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A study on tour-based mode choice based on a Support Vector 

Machine classifier 

A new approach in recognizing travel mode choice patterns based on a 

classification technique named Support Vector Machine is proposed. The tour-

based travel demand dataset analysed is derived from the 2009 National 

Household Travel Survey. The main features characterizing each tour are the 

means used, travel-related variables and socioeconomic aspects. 

Results obtained demonstrate the ability in predicting to some extent, in a real 

settings where car use dominates, which tours are likely to be made by public 

transport or non-motorized means. Moreover, the flexibility of the technique 

allows assessing the predictive power of each feature according to the 

combination of travel means used in different tours. Potential applications range 

from activity-based travel choices simulators to search engines supporting 

personalized travel planners, in general whenever “best guesses” on mode choice 

patterns have to be quickly made on large amount of data prejudicing the 

possibility of setting up a statistical model. 

Keywords: trip chain; tour; mode choice; Support Vector Machine; 

multimodality; New York State 

Introduction 

Mode choice is certainly one of the main important aspects in travel behaviour analysis 

and the many variables that can influence the choice are key elements to be analysed. 

Individual and personal attributes, such as socioeconomic characteristics, are surely 

fundamental and they have to be combined with more general aspects related to the 

travel itself, as its purpose or duration.  

Various solutions to the mode choice problem have been developed, many of 

which proposing more and more advanced formulations of disaggregated discrete 

choice models whose foundations stretch back 40 years by now (McFadden 1973; Daly 

and Zachary 1978). While such econometric formulations based on the random utility 

theory represent the state of the art in this field, alternative research approaches started 



being considered in more recent years.  In particular, the development of the data 

mining and machine learning domain has opened new research avenues since the late 

90s also in the transport field. Mode choice modelling can thus be seen as a pattern 

recognition problem, with a more detailed analysis on the changing influence of each 

exogenous variable on different categorical outcomes, which is something different 

from the estimation of a unique coefficient and significance level for each variable. 

A growing body of literature compares the performances of econometric models 

with different variants of data mining and machine learning methods (Xie, Lu, and 

Parkany 2003; Beelen, Thomas, and Verhetsel 2005; Omrani et al. 2013; 

Seyedabrishami and Shafahi 2013; Xian-Yu 2011). For example, the machine learning 

technique called Artificial Neural Network represents a valid option in many problem 

instances compared to Multinomial Logit models (Nijkamp, Reggiani, and Tritapepe 

1996; Hensher and Ton 2000; Shukla et al. 2013). Recent researches show an increasing 

interest in the application of data mining techniques to mode choice prediction. For 

example, Omrani presents a study on daily trips in the city of Luxembourg through the 

comparison of results obtained using four methods: Artificial Neural Net-MLP, 

Artificial Neural Net-RBF, Multinomial Logistic Regression and Support Vector 

Machines (SVM) (Omrani 2015). However, multimodal combinations are not 

considered.  

While trip-based mode choice methods such as those reviewed so far are mostly 

used in practical settings, tour-based approaches have clear advantages in that they 

allow for the explicit consideration of constraints induced by trip chains. Two papers 

could be found that study tour based mode choice through data�driven methodologies 

based on fuzzy sets (Shukla et al. 2013; Shukla et al. 2015) while an interesting 

relationship between trip chaining and mode choice is presented in Islam and Habib 



(2012). 

Among such methods, SVM has been sporadically adopted in the transportation 

research domain and the few applications that are related to mode choice actually 

consider trip-level analysis. For example, SVM has been related to travel mode choice 

modelling in the case of data collected in the San Francisco Bay Area in California 

(Zhang and Xie 2008). Another interesting analysis is found in Xian-Yu (2011), which 

studies modal choice in work related trips. The work presented in Yang et al. (2010), 

instead, concentrates on trip chains, but the goal is the recognition of activity features. 

More widely, SVM appears in the transportation field as predictor of travel time 

(Vanajakshi and Rilett 2007; Wu, Ho, and Lee 2004), incident detection (Kim, Lee, and 

Cho 2007) or net flow forecasting (Cheu et al. 2006). In relation with such state of the 

art, this paper applies SVM to the study of tour-based mode choice, to the best of 

authors’ knowledge for the first time in the open literature. The goal is to assess the 

added value of such method for the problem under consideration, particularly 

concerning the role that different personal and tour-related characteristics have in 

shaping the pattern recognition problem. 

