psi|^{2} \mathrm{~d} x \quad \text { for } k=1,2, \ldots, \infty .
$$

It follows that the sequence $\left(w_{k}\right)_{k}$ admits a weak limit w^{*} in $\mathcal{V}\left(\mathbb{R}^{3}\right)$.
Notice that $\Delta W=0$ and $\operatorname{div} W=0$ on S_{k}; hence $w_{k}=W$ on S_{k} for $k=$ $1,2, \ldots, \infty$. Since $S_{\infty}^{-\varepsilon} \subset S_{k}$ for k large enough by the first inclusion in (2.15), we get $w^{*}=W$ on $S_{\infty}^{-\varepsilon}$. As ε is arbitrary, we conclude $w^{*}=W$ on S_{∞}, which implies that the same equality holds for the traces on ∂S_{∞}. Therefore, w^{*} is a competitor in the problem for ∂S_{∞}.

We now show that w^{*} is also the minimum. For this, consider an admissible function v for the problem (2.16) for $k=\infty$. Then $v-\Psi \in \mathcal{V}\left(\mathbb{R}^{3}\right)$; it follows that $v-\Psi=0$ on ∂S_{∞}. In particular, $v-\Psi \in \mathcal{V}_{0}\left(S_{\infty}^{\text {ext }}\right)$, and by Theorem 2.1 there exist functions $\varphi_{\eta} \in C_{\mathrm{c}}^{\infty}\left(S_{\infty}^{\text {ext }} ; \mathbb{R}^{3}\right)$ such that $\varphi_{\eta} \rightarrow v-\Psi$ when $\eta \rightarrow 0$. For every $\eta>0$ the function $v_{\eta}:=\varphi_{\eta}+\Psi$ coincides with W in a neighborhood of ∂S_{∞}. By (2.15), this implies that v_{η} is a competitor for problem (2.16) on ∂S_{k} for k large enough. Therefore, by the minimality of w_{k},

$$
\int_{\mathbb{R}^{3}}\left|\mathrm{E} w_{k}\right|^{2} \mathrm{~d} x \leqslant \int_{\mathbb{R}^{3}}\left|\mathrm{E} v_{\eta}\right|^{2} \mathrm{~d} x .
$$

Taking the limit first as $k \rightarrow \infty$ and then as $\eta \rightarrow 0$, we get

$$
\limsup _{k \rightarrow \infty} \int_{\mathbb{R}^{3}}\left|\mathrm{E} w_{k}\right|^{2} \mathrm{~d} x \leqslant \int_{\mathbb{R}^{3}}|\mathrm{E} v|^{2} \mathrm{~d} x .
$$

By the lower semicontinuity of the norm in $\mathcal{V}\left(\mathbb{R}^{3}\right)$, we have

$$
\int_{\mathbb{R}^{3}}\left|\mathrm{E} w^{*}\right|^{2} \mathrm{~d} x \leqslant \liminf _{k \rightarrow \infty} \int_{\mathbb{R}^{3}}\left|\mathrm{E} w_{k}\right|^{2} \mathrm{~d} x \leqslant \limsup _{k \rightarrow \infty} \int_{\mathbb{R}^{3}}\left|\mathrm{E} w_{k}\right|^{2} \mathrm{~d} x \leqslant \int_{\mathbb{R}^{3}}|\mathrm{E} v|^{2} \mathrm{~d} x,
$$

thus proving the minimality of w^{*}. By uniqueness, we have $w_{\infty}=w^{*}$. The last chain of inequalities, applied with $v=w_{\infty}$, shows also that $\left\|w_{k}\right\|_{D^{1,2}} \rightarrow\left\|w_{\infty}\right\|_{D^{1,2}}$; hence $w_{k} \rightarrow w_{\infty}$ strongly in $\mathcal{V}\left(\mathbb{R}^{3}\right)$.
3. Kinematics. In this section we fix the notation and the assumptions for the kinematics of the swimmer. As mentioned in the introduction, we show that it is possible to decompose the deformation into a pure shape change followed by a timedependent rigid motion, whose rotations and translations are Lipschitz continuous with respect to time. The reference configuration $A \subset \mathbb{R}^{3}$ is a bounded connected open set of class C^{2}. The time-dependent deformation of A from the point of view of an external observer is described by a function $\varphi_{t}: \bar{A} \rightarrow \mathbb{R}^{3}$. We assume that, for every t,

$$
\begin{gather*}
\varphi_{t} \in C^{2}\left(\bar{A} ; \mathbb{R}^{3}\right), \tag{3.1a}\\
\varphi_{t} \quad \text { is injective, } \tag{3.1b}\\
\operatorname{det} \nabla \varphi_{t}(x)>0 \quad \text { for all } x \in \bar{A} . \tag{3.1c}
\end{gather*}
$$

Here and henceforth ∇ denotes the gradient with respect to the space variable. Under these hypotheses the set $A_{t}:=\varphi_{t}(A)$ is a bounded connected open set of class C^{2} and

$$
\text { the inverse } \varphi_{t}^{-1}: \bar{A}_{t} \rightarrow \bar{A} \text { belongs to } C^{2}\left(\bar{A}_{t} ; \mathbb{R}^{3}\right) \text {. }
$$

We assume in addition that

$$
\begin{equation*}
\text { the sets } \mathbb{R}^{3} \backslash \bar{A}_{t} \text { are connected for all } t \in[0, T] \tag{3.2}
\end{equation*}
$$

Concerning the regularity in time, we require that
(3.3) the map $t \mapsto \varphi_{t}$ belongs to $\operatorname{Lip}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right) \cap L^{\infty}\left([0, T] ; C^{2}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)$,
so that $\left\|\varphi_{t+h}-\varphi_{t}\right\|_{C^{1}} \leqslant L|h|$ for a suitable constant $L>0$.
We now prove that for almost every t there exists $\dot{\varphi}_{t} \in \operatorname{Lip}\left(\bar{A} ; \mathbb{R}^{3}\right)$ such that

$$
\begin{equation*}
\frac{\varphi_{t+h}-\varphi_{t}}{h} \rightarrow \dot{\varphi}_{t}, \quad \text { uniformly on } \bar{A} \text { as } h \rightarrow 0 \tag{3.4}
\end{equation*}
$$

Indeed, condition (3.3) implies that $t \mapsto \varphi_{t}$ belongs to $\operatorname{Lip}\left([0, T] ; W^{1,4}\left(A ; \mathbb{R}^{3}\right)\right)$. Therefore, the general theory of Lipschitz functions with values in reflexive Banach spaces (see, e.g., [5, appendix]) implies that for almost every t the difference quotient in (3.4) converges strongly in $W^{1,4}\left(A ; \mathbb{R}^{3}\right)$ to some element $\dot{\varphi}_{t}$ of $W^{1,4}\left(A ; \mathbb{R}^{3}\right)$. The embedding of $W^{1,4}\left(A ; \mathbb{R}^{3}\right)$ into $C^{0}\left(A ; \mathbb{R}^{3}\right)$ implies the uniform convergence considered in (3.4). Finally, the bound $\left\|\varphi_{t}-\varphi_{s}\right\|_{C^{1}} \leqslant L|t-s|$ implies that $\operatorname{Lip}\left(\dot{\varphi}_{t}\right)=L$ in \bar{A}, where, for every function $f, \operatorname{Lip}(f)$ denotes the Lipschitz constant of f.

It turns out that the Eulerian velocity on the boundary ∂A_{t}, defined by

$$
\begin{equation*}
U_{t}:=\dot{\varphi}_{t} \circ \varphi_{t}^{-1} \tag{3.5}
\end{equation*}
$$

belongs to $\operatorname{Lip}\left(\partial A_{t} ; \mathbb{R}^{3}\right)$ with Lipschitz constant independent of t.
We now describe the kinematics from the point of view of the swimmer. We fix a point $x_{0} \in A$ and look for a factorization of φ_{t} of the form (1.1), where $s_{t}: A \rightarrow \mathbb{R}^{3}$ satisfies properties (1.2) and $r_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a rigid motion of the form

$$
\begin{equation*}
r_{t}(z)=y_{t}+R_{t} z \tag{3.6}
\end{equation*}
$$

with $y_{t} \in \mathbb{R}^{3}$ and $R_{t} \in \mathrm{SO}(3)$, the set of orthogonal matrices with positive determinant. Conditions (1.2) allow us to interpret s_{t} as a pure shape change from the point of view of an observer located at x_{0}. Therefore, the deformation φ_{t}, from the point of view of an external observer, is decomposed into a shape change followed by a rigid motion.

It follows from (1.1), (3.1), and (3.6) that, for every t,

$$
\begin{gather*}
s_{t} \in C^{2}\left(\bar{A} ; \mathbb{R}^{3}\right) \tag{3.7a}\\
s_{t} \quad \text { is injective } \tag{3.7b}\\
\operatorname{det} \nabla s_{t}(x)>0 \quad \text { for all } x \in \bar{A} \tag{3.7c}
\end{gather*}
$$

and, consequently, that

$$
\begin{equation*}
\text { the inverse } s_{t}^{-1}: \bar{B}_{t} \rightarrow \bar{A} \quad \text { belongs to } C^{2}\left(\bar{B}_{t} ; \mathbb{R}^{3}\right) \tag{3.8}
\end{equation*}
$$

where $B_{t}:=s_{t}(A)$; see Figure 1. Note that B_{t} is a bounded connected open set of class C^{2} and that $r_{t}\left(B_{t}\right)=A_{t}$ and $r_{t}\left(\partial B_{t}\right)=\partial A_{t}$. Notice that, since A is bounded and s_{t} is continuous, there exists a ball Σ_{ρ} centered at 0 with radius ρ such that

$$
\begin{equation*}
A \subset \subset \Sigma_{\rho-1} \quad \text { and } \quad B_{t} \subset \subset \Sigma_{\rho-1} \tag{3.9}
\end{equation*}
$$

FIG. 1. Notation for the kinematics.
It follows from (3.2) that

$$
\begin{equation*}
\text { the sets } \Sigma_{\rho} \backslash \bar{B}_{t} \text { are connected for all } t \in[0, T] \tag{3.10}
\end{equation*}
$$

Conditions (1.1), (1.2), and (3.6) imply that

$$
\begin{align*}
R_{t} & =\nabla \varphi_{t}\left(x_{0}\right)\left[\sqrt{\nabla \varphi_{t}\left(x_{0}\right)^{T} \nabla \varphi_{t}\left(x_{0}\right)}\right]^{-1} \tag{3.11a}\\
y_{t} & =\varphi_{t}\left(x_{0}\right)-R_{t} x_{0} \tag{3.11b}
\end{align*}
$$

The existence of a factorization (1.1) satisfying (1.2) and (3.6) is obtained by setting $s_{t}:=r_{t}^{-1} \circ \varphi_{t}$, where r_{t} is given by (3.6) with y_{t} and R_{t} defined by (3.11). Moreover, (3.3), together with (3.11), implies that

$$
\begin{equation*}
t \mapsto R_{t} \quad \text { and } \quad t \mapsto y_{t} \quad \text { are Lipschitz continuous. } \tag{3.12}
\end{equation*}
$$

Finally, since $s_{t}=r_{t}^{-1} \circ \varphi_{t}$,
(3.13) the map $t \mapsto s_{t}$ belongs to $\operatorname{Lip}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right) \cap L^{\infty}\left([0, T] ; C^{2}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)$,
so that $\left\|s_{t+h}-s_{t}\right\|_{C^{1}} \leqslant L|h|$ for a suitable constant $L>0$. Properties (3.7c) and (3.13) imply that

$$
\begin{equation*}
\left\|s_{t}^{-1}\right\|_{C^{2}\left(\bar{B}_{t} ; \mathbb{R}^{3}\right)} \leqslant C, \tag{3.14}
\end{equation*}
$$

where $C<+\infty$ is a constant independent of t.
As for function φ_{t}, we can exploit condition (3.13) to prove that there exists $\dot{s}_{t} \in \operatorname{Lip}\left(\bar{A} ; \mathbb{R}^{3}\right)$ such that

$$
\frac{s_{t+h}-s_{t}}{h} \rightarrow \dot{s}_{t}, \quad \text { uniformly on } \bar{A} \text { as } h \rightarrow 0
$$

Notice that
the map $t \mapsto \dot{s}_{t}$ belongs to $L^{\infty}\left([0, T] ; W^{1, p}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)$ for every $p \in[2, \infty[;$
therefore, by the Sobolev immersions,

$$
\text { the map } t \mapsto \dot{s}_{t} \text { belongs to } L^{\infty}\left([0, T] ; C^{0}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)
$$

and, by the continuous immersion of $H^{1}\left(A ; \mathbb{R}^{3}\right)$ into $H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)$,

$$
\text { the map } t \mapsto \dot{s}_{t} \text { belongs to } L^{\infty}\left([0, T] ; H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)\right)
$$

Again as for $\dot{\varphi}_{t}$, we can prove that

$$
\begin{equation*}
\operatorname{Lip}\left(\dot{s}_{t}\right) \leqslant L, \quad \text { with } L \text { independent of } t . \tag{3.15}
\end{equation*}
$$

Moreover, for any fixed $x \in \bar{A}$, the $\operatorname{map} t \mapsto \dot{s}_{t}(x)$ is measurable.
Recall the definition of U_{t} given in (3.5), and define now $V_{t}(z):=R_{t}^{T} U_{t}\left(r_{t}(z)\right)$ and $W_{t}(z):=\dot{s}_{t}\left(s_{t}^{-1}(z)\right)$ for every $z \in \partial B_{t}$. An elementary computation shows that for almost every $t \in[0, T]$

$$
V_{t}(z)=R_{t}^{T} \dot{y}_{t}+R_{t}^{T} \dot{R}_{t} z+W_{t}(z) \quad \text { for every } z \in \partial B_{t}
$$

4. The equations of motion. The motion $t \mapsto \varphi_{t}$ determines for almost every $t \in[0, T]$ the Eulerian velocity U_{t} through the formula

$$
U_{t}(y):=\dot{\varphi}_{t}\left(\varphi_{t}^{-1}(y)\right) \quad \text { for almost every } y \in \partial A_{t}
$$

As shown in section $3, A_{t}$ is of class C^{2} and

$$
U_{t} \in H^{1 / 2}\left(\partial A_{t} ; \mathbb{R}^{3}\right) \quad \text { for almost every } t \in[0, T]
$$

We can apply Theorem 2.2 with $\Omega=A_{t}^{\text {ext }}:=\mathbb{R}^{3} \backslash \bar{A}_{t}$ and, for almost every $t \in[0, T]$, obtain a unique solution u_{t} to the problem

$$
\begin{cases}u_{t} \in \mathcal{V}\left(A_{t}^{\operatorname{ext}}\right), \quad u_{t}=U_{t} & \text { on } \partial A_{t} \\ \int_{A_{t}^{\text {ext }}} \mathrm{E} u_{t}: \mathrm{E} w \mathrm{~d} y=0 & \text { for every } w \in \mathcal{V}_{0}\left(A_{t}^{\text {ext }}\right)\end{cases}
$$

Let $F_{A_{t}, U_{t}}$ and $M_{A_{t}, U_{t}}$ be the viscous force and torque determined by the velocity field U_{t} according to (2.13) and (2.14). Since we are neglecting inertia and imposing the self-propulsion constraint, the equations of motion reduce to the vanishing of the viscous force and torque, i.e.,

$$
\begin{equation*}
F_{A_{t}, U_{t}}=0 \quad \text { and } \quad M_{A_{t}, U_{t}}=0 \quad \text { for almost every } t \in[0, T] \tag{4.1}
\end{equation*}
$$

We assume that φ_{t} is written as $\varphi_{t}=r_{t} \circ s_{t}$, where r_{t} is a rigid motion as in (3.6) and $t \mapsto s_{t}$ is a prescribed shape function. Our aim is to find $t \mapsto r_{t}$ so that the equations of motion (4.1) are satisfied. More precisely, we prove Theorem 4.1 below, which shows that (4.1) is equivalent to a system of ordinary differential equations where the unknown functions are the translation $t \mapsto y_{t}$ and the rotation $t \mapsto R_{t}$ appearing in (3.6).

To define the coefficients of these differential equations, we consider the sets $B_{t}=$ $s_{t}(A)$ introduced in section 3 and the 3×3 matrices K_{t}, C_{t}, J_{t}, depending only on the geometry of B_{t}, whose entries are defined by

$$
\begin{align*}
\left(K_{t}\right)_{i j} & :=\left\langle\sigma\left[e_{j}\right] n, e_{i}\right\rangle_{B_{t}^{\text {ext }}} \tag{4.2a}\\
\left(C_{t}\right)_{i j} & :=\left\langle\sigma\left[e_{j}\right] n, e_{i} \times z\right\rangle_{B_{t}^{\mathrm{ext}}} \tag{4.2~b}\\
\left(J_{t}\right)_{i j} & :=\left\langle\sigma\left[e_{j} \times z\right] n, e_{i} \times z\right\rangle_{B_{t}^{\text {ext }}}, \tag{4.2c}
\end{align*}
$$

where $B_{t}^{\text {ext }}:=\mathbb{R}^{3} \backslash \bar{B}_{t}$, the duality product is given in Definition 2.3 , and $\sigma[W]$ denotes the stress tensor associated to the outer Stokes problem in $B_{t}^{\text {ext }}$ with boundary datum W. The notation $\sigma[W]$ emphasizes that, by the linearity of the Stokes system, the dependence of σ on W is linear. Formula (2.11) shows that K_{t} and J_{t} are symmetric. The matrix

$$
\left[\begin{array}{cc}
K_{t} & C_{t}^{T} \\
C_{t} & J_{t}
\end{array}\right]
$$

is often called in the literature the grand resistance matrix and is invertible [12]. Let

$$
\left[\begin{array}{cc}
H_{t} & D_{t}^{T} \tag{4.3}\\
D_{t} & L_{t}
\end{array}\right]:=\left[\begin{array}{cc}
K_{t} & C_{t}^{T} \\
C_{t} & J_{t}
\end{array}\right]^{-1}
$$

be its inverse. For almost every $t \in[0, T]$, let $W_{t}:=\dot{s}_{t} \circ s_{t}^{-1}$, and let $F_{t}^{\text {sh }}$ and $M_{t}^{\text {sh }}$ be the viscous force and torque on ∂B_{t} determined by the boundary value W_{t}. According to (2.13) and (2.14), the components of $F_{t}^{\text {sh }}$ and $M_{t}^{\text {sh }}$ are given by

$$
\begin{align*}
\left(F_{t}^{\mathrm{sh}}\right)_{i} & =\left\langle\sigma\left[W_{t}\right] n, e_{i}\right\rangle_{B_{t}^{\mathrm{ext}}} \tag{4.4a}\\
\left(M_{t}^{\mathrm{sh}}\right)_{i} & =\left\langle\sigma\left[W_{t}\right] n, e_{i} \times z\right\rangle_{B_{t}^{\mathrm{ext}}} \tag{4.4b}
\end{align*}
$$

Let $\mathcal{A}: \mathbb{R}^{3} \rightarrow \mathbb{M}^{3 \times 3}$ be the linear operator that associates to every $\omega \in \mathbb{R}^{3}$ the only antisymmetric matrix $\mathcal{A}(\omega)$ such that $\mathcal{A}(\omega) z=\omega \times z$. In other words, ω is the axial vector of $\mathcal{A}(\omega)$. Finally, we define

$$
\begin{equation*}
b_{t}:=H_{t} F_{t}^{\mathrm{sh}}+D_{t}^{T} M_{t}^{\mathrm{sh}}, \quad \Omega_{t}:=\mathcal{A}\left(D_{t} F_{t}^{\mathrm{sh}}+L_{t} M_{t}^{\mathrm{sh}}\right) \tag{4.5}
\end{equation*}
$$

which depend on s_{t} via (4.4) and the definition of W_{t}.
THEOREM 4.1. Assume that the shape function $t \mapsto s_{t}$ satisfies (3.7), (3.8), and (3.13) and that the position function $t \mapsto r_{t}$ satisfies (3.6) and (3.12). Then the following conditions are equivalent:
(i) the deformation function $t \mapsto \varphi_{t}:=r_{t} \circ s_{t}$ satisfies the equations of motion introduced in (4.1);
(ii) the functions $t \mapsto y_{t}$ and $t \mapsto R_{t}$ satisfy the system

$$
\begin{equation*}
\dot{y}_{t}=R_{t} b_{t}, \quad \dot{R}_{t}=R_{t} \Omega_{t}, \quad \text { for almost every } t \in[0, T] \tag{4.6}
\end{equation*}
$$

where b_{t} and Ω_{t} are defined in (4.5).
Proof. It is convenient to set the problem in the intermediate configuration B_{t}, thus assuming the point of view of the coordinate system of the shape functions.