This article is structured as follows. Support Vector Machine, a technique 

widely used to study classification problems, is firstly introduced. Then, the description 

of the tours dataset for New York State considered to analyse the modal behaviour of 

people travelling during a day is provided. After the exposition and the discussion of the 

most interesting results, conclusions and possible future works are presented. 

Support Vector Machine classifier  

Support Vector Machine (SVM) is a well-known computational learning method 

developed in the 80s and widely used for data classification and regression (Vapnik 

1982). The aim of this technique is the analysis of data and the recognition of certain 



patterns that could be, then, used to classify unknown elements. Beyond its use in the 

transportation domain that was earlier reviewed, SVM has been widely and successfully 

adopted for solving classification problems in many different fields such image 

classification, text categorization, medical science or mechanical machine diagnostics. 

The usual example proposed in machine learning to better explain how the 

various methods work refers to the Iris dataset (Tan, Steinbach, and Kumar 2005). This 

example is used in the following for a better comprehension of the technique described. 

The dataset includes 150 flowers belonging to the Iris kind, equally partitioned in three 

different species: Setosa, Versicolour and Virginica. Four botanical features 

characterizing these plants are known: sepal length, sepal width, petal length and petal 

width. In a classification procedure, the goal is to assign a new unknown Iris to one of 

the species, since they are properly described by those four features.  

The simplest case is when the dataset is made up of only two classes, as could 

be, in the example, having only Setosa and Versicolour flowers. SVM technique 

customarily assigns two different labels to these classes: positive, “+1”, and negative, “-

1”. The next step requires the definition of the n-dimensional “feature space”, where n 

is number of attributes that are relevant to capture the pattern under investigation. In the 

Iris example, n is equal to four, which corresponds to the elements used to characterize 

the flowers (sepal length, sepal width, petal length and petal width). Thus, the dataset 

that the classifier has to analyse is made up of M elements, namely M vectors xi, i = 1, 

2,…, M, where each vector has n dimensions.. In the example considered, if only two 

classes are considered, M is equal to 100 (50 Setosa and 50 Versicolour).  

The SVM technique aims at creating an n-dimensional hyperplane separating the 

two groups and, therefore, acting as a classifier when some new points are given as test. 

Thus, a fraction of the M observations in the dataset (usually 75-80% of elements for 



each class) is used to “train”, i.e. build, the classifier. Therefore, each observation in the 

“train” subset belongs to a unique known class and it contributes to the creation of a 

proper boundary. To have the best classification, this boundary must be placed such that 

its distance from the nearest data points in each class is maximal; for this reason, its 

name is maximum margin (Figure 1(a)). These latter points are called support vectors, 

hence the name of this method. They are the core of the technique since they contain all 

the information necessary to properly define the classifier. . The elements not included 

in the “training” part are instead used as “test”: a decision function assigns a label to 

these points according to their relative position from the separating hyperplane. Since 

they are originally assigned to a class (in fact they come from the remaining 25-20% of 

the dataset), it is possible to verify the ability of the SVM to properly identify their 

belonging. 

   

  (a)            (b) 

Figure 1. SVM representation of the two classes (labelled “+1” and “-1”), the maximum 

margin and the support vectors (a) and mapping of the non-linear case to a feature space 

where the boundary is linear (b). 

One of the main advantages of this method stands in its application also to non-

linear classification cases, that is, when the division boundary could not be defined 

through a linear relationship. In fact, SVM can use a more generic function ϕ(xi) that 



maps the data xi to be classified onto a high-dimensional feature space, where the linear 

classification can then be adopted. Figure 1(b) shows the non-linear boundary, 

analytically not easy to define, that becomes, thanks to the projection to a higher-

dimensional space, a linear hyperplane, computationally and mathematically more 

manageable. Moreover, thanks to a kernel function K(xi,xj) = (ϕT(xi) · ϕ (xj)), the 

previous function ϕ(xi) does not need to be evaluated, leading to a reduction of 

computational problems (Burges 1998). The kernel function used in this work is the 

Radial Basis Function (RBF): 

,௜ݔሺܭ ௝ሻݔ 	ൌ 	expሺെ	ߛ	ฮݔ௜ 	െ	ݔ௝ฮ
ଶ
ሻ, 	ߛ ൐ 0. 

Support Vector Machine is, by definition, a two-class classifier, but it can be 

used for the solution of multi-classes problems too, as in the original Iris example. One 

of the possible approaches, which is also used in this paper, is the One-against-all 

(OAA): a separate SVM is created for each class and these elements are used as training 

data against all the others. Then, the assignation of the instances to the classes could be 

done in different ways. An intuitive approach sees outputs of the binary classifiers as 

votes and selects the class getting most votes as good. Further details can be found in 

Hsu and Lin (2002).  