After performing the change of variables $y=r_{t}(z), z \in B_{t}^{\text {ext }}$, it turns out that the velocity field $v_{t}(z):=R_{t}^{T} u_{t}\left(r_{t}(z)\right)$ is the solution of the Stokes problem

$$
\begin{cases}v_{t} \in \mathcal{V}\left(B_{t}^{\text {ext }}\right), \quad v_{t}=V_{t} & \text { on } \partial B_{t} \\ \int_{B_{t}^{\text {ext }}} \mathrm{E} v_{t}: \mathrm{E} w \mathrm{~d} z=0 & \text { for every } w \in \mathcal{V}_{0}\left(B_{t}^{\text {ext }}\right)\end{cases}
$$

where $V_{t}(z)=R_{t}^{T} U_{t}\left(r_{t}(z)\right)$; see Figure 2.
Let $F_{B_{t}, V_{t}}$ and $M_{B_{t}, V_{t}}$ be the viscous force and torque on ∂B_{t} determined by v_{t} according to (2.13) and (2.14), with $\Omega=B_{t}^{\text {ext }}$. It is easy to check that $F_{B_{t}, V_{t}}=$ $R_{t}^{T} F_{A_{t}, U_{t}}$ and $M_{B_{t}, V_{t}}=R_{t}^{T} M_{A_{t}, U_{t}}$, so that the equations of motion (4.1) reduce to

$$
\begin{equation*}
F_{B_{t}, V_{t}}=0 \quad \text { and } \quad M_{B_{t}, V_{t}}=0 \quad \text { for almost every } t \in[0, T] \tag{4.7}
\end{equation*}
$$

FIG. 2. Notation for the boundary velocities.
Let ω_{t} be the axial vector of $\dot{R}_{t} R_{t}^{T}$, i.e., the unique vector $\omega_{t} \in \mathbb{R}^{3}$ such that $\omega_{t} \times z=\dot{R}_{t} R_{t}^{T} z$. It is easy to see that $R_{t}^{T} \dot{R}_{t} z=\left(R_{t}^{T} \omega_{t}\right) \times z$, so that

$$
V_{t}(z)=W_{t}(z)+R_{t}^{T} \dot{y}_{t}+\left(R_{t}^{T} \omega_{t}\right) \times z \quad \text { for almost every } z \in \partial B_{t}
$$

where $W_{t}(z)=\dot{s}_{t}\left(s_{t}^{-1}(z)\right)$. Let $\left(F_{t}^{\mathrm{tr}}, M_{t}^{\mathrm{tr}}\right)$ and $\left(F_{t}^{\mathrm{rot}}, M_{t}^{\mathrm{rot}}\right)$ be the pairs of viscous force-torque on ∂B_{t} corresponding to the boundary values $R_{t}^{T} \dot{y}_{t}$ and $\left(R_{t}^{T} \omega_{t}\right) \times z$, respectively. It is well known (see, e.g., [12]) that

$$
\begin{array}{ll}
F_{t}^{\mathrm{tr}}=-K_{t} R_{t}^{T} \dot{y}_{t}, & F_{t}^{\mathrm{rot}}=-C_{t}^{T} R_{t}^{T} \omega_{t}, \\
M_{t}^{\mathrm{tr}}=-C_{t} R_{t}^{T} \dot{y}_{t}, & M_{t}^{\mathrm{rot}}=-J_{t} R_{t}^{T} \omega_{t}
\end{array}
$$

where K_{t}, C_{t}, and J_{t} are the matrices defined in (4.2). Recalling the linearity of the equations, we get

$$
\left[\begin{array}{c}
F_{B_{t}, V_{t}} \\
M_{B_{t}, V_{t}}
\end{array}\right]=-\left[\begin{array}{cc}
K_{t} R_{t}^{T} & C_{t}^{T} R_{t}^{T} \\
C_{t} R_{t}^{T} & J_{t} R_{t}^{T}
\end{array}\right]\left[\begin{array}{c}
\dot{y}_{t} \\
\omega_{t}
\end{array}\right]+\left[\begin{array}{c}
F_{t}^{\mathrm{sh}} \\
M_{t}^{\mathrm{sh}}
\end{array}\right] ;
$$

hence the equations of motion (4.7) become

$$
\left[\begin{array}{cc}
K_{t} & C_{t}^{T} \tag{4.8}\\
C_{t} & J_{t}
\end{array}\right]\left[\begin{array}{cc}
R_{t}^{T} & 0 \\
0 & R_{t}^{T}
\end{array}\right]\left[\begin{array}{c}
\dot{y}_{t} \\
\omega_{t}
\end{array}\right]=\left[\begin{array}{c}
F_{t}^{\mathrm{sh}} \\
M_{t}^{\mathrm{sh}}
\end{array}\right]
$$

It follows from (4.3) and (4.8) that the equations of motion (4.7) are equivalent to

$$
\left[\begin{array}{c}
\dot{y}_{t} \\
\omega_{t}
\end{array}\right]=\left[\begin{array}{cc}
R_{t} & 0 \\
0 & R_{t}
\end{array}\right]\left[\begin{array}{cc}
H_{t} & D_{t}^{T} \\
D_{t} & L_{t}
\end{array}\right]\left[\begin{array}{c}
F_{t}^{\mathrm{sh}} \\
M_{t}^{\mathrm{sh}}
\end{array}\right] \quad \text { for almost every } t \in[0, T] .
$$

The first equation reads

$$
\begin{equation*}
\dot{y}_{t}=R_{t} b_{t}, \quad \text { with } b_{t}=H_{t} F_{t}^{\mathrm{sh}}+D_{t}^{T} M_{t}^{\mathrm{sh}} . \tag{4.9}
\end{equation*}
$$

To write the second equation in the form (4.6), we use the equality $\mathcal{A}\left(\omega_{t}\right)=\dot{R}_{t} R_{t}^{T}$. In order to rewrite the second equation

$$
\begin{equation*}
\omega_{t}=R_{t}\left(D_{t} F_{t}^{\mathrm{sh}}+L_{t} M_{t}^{\mathrm{sh}}\right) \tag{4.10}
\end{equation*}
$$

in a more useful way, we need a formula for $\mathcal{A}(R \omega)$ when R is an arbitrary rotation. In view of the equalities

$$
\mathcal{A}(R \omega) z=(R \omega) \times z=(R \omega) \times\left(R R^{T} z\right)=R\left(\omega \times R^{T} z\right)=R \mathcal{A}(\omega) R^{T} z
$$

we can conclude that $\mathcal{A}(R \omega)=R \mathcal{A}(\omega) R^{T}$. Therefore, by applying \mathcal{A} to both members of (4.10), we get

$$
\dot{R}_{t} R_{t}^{T}=\mathcal{A}\left(\omega_{t}\right)=\mathcal{A}\left(R_{t}\left(D_{t} F_{t}^{\mathrm{sh}}+L_{t} M_{t}^{\mathrm{sh}}\right)\right)=R_{t} \mathcal{A}\left(D_{t} F_{t}^{\mathrm{sh}}+L_{t} M_{t}^{\mathrm{sh}}\right) R_{t}^{T}
$$

so that, eventually, (4.10) reads

$$
\begin{equation*}
\dot{R}_{t}=R_{t} \Omega_{t}, \quad \text { with } \Omega_{t}=\mathcal{A}\left(D_{t} F_{t}^{\mathrm{sh}}+L_{t} M_{t}^{\mathrm{sh}}\right) \tag{4.11}
\end{equation*}
$$

This concludes the proof.
Remark. We claim that every absolutely continuous solution to the second equation in (4.6) belongs to $\mathrm{SO}(3)$ whenever $R_{0} \in \mathrm{SO}(3)$. Indeed, by differentiating $R_{t} R_{t}^{T}$ with respect to time, we get

$$
\left(R_{t} R_{t}^{T}\right)^{\cdot}=\dot{R}_{t} R_{t}^{T}+R_{t} \dot{R}_{t}^{T}=R_{t} \Omega_{t} R_{t}^{T}-R_{t} \Omega_{t} R_{t}^{T}=0
$$

where we have used the fact that Ω_{t} is skew symmetric. This shows that the matrix $R_{t} R_{t}^{T}$ is constant in time, and the claim follows.

The standard theory of ordinary differential equations with possibly discontinuous coefficients [11] ensures that the Cauchy problem for (4.6) has one and only one Lipschitz solution $t \mapsto R_{t}, t \mapsto y_{t}$, provided that the functions $t \mapsto \Omega_{t}$ and $t \mapsto b_{t}$ are measurable and bounded. By (4.9) and (4.11), this happens when the functions

$$
\begin{equation*}
t \mapsto H_{t}, \quad t \mapsto D_{t}, \quad t \mapsto L_{t}, \quad t \mapsto F_{t}^{\mathrm{sh}}, \quad t \mapsto M_{t}^{\mathrm{sh}} \tag{4.12}
\end{equation*}
$$

are measurable and bounded. This property for the first three functions follows from the continuity of the block elements of the grand resistance matrix

$$
\begin{equation*}
t \mapsto K_{t}, \quad t \mapsto C_{t}, \quad t \mapsto J_{t}, \tag{4.13}
\end{equation*}
$$

which will be proved in the last part of this section. The proof of the measurability and boundedness of the last two functions in (4.12) requires some technical tools that will be developed in sections 5 and 6 .

To prove the continuity of the function in (4.13) we will use Theorem 2.5. To this end, in the next lemma, we prove a continuity property of the set-valued function $t \mapsto B_{t}$.

Lemma 4.2. Let s_{t} satisfy (3.13). Then if $t \rightarrow t_{\infty}$, the sets B_{t} converge to the set $B_{t_{\infty}}$ in the sense of (2.15).

Proof. We recall that $B_{t}=s_{t}(A)$ for all $t \in[0, T]$. Let us prove the two inclusions separately. To see that $s_{t}(A) \subset\left(s_{t_{\infty}}(A)\right)^{+\varepsilon}$, consider a point $y \in s_{t}(A)$: then, there exists a point $x \in A$ such that $y=s_{t}(x)$. We conclude if we prove that $\left|s_{t_{\infty}}(x)-s_{t}(x)\right| \leqslant \varepsilon$, for all $x \in A$ and for all t sufficiently close to t_{∞},

$$
\sup _{x \in A}\left|s_{t}(x)-s_{t_{\infty}}(x)\right| \leqslant\left\|s_{t}-s_{t_{\infty}}\right\|_{C^{1}\left(A ; \mathbb{R}^{3}\right)} \leqslant L\left|t-t_{\infty}\right| \leqslant \varepsilon
$$

provided that $\left|t-t_{\infty}\right| \leqslant \varepsilon / L$. For the inclusion $\left(s_{t_{\infty}}(A)\right)^{-\varepsilon} \subset s_{t}(A)$, a simple topological degree argument can be applied, so we can conclude the proof.

We are now in a position to prove the continuity of the elements of the grand resistance matrix.

Proposition 4.3. Assume that s_{t} satisfies (3.7), (3.8), and (3.13). Then the functions

$$
\begin{array}{cc}
t \mapsto K_{t}, & t \mapsto C_{t}, \quad t \mapsto J_{t} \\
t \mapsto H_{t}, & t \mapsto D_{t}, \quad t \mapsto L_{t} \tag{4.14b}
\end{array}
$$

are continuous.
Proof. Recalling (4.2) and (2.11), we can write

$$
\begin{align*}
& \left(K_{t}\right)_{i j}=2 \int_{\mathbb{R}^{3}} \mathrm{E} v_{t}^{j}: \mathrm{E} v_{t}^{i} \mathrm{~d} z \tag{4.15a}\\
& \left(C_{t}\right)_{i j}=2 \int_{\mathbb{R}^{3}} \mathrm{E} v_{t}^{j}: \mathrm{E} \hat{v}_{t}^{i} \mathrm{~d} z \tag{4.15b}\\
& \left(J_{t}\right)_{i j}=2 \int_{\mathbb{R}^{3}}^{\mathrm{E}} \hat{v}_{t}^{j}: \mathrm{E} \hat{v}_{t}^{i} \mathrm{~d} z \tag{4.15c}
\end{align*}
$$

where v_{t}^{j} and \hat{v}_{t}^{j} are the solutions to problem (2.16) for $S_{k}=B_{t}$, with $W=e_{j}$ and $W=e_{j} \times z$, respectively. Since the convergence of the sets B_{t} is guaranteed by Lemma 4.2, we can now apply Theorem 2.5 and obtain that the functions in (4.14a) are continuous. The continuity in (4.14b) follows from (4.3).

The proof of the measurability and boundedness of $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$ requires much more work, due to the fact that both the domains B_{t} and the boundary data $W_{t}=\dot{s}_{t} \circ s_{t}^{-1}$ depend on time. Moreover, the boundary value W_{t} might be discontinuous with respect to t, so that we cannot expect the functions $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$ to be continuous.

To prove the measurability we start from an integral representation of $F_{t}^{\text {sh }}$ and $M_{t}^{\text {sh }}$, similar to (4.15). As $\int_{\partial B_{t}} W_{t} \cdot n \mathrm{~d} S$ is not necessarily zero, we have to replace \mathbb{R}^{3} in (4.15) by the complement of an open ball $\Sigma_{\varepsilon}^{0} \subset \subset B_{t}$. Since, in general, this inclusion holds only locally in time, we first fix $t_{0} \in[0, T]$ and $z^{0} \in B_{t_{0}}$ and select $\delta>0$ and $\varepsilon>0$ so that the open ball $\Sigma_{\varepsilon}^{0}:=\Sigma_{\varepsilon}\left(z^{0}\right)$ of radius ε centered at z^{0} satisfies

$$
\begin{equation*}
\Sigma_{\varepsilon}^{0} \subset \subset B_{t} \quad \text { for all } t \in I_{\delta}\left(t_{0}\right):=[0, T] \cap\left(t_{0}-\delta, t_{0}+\delta\right) \tag{4.16}
\end{equation*}
$$

This is possible thanks to the continuity properties of $t \mapsto s_{t}$ listed in the previous section.

Next we consider the solution w_{t} to the problem

$$
\min \int_{\Sigma_{\varepsilon}^{0, e \mathrm{ext}}}|\mathrm{E} w|^{2} \mathrm{~d} z,
$$

where the minimum is taken over all functions $w \in \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ such that $w=W_{t}$ on ∂B_{t} and $w=\lambda_{t}\left(z-z^{0}\right) / \varepsilon^{3}$ on $\partial \Sigma_{\varepsilon}^{0}$, where

$$
\lambda_{t}:=-\frac{1}{4 \pi} \int_{\partial B_{t}} W_{t} \cdot n \mathrm{~d} S
$$

The value of λ_{t} is chosen so that the flux condition (2.5) on $\partial B_{t} \cup \partial \Sigma_{\varepsilon}^{0}$ is satisfied.

Finally, recalling (4.4) and (2.11), we can write the following explicit integral representation of F_{t}^{sh} and M_{t}^{sh} :

$$
\begin{align*}
& \left(F_{t}^{\mathrm{sh}}\right)_{i}=2 \int_{B_{t}^{\mathrm{ext}}} \mathrm{E} w_{t}: \mathrm{E} v_{t}^{i} \mathrm{~d} z=2 \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}} \mathrm{E} w_{t}: \mathrm{E} v_{t}^{i} \mathrm{~d} z \tag{4.17a}\\
& \left(M_{t}^{\mathrm{sh}}\right)_{i}=2 \int_{B_{t}^{\mathrm{ext}}} \mathrm{E} w_{t}: \mathrm{E} \hat{v}_{t}^{i} \mathrm{~d} z=2 \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}} \mathrm{E} w_{t}: \mathrm{E} \hat{v}_{t}^{i} \mathrm{~d} z \tag{4.17b}
\end{align*}
$$

where v_{t}^{i} and \hat{v}_{t}^{i} have been defined in the proof of Proposition 4.3 and where the last equalities are due to the fact that $\mathrm{E} v_{t}^{i}=\mathrm{E} \hat{v}_{t}^{i}=0$ in B_{t}. We deduce from Theorem 2.5 and Lemma 4.2 that the functions $t \mapsto v_{t}^{i}$ and $t \mapsto \hat{v}_{t}^{i}$ are continuous from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$. Therefore, the measurability and boundedness of $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$ will be proved if we show that the function $t \mapsto w_{t}$ from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ is measurable and bounded.

Even the boundedness of $\left\|\nabla w_{t}\right\|_{L^{2}}$ is an issue, since all estimates for a solenoidal extension of W_{t} considered so far in the literature depend on the geometry of ∂B_{t}. In section 5 we make this dependence explicit and conclude that under our assumptions on $t \mapsto s_{t}$ the L^{2} bound for the gradient of the solenoidal extension is uniform with respect to t. This result will be used in section 6 to prove the measurability of the function $t \mapsto w_{t}$.
5. Extension operators. We give now two extension results of a function defined on ∂B_{t} to an open region containing ∂B_{t}. Lemma 5.2 is classical, but for our future purposes we need a solenoidal version, as stated in Proposition 5.3. Its proof requires a number of preliminary lemmas that are proved beforehand. The next lemma shows that, locally in time, the sets $\Sigma_{\rho} \backslash \bar{B}_{t}$ are C^{2} diffeomorphic to each other.

Lemma 5.1. Assume that s_{t} satisfies (3.7), (3.8), and (3.13), and let Σ_{ρ} be as in (3.9). Let $t_{0} \in[0, T]$. Then, there exists a neighborhood $I_{\delta}\left(t_{0}\right)=[0, T] \cap\left(t_{0}-\delta, t_{0}+\delta\right)$ of t_{0} with the following property: for every $t \in I_{\delta}\left(t_{0}\right)$ there exists a C^{2} diffeomorphism $\Phi_{t}^{t_{0}}: \Sigma_{\rho} \rightarrow \Sigma_{\rho}$, coinciding with the identity on $\Sigma_{\rho} \backslash \Sigma_{\rho-1}$, such that $\Phi_{t}^{t_{0}}=s_{t_{0}} \circ s_{t}^{-1}$ on B_{t}. In particular, we have

$$
\begin{equation*}
\Phi_{t}^{t_{0}}\left(B_{t}\right)=B_{t_{0}} \quad \text { and } \quad \Phi_{t}^{t_{0}}\left(\Sigma_{\rho} \backslash \bar{B}_{t}\right)=\Sigma_{\rho} \backslash \bar{B}_{t_{0}} \tag{5.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left\|\Phi_{t}^{t_{0}}\right\|_{C^{2}\left(\bar{\Sigma}_{\rho} ; \mathbb{R}^{3}\right)}+\left\|\left(\Phi_{t}^{t_{0}}\right)^{-1}\right\|_{C^{2}\left(\bar{\Sigma}_{\rho} ; \mathbb{R}^{3}\right)} \leqslant C \tag{5.2}
\end{equation*}
$$

where C is a constant independent of t_{0}, t.
Proof. Recall that $B_{t} \subset \subset \Sigma_{\rho-1}$ by (3.9), so that $B_{t} \cup\left(\Sigma_{\rho} \backslash \Sigma_{\rho-1}\right)$ has a C^{2} boundary. Therefore, it is possible to find a function $\Psi_{t}^{t_{0}} \in C^{2}\left(\bar{\Sigma}_{\rho} ; \mathbb{R}^{3}\right)$ such that $\Psi_{t}^{t_{0}}=s_{t_{0}}$ 。 $s_{t}^{-1}-I$ on $B_{t}, \Psi_{t}^{t_{0}}=0$ on $\Sigma_{\rho} \backslash \Sigma_{\rho-1}$, and $\left\|\Psi_{t}^{t_{0}}\right\|_{C^{2}\left(\bar{\Sigma}_{\rho} ; \mathbb{R}^{3}\right)} \leqslant C\left\|s_{t_{0}} \circ s_{t}^{-1}-I\right\|_{C^{2}\left(\bar{B}_{t} ; \mathbb{R}^{3}\right)}$, where I is the identity map and C is a constant depending only on ρ and t_{0} (see, e.g., [10, Theorem 6.37, p. 136]). Since $s_{t_{0}} \circ s_{t}^{-1}-I \rightarrow 0$ in $C^{2}\left(\bar{B}_{t} ; \mathbb{R}^{3}\right)$ as $t \rightarrow t_{0}$, there exists a neighborhood $I_{\delta}\left(t_{0}\right)$ of t_{0} such that $\left\|\Psi_{t}^{t_{0}}\right\|_{C^{2}\left(\bar{\Sigma}_{\rho} ; \mathbb{R}^{3}\right)} \leqslant 1 / 2$.

For every $t \in I_{\delta}\left(t_{0}\right)$ let us define $\Phi_{t}^{t_{0}}:=I+\Psi_{t}^{t_{0}}$. Then $\Phi_{t}^{t_{0}}=I$ on $\Sigma_{\rho} \backslash \Sigma_{\rho-1}$ and $\Phi_{t}^{t_{0}}=s_{t_{0}} \circ s_{t}^{-1}$ on B_{t}, which proves the first equality in (5.1). Notice that $\left|\Phi_{t}^{t_{0}}(x)-x\right| \leqslant 1 / 2$ for every $x \in \Sigma_{\rho}$, so that this implies $\Phi_{t}^{t_{0}}\left(\Sigma_{\rho-1}\right) \subset \Sigma_{\rho}$. Since $\Phi_{t}^{t_{0}}\left(\Sigma_{\rho} \backslash \Sigma_{\rho-1}\right)=\Sigma_{\rho} \backslash \Sigma_{\rho-1}$, we conclude that $\Phi_{t}^{t_{0}}\left(\Sigma_{\rho}\right) \subset \Sigma_{\rho}$.

Let us prove that $\Sigma_{\rho} \subset \Phi_{t}^{t_{0}}\left(\Sigma_{\rho}\right)$. Since $\Phi_{t}^{t_{0}}=I$ on $\Sigma_{\rho} \backslash \Sigma_{\rho-1}$, it is enough to show that $\Sigma_{\rho-1} \subset \Phi_{t}^{t_{0}}\left(\Sigma_{\rho}\right)$. To this aim we fix $y \in \Sigma_{\rho-1}$. We want to show that
there exists $x \in \Sigma_{\rho}$ such that $x+\Psi_{t}^{t_{0}}(x)=y$. This is equivalent to solving the fixed point problem $x=y-\Psi_{t}^{t_{0}}(x)$. Since $\left\|\Psi_{t}^{t_{0}}\right\|_{C^{1}\left(\bar{\Sigma}_{\rho} ; \mathbb{R}^{3}\right)} \leqslant 1 / 2$, the map $x \mapsto y-\Psi_{t}^{t_{0}}(x)$ is a contraction of $\bar{\Sigma}_{\rho-1 / 2}$ into itself. This implies the existence of a fixed point and concludes the proof of the inclusion $\Sigma_{\rho-1} \subset \Phi_{t}^{t_{0}}\left(\Sigma_{\rho}\right)$.