Dataset and analysis of tours complexity 

The dataset analysed in this article is derived from the 2009 National Household Travel 

Survey (NHTS) public use files, which provide information on daily trips in the United 

States (U.S. Department of Transportation 2009). The focus is on the interviews 

gathered in New York State, where a survey add-on was financed and therefore a 

relatively high number of observations are available. In this way, a more balanced 

distribution of modes used in travelling is found, due to the strong use of public 



transport in urbanized areas within that State. The first step involves the identification 

of all the tours that have been made by the survey respondents during the surveyed day. 

A tour is formally defined as a sequence of trips starting and ending at the same location 

(Axhausen 2008). Usually, the reference location is the house and, so, tours starting and 

ending at home within the surveying period are investigated. In the NHTS dataset this 

kind of sequences are found in the “Day Trip” file to produce the so called “Home-

Based (HB) tours” list (Pirra and Diana 2016).  

The analysis focuses on three main categories of travel means: individual 

motorized means (IM), public transport (PT), and bicycle and walking, which are jointly 

considered (BW). Thus, only tours made using these transport modes or their 

combinations are selected. Starting from the list of recorded trips, 39,167 tours made by 

24,396 individuals on their survey day are finally reconstructed.  

On the other hand, the analysis of the main purpose of each tour leads to the 

partition of the dataset in seven main categories with different sizes. Table 1 reports, in 

the first three rows, the unweighted number of tours (equalling to the number of 

observations in the dataset), the weighted percentage (computed considering 

observation weights for unbiased estimates) and the mean number of trips composing 

the tours for each group, irrespective of the mode used. Work and education are the 

unique purpose respectively of 10.40% and 4.89% of tours, which are then labelled with 

HWH and HEH. Among all the other possible purposes, a categorization is defined on 

personal activities (leading to HPH tours that only contain such activities), on social 

activities (HSH) or those whose goal is to transport someone (HTH). The first case 

collects 22.73% of all tours and includes shopping and personal care, while the second 

refers to all kind of meetings, meals, sport-related activities and friends and relatives 

visits (18.59% of tours). Activities such as transporting, picking up and dropping off 



someone finally denote a smaller group of tours (3.99%). Tours starting and ending at 

home with no intermediate activity, i.e. going for a walk, jogging, taking the dog out 

and similar, are marginal (HH). However, the largest number of tours combines more 

than one of the above kinds of activities and they will be indicated as “HxH tours”.   

Table 1. Cross-tabulation of Home Based tours in New York State by travel modes and 

activities: occurrences, weighted percentages and mean number of trips per tour. 

Means  HWH HEH HPH HSH HTH HH HxH 
All 

activities

All modes 
 Nb. tours 
(row %) 
Av. trips 

4,672 
(10.40) 

2.3 

1,909 
(4.89) 

2.1 

10,404 
(22.73)

2.7 

9,829 
(18.59)

2.3 

1,995 
(3.99) 

2.2 

149 
(0.18) 

1.0 

10,209 
(39.22) 

4.7 

39,167 
(100.00)

3.3 

IM 
Nb. tours 

(column %) 
Av. trips 

4,066 
(65.19) 

2.3 

506 
(25.30) 

2.0 

8,489 
(60.14) 

2.8 

7,075 
(52.71) 

2.2 

1,849 
(84.29) 

2.2 

89 
(42.87) 

1.0 

8,276 
(59.25) 

4.6 

30,350 
(58.16) 

3.3 

PT 
Nb. tours 

(column %) 
Av. trips 

25  
(0.93)  

2.0 

885 
(35.11) 

2.0 

42 
 (0.69) 

2.0 

41  
(1.24) 

2.8 

5 
(2.21) 

2.0 

4 
(2.44) 

1.0 

9 
(0.07) 
 4.4 

1,011 
(2.32) 

2.1 

BW 
Nb. tours 

(column %) 
Av. trips 

229 
(7.46) 
 4.0 

155 
(14.53) 

2.0 

1,511 
(26.03) 

2.3 

2,307 
(30.07) 

2.2 

118 
(9.38) 

2.1 

45 
(36.99) 

1.0 

248 
(7.16) 
 4.0 

4,613 
(16.24) 

2.6 

IM PT 
Nb. tours 

(column %) 
Av. trips 

13  
(0.58)  