The injectivity of $\Phi_{t}^{t_{0}}$ follows easily from the inequality $\left\|\Psi_{t}^{t_{0}}\right\|_{C^{1}\left(\bar{\Sigma}_{\rho} ; \mathbb{R}^{3}\right)} \leqslant 1 / 2$. Therefore, $\Phi_{t}^{t_{0}}: \Sigma_{\rho} \rightarrow \Sigma_{\rho}$ is bijective. Its inverse is of class C^{2} by the local invertibility theorem. The second equality in (5.1) follows now from the first one.

Estimate (5.2) is a consequence of (3.13) and (3.14).
Given two Banach spaces X and Y, the symbol $\mathcal{L}(X ; Y)$ denotes the Banach space of continuous linear maps from X into Y. Given a function $\Phi \in H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)$, let us define

$$
\lambda_{t}:=-\frac{1}{4 \pi} \int_{\partial B_{t}}\left(\Phi \circ s_{t}^{-1}\right) \cdot n \mathrm{~d} S
$$

for every $t \in[0, T]$. The constant λ_{t} is chosen so that if $\left.u\right|_{\partial B_{t}}=\Phi \circ s_{t}^{-1}$ and $\left.u\right|_{\partial \Sigma_{\rho}}=\lambda_{t} z /|z|^{3}$, then

$$
\int_{\partial\left(B_{t}^{\text {ext } \left.\cap \Sigma_{\rho}\right)}\right.} u \cdot n \mathrm{~d} S=0
$$

LEMMA 5.2 (extension operators). Under the assumptions of Lemma 5.1, there exists a continuous function from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{L}\left(H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right) ; H^{1}\left(\Sigma_{\rho} ; \mathbb{R}^{3}\right)\right)$, denoted $t \mapsto \mathcal{S}_{t}$, such that

$$
\begin{aligned}
\mathcal{S}_{t}(\Phi) & =\Phi \circ s_{t}^{-1} \quad \text { on } \partial B_{t}, \\
\mathcal{S}_{t}(\Phi) & =\lambda_{t} \frac{z}{|z|^{3}} \quad \text { on } \partial \Sigma_{\rho}, \\
\left\|\mathcal{S}_{t}(\Phi)\right\|_{H^{1}\left(\Sigma_{\rho} ; \mathbb{R}^{3}\right)} & \leqslant C\|\Phi\|_{H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)},
\end{aligned}
$$

where the constant C is independent of t and Φ.
Proof. By known results on Sobolev spaces [18, Theorem 5.7, p. 103], there exists $\mathcal{S}_{t_{0}} \in \mathcal{L}\left(H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right) ; H^{1}\left(\Sigma_{\rho} ; \mathbb{R}^{3}\right)\right)$ such that $\mathcal{S}_{t_{0}}(\Phi)=\Phi \circ s_{t_{0}}^{-1}$ on $\partial B_{t_{0}}$. Let $\Phi_{t}^{t_{0}}$ be the function given in the proof of Lemma 5.1. It is easy to show that $\left[\mathcal{S}_{t_{0}}(\Phi)\right] \circ \Phi_{t}^{t_{0}}=\Phi \circ s_{t}^{-1}$ on ∂B_{t}. It is enough to define $\mathcal{S}_{t}(\Phi)=\left[\mathcal{S}_{t_{0}}(\Phi)\right] \circ \Phi_{t}^{t_{0}}$.

Proposition 5.3 (solenoidal extension operators). Under the assumptions of Lemma 5.1, let $t_{0} \in[0, T]$ and let $z^{0} \in B_{t_{0}}$. Let $\delta>0$ and $\varepsilon>0$ be such that (4.16) holds true. Then there exists a uniformly bounded family $\left(\mathcal{T}_{t}\right)_{t \in I_{\delta}\left(t_{0}\right)}$ of continuous linear operators

$$
\mathcal{T}_{t}: H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right) \rightarrow H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)
$$

such that
(i) for all $t \in I_{\delta}\left(t_{0}\right)$ and for all $\Phi \in H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)$,

$$
\begin{align*}
\mathcal{T}_{t}(\Phi) & =\Phi \circ s_{t}^{-1} \quad \text { on } \partial B_{t}, \tag{5.3a}\\
\mathcal{T}_{t}(\Phi) & =\lambda_{t} \frac{z}{|z|^{3}} \quad \text { on } \partial \Sigma_{\rho}, \tag{5.3b}\\
\operatorname{div}\left(\mathcal{T}_{t}(\Phi)\right) & =0 \quad \text { in } \Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} \tag{5.3c}
\end{align*}
$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
(ii) for every $\Phi \in H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)$ the map $t \mapsto \mathcal{T}_{t}(\Phi)$ is continuous from $I_{\delta}\left(t_{0}\right)$ into $H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$.
In particular, the following estimate holds:

$$
\begin{equation*}
\left\|\mathcal{T}_{t}(\Phi)\right\|_{H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)} \leqslant C\|\Phi\|_{H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)} \tag{5.4}
\end{equation*}
$$

where the constant C is independent of t and Φ.
The proof of Proposition 5.3 requires the estimates contained in the following lemma, whose proof can be found in [18, p. 187], [24, Proposition 1.2], [8, Exercise III.3.3], and [22, Lemma II.1.5.4].

Lemma 5.4. For every bounded connected open set $\Omega \subset \mathbb{R}^{3}$ with Lipschitz boundary, there exists a constant $\gamma(\Omega)>0$ such that

$$
\begin{equation*}
\|p\|_{L^{2}(\Omega)} \leqslant \gamma(\Omega)\|\nabla p\|_{H^{-1}\left(\Omega ; \mathbb{R}^{3}\right)} \tag{5.5}
\end{equation*}
$$

for every $p \in L^{2}(\Omega)$ with $\int_{\Omega} p \mathrm{~d} x=0$.
The constant $\gamma(\Omega)$ plays a crucial role in the following result concerning the estimate of a particular solution of the equation $\operatorname{div} u=g$ in Ω with Dirichlet boundary conditions $u=0$ on $\partial \Omega$.

Lemma 5.5. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded connected open set with Lipschitz boundary, and let $g \in L^{2}(\Omega)$ with $\int_{\Omega} g \mathrm{~d} x=0$. Then there exists a unique $u \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{3}\right)$ such that
(i) $\operatorname{div} u=g$ in Ω,
(ii) $\int_{\Omega} \nabla u: \nabla v \mathrm{~d} x=0$ for all $v \in H_{0}^{1}\left(\Omega ; \mathbb{R}^{3}\right)$ with $\operatorname{div} v=0$ in Ω.

Moreover, the following estimate holds:

$$
\|u\|_{H_{0}^{1}\left(\Omega ; \mathbb{R}^{3}\right)} \leqslant \gamma(\Omega)\|g\|_{L^{2}(\Omega)},
$$

where $\gamma(\Omega)$ is the constant in Lemma 5.4.
Proof. The first part of the lemma is classical and can be found in various texts, e.g., [24, p. 22], [8, Theorem V.2.1 and Exercise V.2.1], and [22, Theorem III.1.4.1]. The estimate then follows by a straightforward computation.

In order to prove Proposition 5.3 we have to show that the constants $\gamma\left(B_{t}\right)$ and $\gamma\left(\Sigma_{\rho} \backslash \bar{B}_{t}\right)$ are uniformly bounded with respect to t. This will be achieved through the following lemma, thanks to Lemma 5.1.

Lemma 5.6. There exists a nondecreasing function $a:[0,+\infty) \rightarrow[0,+\infty)$ such that the constant γ introduced in Lemma 5.4 satisfies the estimate

$$
\begin{equation*}
\gamma(\Phi(\Omega)) \leqslant a\left(\|\Phi\|_{C^{2}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)}+\left\|\Phi^{-1}\right\|_{C^{2}\left(\Phi(\bar{\Omega}) ; \mathbb{R}^{3}\right)}\right) \gamma(\Omega) \tag{5.6}
\end{equation*}
$$

for every bounded open set $\Omega \subset \mathbb{R}^{3}$ with C^{2} boundary and for every invertible function $\Phi \in C^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$.

Proof. As shown in [18], (5.5) is a consequence of the following inequalities:

$$
\begin{gathered}
\|p\|_{L^{2}(\Omega)} \leqslant \gamma_{1}(\Omega)\left(\|\nabla p\|_{H^{-1}\left(\Omega ; \mathbb{R}^{3}\right)}+\|p\|_{H^{-1}(\Omega)}\right), \\
\inf _{t \in \mathbb{R}}\|p-t\|_{H^{-1}(\Omega)} \leqslant \gamma_{2}(\Omega)\|\nabla p\|_{H^{-1}\left(\Omega ; \mathbb{R}^{3}\right)}
\end{gathered}
$$

valid for every $p \in L^{2}(\Omega)$. By a change of variables it is easy to see that $\gamma_{1}(\Omega)$ and $\gamma_{2}(\Omega)$ satisfy (5.6). The conclusion follows.

Let Σ_{ρ} be as in (3.9) and $t_{0}, z^{0}, \delta, \varepsilon, I_{\delta}\left(t_{0}\right)$, and Σ_{ε}^{0} be as in Proposition 5.3. For every $t \in I_{\delta}\left(t_{0}\right)$ let $\mathcal{U}_{t}:\left\{g \in L^{2}\left(B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right): \int_{B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}} g \mathrm{~d} z=0\right\} \rightarrow H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$
be the linear operator defined by $\mathcal{U}_{t}(g)=u$, where $\left.u\right|_{B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}}$ is the unique function in $H_{0}^{1}\left(B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$ such that

$$
\begin{align*}
\operatorname{div} u & =g \text { in } B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0} \tag{5.7a}\\
\int_{B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}} \nabla u: \nabla v \mathrm{~d} z & =0 \text { for all } v \in H_{0}^{1}\left(B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right): \operatorname{div} v=0 \text { in } B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0} \tag{5.7b}
\end{align*}
$$

and $u=0$ in $\left(\Sigma_{\rho} \backslash \bar{B}_{t}\right)$. By Lemmas 5.1, 5.5, and 5.6 , there exists a constant M, independent of t, such that

$$
\begin{equation*}
\left\|\mathcal{U}_{t}\right\|_{\mathcal{L}_{t}} \leqslant M \tag{5.8}
\end{equation*}
$$

where \mathcal{L}_{t} is the Banach space of continuous linear operators from $\left\{g \in L^{2}\left(B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)\right.$: $\left.\int_{B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}} g \mathrm{~d} z=0\right\}$ into $H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$.

Lemma 5.7. Assume (3.7), (3.8), (3.10), and (3.13). Let $t_{0} \in[0, T]$, let $t_{k} \in$ $I_{\delta}\left(t_{0}\right), k=1,2, \ldots, \infty$, and let $g \in L^{2}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right)$ with $\int_{\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{o}} g \mathrm{~d} z=0$ and

$$
\begin{equation*}
\operatorname{supp}(g) \subset \subset B_{t_{k}} \backslash \bar{\Sigma}_{\varepsilon}^{0} \quad \text { for every } k \tag{5.9}
\end{equation*}
$$

Assume that $t_{k} \rightarrow t_{\infty}$ as $k \rightarrow \infty$. Then $\mathcal{U}_{t_{k}}(g) \rightarrow \mathcal{U}_{t_{\infty}}(g)$ strongly in $H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$. A similar result holds if we exchange the roles of $B_{t_{k}} \backslash \bar{\Sigma}_{\varepsilon}^{0}$ and $\Sigma_{\rho} \backslash \bar{B}_{t_{k}}$ in the definition of \mathcal{U}_{t} and in (5.9).

Proof. For $k=1,2, \ldots, \infty$, let $u_{t_{k}}:=\mathcal{U}_{t_{k}}(g)$. By (5.8), the sequence $\left(u_{t_{k}}\right)_{k}$ is bounded in $H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$. Therefore a subsequence, still denoted by $\left(u_{t_{k}}\right)_{k}$, converges weakly in $H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$ to some function u^{*}.

We claim that $u^{*} \in H_{0}^{1}\left(B_{t_{\infty}} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$. First notice that $u_{t_{k}} \circ\left(s_{t_{k}} \circ s_{t_{\infty}}^{-1}\right)=0$ on $\partial B_{t_{\infty}}$, and hence $u_{t_{k}} \circ\left(s_{t_{k}} \circ s_{t_{\infty}}^{-1}\right) \in H_{0}^{1}\left(B_{t_{\infty}} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$. Since $s_{t_{k}} \circ s_{t_{\infty}}^{-1} \rightarrow I$ in $C^{1}\left(\bar{B}_{t_{\infty}} \backslash \Sigma_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$ as $k \rightarrow \infty$, and $u_{t_{k}} \rightharpoonup u^{*}$ weakly in $H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$, we obtain $u_{t_{k}} \circ\left(s_{t_{k}} \circ s_{t_{\infty}}^{-1}\right) \rightharpoonup u^{*}$ weakly in $H^{1}\left(B_{t_{\infty}} ; \mathbb{R}^{3}\right)$. This implies that u^{*} belongs to $H_{0}^{1}\left(B_{t_{\infty}} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$, which proves the claim.

Since $\operatorname{supp}(g) \subset \subset B_{t_{k}} \backslash \bar{\Sigma}_{\varepsilon}^{0}$ for every k, condition (i) in Lemma 5.5 gives div $u_{t_{k}}=g$ in $\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}$ for every k; hence $\operatorname{div} u^{*}=g$ in Σ_{ρ}.

If $v \in C_{\mathrm{c}}^{\infty}\left(B_{t_{\infty}} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$ with $\operatorname{div} v=0$, from (ii) we have

$$
\int_{B_{t_{k}} \backslash \bar{\Sigma}_{\varepsilon}^{0}} \nabla u_{t_{k}}: \nabla v \mathrm{~d} z=0 \quad \text { for } k \text { large enough. }
$$

Passing to the limit as $k \rightarrow \infty$, we get

$$
\int_{B_{t_{\infty}} \backslash \bar{\Sigma}_{\varepsilon}^{0}} \nabla u^{*}: \nabla v \mathrm{~d} z=0 .
$$

An approximation argument based on Theorem 2.1 gives the same equality for every $v \in H_{0}^{1}\left(B_{t_{\infty}} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$ with $\operatorname{div} v=0$. By the uniqueness result proved in Lemma 5.5, we have $u^{*}=u_{t_{\infty}}$.

To prove the strong convergence of $\left(u_{t_{k}}\right)_{k}$ in $H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$, we fix a connected open set B with Lipschitz boundary such that $\operatorname{supp}(g) \subset \subset B \subset \subset B_{t_{k}} \backslash \bar{\Sigma}_{\varepsilon}^{0}$ for every k. By Lemma 5.5 , there exists $w \in H_{0}^{1}\left(B ; \mathbb{R}^{3}\right)$ such that

$$
\left\{\begin{aligned}
\operatorname{div} w=g & \text { on } B \\
\int_{B} \nabla w: \nabla v \mathrm{~d} z=0 & \text { for every } v \in H_{0}^{1}\left(B ; \mathbb{R}^{3}\right) \text { with } \operatorname{div} v=0
\end{aligned}\right.
$$

We extend w by setting $w=0$ on $\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right) \backslash \bar{B}$. Since $\operatorname{supp}(g) \subset \subset B$, we have $\operatorname{div} w=g$ on $\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}$.

We take $v=u_{t_{k}}-w$ as a test function in condition (ii) and obtain

$$
\int_{\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}}\left|\nabla u_{t_{k}}\right|^{2} \mathrm{~d} z=\int_{\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}} \nabla u_{t_{k}}: \nabla v \mathrm{~d} z \quad \text { for } k=1,2, \ldots, \infty
$$

Since $\nabla u_{t_{k}} \rightharpoonup \nabla u_{t_{\infty}}$ in $L^{2}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{M}^{3 \times 3}\right)$, taking the limit as $k \rightarrow \infty$, we get

$$
\int_{\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}}\left|\nabla u_{t_{k}}\right|^{2} \mathrm{~d} z \rightarrow \int_{\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}}\left|\nabla u_{t_{\infty}}\right|^{2} \mathrm{~d} z
$$

which concludes the proof of the strong convergence in $H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$.
Lemma 5.8. Under the hypotheses of Lemma 5.7, let $t \mapsto g_{t}$ be a continuous function from $I_{\delta}\left(t_{0}\right)$ into $L^{2}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right)$, endowed with the strong topology, and let \mathcal{U}_{t} be the operator defined in (5.7). Assume that

$$
\begin{equation*}
\int_{B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}} g_{t} \mathrm{~d} z=0 \quad \text { for every } t \in I_{\delta}\left(t_{0}\right) \tag{5.10}
\end{equation*}
$$

Then the function $t \mapsto \mathcal{U}_{t}\left(g_{t}\right)$ is continuous from $I_{\delta}\left(t_{0}\right)$ into $H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$, endowed with the strong topology. A similar result holds if we exchange the roles of $B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}$ and $\Sigma_{\rho} \backslash \bar{B}_{t}$ in the definition of \mathcal{U}_{t} and in (5.10).

Proof. Let us fix $\tau \in I_{\delta}\left(t_{0}\right)$ and $\eta>0$. There exists $h \in L^{2}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right)$ with compact support in B_{τ} such that

$$
\left\|h-g_{\tau}\right\|_{L^{2}\left(B_{\tau} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right)}<\eta .
$$

By continuity, for t sufficiently close to τ we have

$$
\left\|h-g_{t}\right\|_{L^{2}\left(B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right)}<\eta
$$

and $\operatorname{supp}(h) \subset \subset B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}$. By (5.8) we have

$$
\begin{aligned}
& \left\|\mathcal{U}_{t}\left(g_{t}\right)-\mathcal{U}_{\tau}\left(g_{\tau}\right)\right\|_{H^{1}} \\
& \leqslant\left\|\mathcal{U}_{t}\left(g_{t}-h\right)\right\|_{H^{1}}+\left\|\mathcal{U}_{t}(h)-\mathcal{U}_{\tau}(h)\right\|_{H^{1}}+\left\|\mathcal{U}_{\tau}\left(h-g_{\tau}\right)\right\|_{H^{1}} \\
& \leqslant\left\|\mathcal{U}_{t}\right\|_{\mathcal{L}_{t}}\left\|g_{t}-h\right\|_{L^{2}\left(B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right)}+\left\|\mathcal{U}_{t}(h)-\mathcal{U}_{\tau}(h)\right\|_{H^{1}}+\left\|\mathcal{U}_{\tau}\right\|_{\mathcal{L}_{\tau}}\left\|h-g_{\tau}\right\|_{L^{2}\left(B_{\tau} \backslash \bar{\Sigma}_{\varepsilon}^{0}\right)} \\
& \leqslant M \eta+\left\|\mathcal{U}_{t}(h)-\mathcal{U}_{\tau}(h)\right\|+M \eta
\end{aligned}
$$

Lemma 5.7 yields

$$
\limsup _{t \rightarrow \tau}\left\|\mathcal{U}_{t}\left(g_{t}\right)-\mathcal{U}_{\tau}\left(g_{\tau}\right)\right\|_{H^{1}} \leqslant 2 M \eta
$$

As η is arbitrary, we have shown that the convergence $\mathcal{U}_{t}\left(g_{t}\right) \rightarrow \mathcal{U}_{\tau}\left(g_{\tau}\right)$ is strong in $H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$.

Proof of Proposition 5.3. For all $t \in I_{\delta}\left(t_{0}\right)$, let $\zeta_{t}:=\mathcal{S}_{t}(\Phi)$ be the extension given by Lemma 5.2. Define $g_{t}^{\text {int }}$ and $g_{t}^{\text {ext }}$ as $\operatorname{div}\left(\zeta_{t}\right)$ restricted to $B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}$ and $\Sigma_{\rho} \backslash \bar{B}_{t}$, respectively. An easy computation shows that

$$
\int_{B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}} g_{t}^{\mathrm{int}} \mathrm{~d} z=\int_{\Sigma_{\rho} \backslash \bar{B}_{t}} g_{t}^{\mathrm{ext}} \mathrm{~d} z=0
$$

Therefore, there exist functions $u_{t}^{\text {int }} \in H_{0}^{1}\left(B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$ and $u_{t}^{\text {ext }} \in H_{0}^{1}\left(\Sigma_{\rho} \backslash \bar{B}_{t} ; \mathbb{R}^{3}\right)$ satisfying conditions (i) and (ii) of Lemma 5.5. One can define $u_{t}=\mathcal{U}_{t}\left(g_{t}\right)$ as the function defined by $u_{t}^{\text {int }}$ on $B_{t} \backslash \bar{\Sigma}_{\varepsilon}^{0}$ and by $u_{t}^{\text {ext }}$ on $\Sigma_{\rho} \backslash \bar{B}_{t}$. Notice that u_{t} is equal to zero on ∂B_{t}, on $\partial \Sigma_{\rho}$, and on $\partial \Sigma_{\varepsilon}^{0}$.