2.9 

221 
(5.44) 

2.2 

8 
(0.04) 
 2.8 

17 
 (0.67) 

2.2 

0 
(0.00) 

- 

1 
(0.02) 

1.0 

245 
(1.47) 
 4.2 

505 
(1.04) 

3.3 

IM BW 
Nb. tours 

(column %) 
Av. trips 

43  
(0.80) 

3.6 

42 
 (1.77) 

2.0 

145 
(2.60) 

3.4 

191 
(3.70) 
 3.4 

10 
 (1.62) 

2.6 

0 
(0.00) 

- 

853 
(9.30)  

5.3 

1,284 
(5.16) 

4.7 

PT BW 
Nb. tours 

(column %) 
Av. trips 

254 
(23.00) 

2.3 

86 
(15.66) 

2.2 

197 
(9.74) 

2.8 

172 
(10.00) 

2.6 

11 
(2.34) 

2.0 

10 
(17.68) 

1.0 

371 
(17.38) 

4.9 

1,101 
(14.17) 

3.6 

IM PT BW 
Nb. tours 

(column %) 
Av. trips 

42  
(2.04)  

2.7 

14  
(2.19) 

2.5 

12 
 (0.76) 

3.2 

26 
 (1.61) 

2.5 

2 
(0.16) 

2.0 

0 
(0.00) 

- 

207 
(5.37) 

5.5 

303 
(2.91) 

4.7 

- = missing data 
Row labels: Individual Means (IM), Public Transport (PT), Bicycle and Walking (BW) 
Column labels: Home – Work – Home (HWH), Home – Education – Home (HEH), Home – Personal Activity – Home 
(HPH), Home – Social Activity – Home (HSH), Home – Transport Someone – Home (HTH), Home – Home (HH), 
Home – Combination of Activities – Home (HxH) 
 

The mean number of trips composing the tour is an indicator of the tour 

complexity, which has an influence on mode choice that is often neglected by trip-based 

models. By definition, it is equal to one for HH tours. Considering first all tours 

irrespective of travel means (rows 1-3 in Table 1) the mean number of trips is between 



2.1 and 2.7 for tours containing only one kind of activity, education-related tours being 

the least complex and personal duties-related ones the most complex. Obviously, the 

mean number of trips sharply increases for HxH tours.  

Considering the last column of Table 1, the first noticeable aspect is the wide 

use of individual motorized means, according the typical trend in the U.S. However, 

public transport plays a non-negligible role, since it is used alone or in combination with 

other modes in 20.44% of tours taken in New York State (this figure lowering to 6.1% 

for the whole U.S., see Pirra and Diana (2016), Table 3), while 23.28% of tours involve 

the use of more than one travel means.  

Observing rows 4 onwards of the table, it is possible to notice the intertwined 

relationship between tour-level mode choice, tour complexity and related activity 

patterns. For example, the great majority of tours whose purpose is to transport someone 

are done by individual motorized means (84.29% of tours for HTH). Many students 

going to school, college or university use public transport, either alone (35.11%) or in 

combination with other means. On the other hand, walking and biking is much more 

frequent for HPH, HSH and HH tours.  

From this preliminary analysis it is clear that people vary their modal choices in 

relation with both their activity patterns and the complexity of their tours. On the other 

hand, it is well known that travel-related choices can also be traced back to the 

socioeconomic characteristics of individuals. Only this latter group of travel 

determinants can be easily captured through a trip-level travel demand analysis. In the 

next section, the goal is to assess if the previously presented classification technique can 

give a contribution in understanding the relative influence of personal characteristics 

and contextual or travel related variables in tour-based mode choice. 



SVM implementation 

A SVM classification technique is implemented to understand which factors can explain 

at best the observed mode choices at the tour level. Consistently with the prevailing 

terminology used in this research field, both personal and tour characteristics are called 

through the term “features”.  

Table 2. Features used in the classification process. P: personal feature, T: travel-related 

feature 

Feature Description Derivation from NHTS Variables Type 

N_AGE Respondent age Taken from R_AGE P 

N_INC Household annual 

income 

Derived from HHFAMINC as mean of income 

bracket boundaries; for the last income range ≥ 

$100,000 a weighted value is derived according to 

the income distribution of the New York State 

P 

Y_MALE Respondent gender Dummy variable from R_SEX: 1 if male, 0 if 

female 

P 

Y_URB Household in an urban 

area 

Dummy variable derived from URBRUR: 1 if 

household in urban area, 0 if in rural area 

P 

N_ACT Number of activities Number of activities done during the tour T 

Y_EDU “Education” activity in 

the tour 

Dummy variable: 1 if one of the tour purposes is 

“Education”, 0 otherwise 

T 

Y_OTH “Other” activity in the 

tour 

Dummy variable: 1 if one of the tour purposes is 

“Other”, 0 otherwise 

T 

Y_WORK “Work” activity in the 

tour 

Dummy variable: 1 if one of the tour purposes is 

“Work”, 0 otherwise 

T 

Y_WKD Tour is done on weekday Dummy variable: 1 if tour is totally on a weekday, 

0 if it is at least partially on a weekend 

T 

 



In Table 2 the nine features that are going to be considered are listed: the first 

four are related to personal characteristics (P) and the last five to tour attributes (T). The 

information available in the dataset is obviously much richer, and the list of know 

determinants of modal choices much longer: however, the focus here is on a small 

subset of variables to keep the classification scheme relatively simple and ease the 

interpretation of the results. Following the research goal stated at the end of the 

introduction, the relative predictive power of the two groups of determinants in studying 

modal choices is assessed.  

Thus, the main goal of this research is the application of the SVM technique in a 

multi-dimensional space defined by the variables listed in Table 2. Tours are classified 

into one of the seven mode use combinations listed in rows of Table 1. The process can 

be described through the following five steps: 

(1) Features selection: choice of which variables of Table 2 are used to 

create the multi-dimensional space (either all or some of them).  

(2) Normalization: features are normalized through a min-max normalization 

so that each variable stands in a [0 1] range, to provide a value homogeneity 

with the binary features.  

(3) Cross validation process: the dataset is segmented in 5 equal-sized 

partitions, sampled randomly but maintaining the classes distributions of the 

whole dataset, and one of these partitions is used as testing (20% of data) while 

the others are used for training the classifier (80% of data). The procedure is run 

5 times, so that each partition is used once for testing (Tan, Steinbach, and 

Kumar 2005).  

(4) SVM classification: the training data are used to create the classes and, 

then, labels are assigned to the testing part.  



(5) Labels comparison: since real classifications are known, it is possible to 

check the accuracy of the classifier. For each of the seven above mentioned 

travel modes combinations, the percentages of assignation to the seven different 

classes are computed.  

The above procedure was developed in KNIME, which is an open source 

platform useful for data analysis (Berthold et al. 2009). It is based on a modular data 

pipelining approach that allows the connection of different components representing 

machine learning and data mining techniques. Another interesting characteristic of the 

platform is the possibility of integrating other open source projects, such as machine 

learning algorithms from Weka and LibSVM, which were needed given the imbalanced 

sizes of the classes considered: from Table 1 it is apparent that the biggest group (IM) is 

100 times larger than the smallest one (30,350 occurrences against 303 of “IM PT 

BW”). 

Classification algorithms require usually a reasonably even distribution of data 

among the available classes, in order to assure a better domain definition and, thus, 

better performances. This is achieved if the learner is “trained” on the widest range of 

elements belonging to each group considered (Tan, Steinbach, and Kumar 2005). 

However, imbalanced class distributions are rather common in real world applications 

and various procedures are provided to deal with them, such as undersampling, 

oversampling, Synthetic Minority Oversampling Technique (SMOTE) or cost sensitive 

techniques (He and Garcia 2009). These techniques can be used for SVM, but also 

algorithmic modifications are available to reduce its sensitivity to class imbalance 

(Batuwita and Palade 2013). 

A possible solution, which is the one adopted, is related to the imbalanced 

support vector ratio. In  Wu and Chang (2003) the authors show that, as the training 



data gets more imbalanced, the ratio between support vectors belonging to the positive 

and negative classes (respectively called positive and negative support vectors) becomes 

more imbalanced too. As they hypothesize, the neighbourhood of a test instance close to 

the boundary is thus more likely to be dominated by negative support vectors and a 

boundary point is more likely to be classified as negative by the decision function. 

Akbani et al. suggest acting on the weights in the decision function, leading to different 

weights on the negative/positive support vectors (Akbani, Kwek, and Japkowicz 2004). 

Since this solution can be realized in KNIME through the tool LibSVM (Chang and Lin 

2011), this procedure is followed, therefore providing the appropriate weights to each 

class. 