Consider now $\mathcal{T}_{t}(\Phi):=\mathcal{S}_{t}(\Phi)-\mathcal{U}_{t}\left(g_{t}\right)=\zeta_{t}-u_{t}$. This extension is clearly in $H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$ and agrees with (5.3) so that (i) is satisfied. Moreover, by the continuity properties of \mathcal{S}_{t} and \mathcal{U}_{t}, it turns out that \mathcal{T}_{t} is also continuous from $I_{\delta}\left(t_{0}\right)$ into $H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$, so that (ii) and estimate (5.4) follow.
6. Dependence on the data. Using the tools developed in the preceding section, we are finally ready to prove some results concerning continuity and measurability properties of the solutions to the Stokes problems. These will lead us to the statement of Theorem 6.4 about the existence, uniqueness, and regularity of the rigid motion $t \mapsto r_{t}$ that causes the swimmer's displacement in the viscous fluid.

Proposition 6.1. Assume that s_{t} satisfies (3.7), (3.8), and (3.13). Let $t_{0} \in$ $[0, T]$ and $z^{0} \in B_{t_{0}}$, and let Σ_{ε}^{0} and $I_{\delta}\left(t_{0}\right)$ be as in (4.16). Let $I_{\delta}\left(t_{0}\right)$ be given as in Lemma 5.1. Suppose that the map $t \mapsto \Phi_{t}$ belongs to $C^{0}\left(I_{\delta}\left(t_{0}\right) ; H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)\right) \cap$ $L^{\infty}\left(I_{\delta}\left(t_{0}\right) ; \operatorname{Lip}\left(\partial A ; \mathbb{R}^{3}\right)\right)$. Define

$$
\lambda_{t}:=-\frac{1}{4 \pi} \int_{\partial B_{t}}\left(\Phi_{t} \circ s_{t}^{-1}\right) \cdot n \mathrm{~d} S
$$

Let w_{t} be the solution of the problem

$$
\begin{equation*}
\min \int_{\Sigma_{\varepsilon}^{0, e \mathrm{ext}}}|\mathrm{E} w|^{2} \mathrm{~d} z \tag{6.1}
\end{equation*}
$$

where the minimum is taken over all functions $w \in \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ such that $w=\Phi_{t} \circ s_{t}^{-1}$ on ∂B_{t} and $w=\lambda_{t}\left(z-z^{0}\right) / \varepsilon^{3}$ on $\partial \Sigma_{\varepsilon}^{0}$. Then $t \mapsto w_{t}$ belongs to $C^{0}\left(I_{\delta}\left(t_{0}\right) ; \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)\right)$.

Proof. Let $\left(t_{k}\right)_{k} \subset I_{\delta}\left(t_{0}\right)$ be a sequence that converges to $t_{\infty} \in I_{\delta}\left(t_{0}\right)$. Let $\psi_{t_{k}}$ be the extension of $\Phi_{t_{k}} \circ s_{t_{k}}^{-1}$ provided by Proposition 5.3. It can be further extended by $\lambda_{t} z /|z|^{3}$ on $\mathbb{R}^{3} \backslash \Sigma_{\rho}$, so that $\psi_{t_{k}} \in \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ and is a competitor in the minimum problem (6.1) corresponding to $t=t_{k}$; therefore,

$$
\begin{aligned}
\int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|\mathrm{E} w_{t_{k}}\right|^{2} \mathrm{~d} z & \leqslant \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|\mathrm{E} \psi_{t_{k}}\right|^{2} \mathrm{~d} z \leqslant\left\|\psi_{t_{k}}\right\|_{H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)}^{2} \\
& \leqslant C^{2}\left(\operatorname{Lip}\left(\Phi_{t_{k}}\right)+\max \left|\Phi_{t_{k}}\right|\right)^{2} \leqslant(C M)^{2}
\end{aligned}
$$

where C is the constant in (5.4) and $M>0$ is a uniform upper bound of $\operatorname{Lip}\left(\Phi_{t_{k}}\right)+$ $\max \left|\Phi_{t_{k}}\right|$, whose existence is guaranteed by the fact that $t \mapsto \Phi_{t}$ belongs to $L^{\infty}\left(I_{\delta}\left(t_{0}\right)\right.$; $\left.\operatorname{Lip}\left(\partial A ; \mathbb{R}^{3}\right)\right)$. Thus, the sequence $\left(w_{t_{k}}\right)_{k}$ is equi-bounded in $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$, and, up to a subsequence, it converges weakly to some $w^{*} \in \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$.

We claim that w^{*} is a competitor in problem (6.1) for $t=t_{\infty}$. First, notice that $\Phi_{t_{k}} \circ s_{t_{\infty}}^{-1}=w_{t_{k}} \circ\left(s_{t_{k}} \circ s_{t_{\infty}}^{-1}\right)$ on $\partial B_{t_{\infty}}$. Let $\Phi_{t_{\infty}}^{t_{k}}$ be the extension of $s_{t_{k}} \circ s_{t_{\infty}}^{-1}$ considered in Lemma 5.1. Arguing as in the proof of that lemma, we find that $\Phi_{t_{\infty}}^{t_{k}} \rightarrow I$ in $C^{1}\left(\bar{\Sigma}_{\rho} ; \mathbb{R}^{3}\right)$ as $t_{n} \rightarrow t_{\infty}$. Since $w_{t_{k}} \rightharpoonup w^{*}$ weakly in $H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$, we obtain that $w_{t_{k}} \circ \Phi_{t_{\infty}}^{t_{k}} \rightharpoonup w^{*}$ weakly in $H^{1}\left(\Sigma_{\rho} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$. This implies that $w_{t_{k}} \circ\left(s_{t_{k}} \circ\right.$ $\left.s_{t_{\infty}}^{-1}\right) \rightharpoonup w^{*}$ weakly in $H^{1 / 2}\left(\partial B_{t_{\infty}} ; \mathbb{R}^{3}\right)$. On the other hand, $\Phi_{t_{k}} \circ s_{t_{\infty}}^{-1} \rightarrow \Phi_{t_{\infty}} \circ s_{t_{\infty}}^{-1}$ in $H^{1 / 2}\left(\partial B_{t_{\infty}} ; \mathbb{R}^{3}\right)$. As $\Phi_{t_{k}} \circ s_{t_{\infty}}^{-1}=w_{t_{k}} \circ\left(s_{t_{k}} \circ s_{t_{\infty}}^{-1}\right)$ on $\partial B_{t_{\infty}}$, we deduce that $w^{*}=$ $\Phi_{t_{\infty}} \circ s_{t_{\infty}}^{-1}$ on $\partial B_{t_{\infty}}$. This concludes the claim.

Let $v \in \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ be another competitor in problem (6.1) for $t=t_{\infty}$, and let $\zeta:=v-\psi_{t_{\infty}}$, where $\psi_{t_{\infty}}:=\mathcal{T}_{t_{\infty}}\left(\Phi_{t_{\infty}}\right)$ is the extension provided by Proposition 5.3, extended by zero on $\mathbb{R}^{3} \backslash \Sigma_{\rho}$. The function ζ vanishes on $\partial B_{t_{\infty}}$, and its restrictions to $B_{t_{\infty}}$ and $B_{t_{\infty}}^{\text {ext }}$ belong to $H_{0}^{1}\left(B_{t_{\infty}} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$ and $\mathcal{V}_{0}\left(B_{t_{\infty}}^{\text {ext }} ; \mathbb{R}^{3}\right)$, respectively. Then by the density theorem, Theorem 2.1, and by a classical density result in $H_{0}^{1}\left(B_{t_{\infty}} \backslash \bar{\Sigma}_{\varepsilon}^{0} ; \mathbb{R}^{3}\right)$, for every $\eta>0$ there exists a function $\zeta^{\eta} \in \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$, vanishing in a neighborhood of $\partial B_{t_{\infty}}$, such that $\left\|\zeta^{\eta}-\zeta\right\|_{D^{1,2}\left(\Sigma_{\varepsilon}^{0, \text { ext }} ; \mathbb{R}^{3}\right)} \leqslant \eta$. Now define $v_{t_{k}}^{\eta}:=\psi_{t_{k}}+\zeta^{\eta}$, and observe that, for k large enough, it is a competitor in the minimum problem (6.1) for $t=t_{k}$. Therefore,

$$
\int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|\mathrm{E} w_{t_{k}}\right|^{2} \mathrm{~d} z \leqslant \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|\mathrm{E} v_{t_{k}}^{\eta}\right|^{2} \mathrm{~d} z=\int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|\mathrm{E} \psi_{t_{k}}+\mathrm{E} \zeta^{\eta}\right|^{2} \mathrm{~d} z
$$

Taking the limit first as $k \rightarrow \infty$ and then as $\eta \rightarrow 0$, we get

$$
\begin{aligned}
\int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|\mathrm{E} w^{*}\right|^{2} \mathrm{~d} z & \leqslant \limsup _{k \rightarrow \infty} \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|\mathrm{E} w_{t_{k}}\right|^{2} \mathrm{~d} z \\
& \leqslant \int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}\left|\mathrm{E} \psi_{t_{\infty}}+\mathrm{E} \zeta\right|^{2} \mathrm{~d} z=\int_{\Sigma_{\varepsilon}^{0, \mathrm{ext}}}|\mathrm{E} v|^{2} \mathrm{~d} z
\end{aligned}
$$

where the convergence of $\mathrm{E} \psi_{t_{k}}$ to $\mathrm{E} \psi_{t_{\infty}}$ is guaranteed as a consequence of (ii) in Proposition 5.3. This proves that w^{*} is a minimum, so that $w^{*}=w_{t_{\infty}}$. By taking $v=w^{*}$, we get the convergence of the $D^{1,2}$ norms; therefore $w_{t_{k}} \rightarrow w_{t_{\infty}}$ strongly in $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$. This concludes the proof.

We notice that Theorem 2.5 turns out to be a particular case of Proposition 6.1 for special boundary data not depending on time. Nonetheless, we think it is useful to present both results, since the technique of the proof is much easier for Theorem 2.5.

As we have seen at the end of section 4, Theorem 2.5 applied to purely linear and purely angular boundary velocities guarantees the continuity of the elements of the matrices in (4.3), while Proposition 6.1 will give the continuity of the known terms $F_{t}^{\text {sh }}$ and $M_{t}^{\text {sh }}$ in (4.8).

Theorem 6.2. Assume that s_{t} satisfies (3.7), (3.8), (3.10), and (3.13); let $t_{0} \in$ $[0, T], z^{0} \in B_{t_{0}}$; and let Σ_{ε}^{0} and $I_{\delta}\left(t_{0}\right)$ be as in (4.16). Assume, in addition, that $I_{\delta}\left(t_{0}\right)$ satisfies Lemma 5.1. Let w_{t} be the solution of the problem

$$
\begin{equation*}
\min \int_{\Sigma_{\varepsilon}^{0, \text { ext }}}|\mathrm{E} w|^{2} \mathrm{~d} z \tag{6.2}
\end{equation*}
$$

where the minimum is taken over all functions $w \in \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ such that $w=\dot{s}_{t} \circ s_{t}^{-1}$ on ∂B_{t} and $w=\lambda_{t}\left(z-z^{0}\right) / \varepsilon^{3}$ on $\partial \Sigma_{\varepsilon}^{0}$. Then the function $t \mapsto w_{t}$ is measurable and bounded from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$.

Proof. We approximate the functions \dot{s}_{t} with the sequence Φ_{t}^{η} defined by

$$
\begin{equation*}
\Phi_{t}^{\eta}(x):=\int_{\mathbb{R}} \kappa_{\eta}(t-\tau) \dot{s}_{\tau}(x) \mathrm{d} \tau \tag{6.3}
\end{equation*}
$$

where κ_{η} is a regularizing kernel supported in the ball Σ_{η} of radius η and of unit mass. Since the function $\tau \mapsto \dot{s}_{\tau}$ belongs to $L^{\infty}\left(I_{\delta}\left(t_{0}\right) ; W^{1, p}\left(A ; \mathbb{R}^{3}\right)\right)$ for every $2 \leqslant p<\infty$, the integral in (6.3) can be seen as a Bochner integral in $W^{1, p}\left(A ; \mathbb{R}^{3}\right)$. This implies that $t \mapsto \Phi_{t}^{\eta}$ belongs to $C^{0}\left(I_{\delta}\left(t_{0}\right) ; W^{1, p}\left(A ; \mathbb{R}^{3}\right)\right)$; in particular, it belongs to
$C^{0}\left(I_{\delta}\left(t_{0}\right) ; H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)\right)$. Moreover, by (3.15), we have $\operatorname{Lip}\left(\Phi_{t}^{\eta}\right) \leqslant L$. Therefore, the map $t \mapsto \Phi_{t}^{\eta}$ belongs to $C^{0}\left(I_{\delta}\left(t_{0}\right) ; H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)\right) \cap L^{\infty}\left(I_{\delta}\left(t_{0}\right) ; \operatorname{Lip}\left(\partial A ; \mathbb{R}^{3}\right)\right)$. Moreover, for almost every $t \in I_{\delta}\left(t_{0}\right), \Phi_{t}^{\eta} \rightarrow \dot{s}_{t}$ strongly in $H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)$.

Let w_{t}^{η} be the solutions to problems (6.2), where the minimum is now taken over all functions $w \in \mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ such that $w=\Phi_{t}^{\eta} \circ s_{t}^{-1}$ on ∂B_{t} and $w=\lambda_{t}\left(z-z^{0}\right) / \varepsilon^{3}$ on $\partial \Sigma_{\varepsilon}^{0}$. By the properties of the functions $t \mapsto \Phi_{t}^{\eta}$ mentioned above and by Proposition 6.1, the functions $t \mapsto w_{t}^{\eta}$ are continuous from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$.

We recall that, for almost every $t \in I_{\delta}\left(t_{0}\right), \Phi_{t}^{\eta} \rightarrow \dot{s}_{t}$ strongly in $H^{1 / 2}\left(\partial A ; \mathbb{R}^{3}\right)$. This implies that $\Phi_{t}^{\eta} \circ s_{t}^{-1} \rightarrow \dot{s}_{t} \circ s_{t}^{-1}$ strongly in $H^{1 / 2}\left(\partial B_{t} ; \mathbb{R}^{3}\right)$. By the continuous dependence of the solutions on the data, we have $w_{t}^{\eta} \rightarrow w_{t}$ in $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ for almost every $t \in I_{\delta}\left(t_{0}\right)$. This implies the measurability of $t \mapsto w_{t}$.

THEOREM 6.3. Under the hypotheses of Theorem 6.2, the vector b_{t} and the matrix Ω_{t} in (4.5) are bounded and measurable with respect to t. If, in addition, the function $t \mapsto s_{t}$ belongs to $C^{1}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)$, then $t \mapsto\left(b_{t}, \Omega_{t}\right)$ belongs to $C^{0}\left([0, T] ; \mathbb{R}^{3} \times \mathbb{M}^{3 \times 3}\right)$.

Proof. As noticed in section 4, it is enough to prove that the functions in (4.12) are bounded and measurable, and that they are continuous under the additional assumption on $t \mapsto s_{t}$. Moreover, it is sufficient to prove the measurability and boundedness of these functions in a subinterval of time; the measurability and boundedness on the whole $[0, T]$ will easily follow. As for the first three functions, this property is proved in Proposition 4.3. The function $t \mapsto w_{t}$ from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ is bounded and measurable by Theorem 6.2. By Proposition 6.1 it is also continuous under the additional assumption. By formulas (4.17), this yields the boundedness and measurability of $t \mapsto F_{t}^{\text {sh }}$ and $t \mapsto M_{t}^{\text {sh }}$, and the continuity under the additional assumption on $t \mapsto s_{t}$, since the functions $t \mapsto v_{t}^{i}$ and $t \mapsto \hat{v}_{t}^{i}$ are continuous from $I_{\delta}\left(t_{0}\right)$ into $\mathcal{V}\left(\Sigma_{\varepsilon}^{0, \text { ext }}\right)$ by Theorem 2.5 and Lemma 4.2.

We are now in a position to prove the main result of the paper.
ThEOREM 6.4. Assume that $t \mapsto s_{t}$ satisfies (3.7), (3.8), (3.10), and (3.13). Let $y^{*} \in \mathbb{R}^{3}$ and $R^{*} \in \mathrm{SO}(3)$. Then (4.6) has a unique absolutely continuous solution $t \mapsto\left(y_{t}, R_{t}\right)$ defined in $[0, T]$ with values in $\mathbb{R}^{3} \times \mathrm{SO}(3)$ such that $y_{0}=y^{*}$ and $R_{0}=R^{*}$. In other words, there exists a unique rigid motion $t \mapsto r_{t}(z)=y_{t}+R_{t} z$ such that the deformation function $t \mapsto \varphi_{t}=r_{t} \circ s_{t}$ satisfies the equations of motion (4.1).

Moreover this solution is Lipschitz continuous with respect to t. If, in addition, the function $t \mapsto s_{t}$ belongs to $C^{1}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)$, then the solution $t \mapsto\left(y_{t}, R_{t}\right)$ belongs to $C^{1}\left([0, T] ; \mathbb{R}^{3} \times \mathrm{SO}(3)\right)$.

Proof. The existence and uniqueness of the solution of the Cauchy problem for (4.6) follow immediately from Theorem 6.3 , by standard results on ordinary differential equations with bounded measurable coefficients; see, e.g., [11, Theorem I.5.1]. The assertion concerning the deformation function $t \mapsto \varphi_{t}$ and the equation of motion (4.1) follows from the equivalence Theorem 4.1. The Lipschitz continuity of the solution follows from the boundedness of the right-hand sides of the equation in (4.6).

If, in addition, the function $t \mapsto s_{t}$ belongs to $C^{1}\left([0, T] ; C^{1}\left(\bar{A} ; \mathbb{R}^{3}\right)\right)$, then Theorem 6.3 ensures that the coefficients of the equations in (4.6) are continuous with respect to t, and therefore the solutions are of class C^{1}.

We notice that assumptions (1.2) are not needed in Theorem 6.4. As a consequence, the theorem holds in a more general setting, when s_{t} is not a pure shape change. For instance, if s_{t} were a rigid motion for every t, the unique r_{t} given by the theorem would be $r_{t}=s_{t}^{-1}$. Consequently, φ_{t} would be the identity for every t, and the swimmer would not move.

REFERENCES

[1] F. Alouges, A. DeSimone, and L. Heltai, Numerical strategies for stroke optimization of axisymmetric microswimmers, Math. Models Methods Appl. Sci., 21 (2011), pp. 361-387.
[2] F. Alouges, A. DeSimone, and A. Lefebvre, Optimal strokes for low Reynolds number swimmers: An example, J. Nonlinear Sci., 18 (2008), pp. 277-302.
[3] F. Alouges, A. DeSimone, and A. Lefebvre, Optimal strokes for axisymmetric microswimmers, Eur. Phys. J. E, 28 (2009), pp. 279-284.
[4] A. Bressan, Impulsive control of Lagrangian systems and locomotion in fluids, Discrete Contin. Dyn. Syst., 20 (2008), pp. 1-35.
[5] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.
[6] S. Childress, Mechanics of Swimming and Flying, Cambridge Stud. Math. Biol. 2, Cambridge University Press, Cambridge, UK, 1981.
[7] J. Deny and J.-L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble), 5 (1953-54), pp. 305-370.
[8] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. 1 Linearized Steady Problems, Springer-Verlag, New York, 1994.
[9] G. P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal., 148 (1999), pp. 53-88.
[10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. Wiss. 224, Springer-Verlag, Berlin, 1983.
[11] J. K. Hale, Ordinary Differential Equations, 2nd ed., Robert E. Krieger Publishing, Huntington, NY, 1980.
[12] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Prentice-Hall, Englewood Cliffs, NJ, 1965.
[13] J. G. Heywood, On uniqueness questions in the theory of viscous flow, Acta Math., 136 (1976), pp. 61-102.
[14] J. Koiller, K. Ehlers, and R. Montgomery, Problems and progress in microswimming, J. Nonlinear Sci., 6 (1996), pp. 507-541.
[15] V. A. Kondrat'ev and O. A. OleĬnik, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Uspekhi Mat. Nauk, 43 (1988), pp. 55-98; translation in Russian Math. Surveys, 43 (1988), pp. 65-119.
[16] E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Rep. Progr. Phys., 72 (2009), article 9.
[17] M. J. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers, Comm. Pure Appl. Math., 5 (1952), pp. 109-118.
[18] J. NečAS, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris, 1967.
[19] E. M. Purcell, Life at low Reynolds number, Amer. J. Phys., 45 (1977), pp. 3-11.
[20] J. San Martín, T. Takahashi, and M. Tucsnak, A control theoretic approach to the swimming of microscopic organisms, Quart. Appl. Math., 65 (2007), pp. 405-424.
[21] A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number, J. Fluid Mech., 198 (1989), pp. 557-585.
[22] H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser, Basel, 2001.
[23] G. I. Taylor, Analysis of the swimming of microscopic organisms, Proc. Roy. Soc. Lond. Ser. A., 209 (1951), pp. 447-461.
[24] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001.

[^0]: *Received by the editors July 2, 2010; accepted for publication (in revised form) March 8, 2011; published electronically June 7, 2011. This paper was partially supported by the Project "Variational Problems with Multiple Scales," 2008, of the Italian Ministry of Education, University, and Research. http://www.siam.org/journals/sima/43-3/80083.html
 ${ }^{\dagger}$ International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy (dalmaso@sissa.it, desimone@sissa.it, morandot@sissa.it).