Results and discussion  

Results of the classification exercise for different computational experiments are shown 

in Table 3. The second column of the table indicates if all nine features proposed in 

Table 2 were considered as dimensions of the space for SVM (“A” rows), or whether 

the solution space is reduced by taking into account only the five transport-related 

features (“T” rows), or, alternatively, only the four personal features (“P” rows).  

Table 3 comes in the form of a 7*7 matrix for each of the three above analyses, 

where percentages indicate the fraction of tours of the class that is specified in the first 

column that is classified into each of the seven classes by the algorithm. Elements lying 

on the main diagonal of the matrix thus represent a measure of accuracy of the 

classification, with an identity matrix representing the ideal outcome. Such elements are 

reported in bold. However, it should be noticed that some of the classes represent a 

mixed use of different travel means, so that not all mismatches are equally problematic. 

It is in fact more difficult for example to discriminate tours in which only cars are used 

from those in which cars are jointly used with other means. Interestingly enough, the 



matrix is far from being symmetric. Therefore, mismatches between any two pairs of 

classes are not probably only due to a lack of discriminating power of the method, but 

rather to the influence of different factors that will be commented in the following. 

Table 3. Row percentages of tours as labelled by SVM. 

%  Assigned class 

Real class  IM PT BW IM PT IM BW PT BW IM PT BW

IM 
A 
T  
P 

19.51 
1.77 
31.98 

1.39 
1.58 
4.87 

43.02 
45.38 
3.97 

1.38 
0.99 
7.24 

15.73 
34.63 
21.63 

12.68 
11.97 
16.72 

6.29 
3.68 
13.59 

PT 
A 
T  
P 

0.40 
0.00 
2.37 

81.60 
86.75 
44.81 

7.02 
8.41 
0.50 

6.43 
1.48 
41.15 

0.20 
0.59 
1.48 

3.86 
2.77 
7.91 

0.49 
0.00 
1.78 

BW 
A 
T  
P 

9.30 
0.56 
23.00 

3.06 
3.30 
9.58 

73.32 
82.03 
4.34 

0.67 
0.43 
7.44 

2.47 
8.00 
18.25 

9.32 
4.81 
24.19 

1.86 
0.87 
13.20 

IM PT 
A 
T  
P 

3.96 
0.00 
2.97 

36.83 
42.57 
33.07 

1.98 
2.18 
0.79 

43.57 
39.61 
55.25 

5.74 
11.68 
2.77 

3.37 
1.78 
2.97 

4.55 
2.18 
2.18 

IM BW 
A 
T  
P 

13.71 
1.32 
24.38 

2.88 
3.27 
7.55 

11.61 
8.18 
3.66 

5.22 
4.83 
9.35 

41.43 
65.66 
24.45 

8.72 
2.18 
14.72 

16.43 
14.56 
15.89 

PT BW 
A 
T  
P 

6.81 
1.18 
13.08 

7.17 
7.45 
10.17 

23.89 
25.80 
3.72 

4.36 
6.27 
6.36 

12.99 
32.33 
13.26 

34.88 
22.16 
40.60 

9.90 
4.81 
12.81 

IM PT BW 
A 
T  
P 

8.58 
0.66 
12.87 

4.29 
3.96 
10.56 

9.24 
7.26 
1.98 

12.87 
17.16 
14.19 

29.70 
44.23 
18.81 

14.19 
11.88 
19.80 

21.12 
14.85 
21.79 

 

Beyond the three basic “A”, “T” and “P” analyses, additional ones were run in 

which different mixes of “T” and “P” features were considered. Detailed results are not 

presented here but will be later recalled whenever they are useful to understand the 

influence of specific variables on modal choice. The comparison of the results from 

different analyses gives in fact interesting insights on the relative importance of modal 

choice determinants, and on how their relative importance changes according to 

different travel means. 



In the following, the outcomes for the four typologies of tours involving the use 

of only one mode are firstly proposed. Then, the analysis focuses on those referring to 

the remaining three multimodal classes. The ability of the classifier in properly 

recognizing the tours done with specific means, or with a combination of them, together 

with the assignment of a large number of elements to the wrong class, can provide 

useful and interesting suggestions on the influence that socioeconomics and travel-

related features have on mode choice. 

Monomodal Classes 

Considering tours done only using individual motorized means (first three rows of 

Table 3), results are generally worse than those related to other classes. A possible 

explanation stands in the high variability characterizing this class, representing the most 

commonplace mobility habit in the U.S. and therefore collecting a large number of 

elements which may not have many common characteristics. However, there is a clear 

difference between the analysis that only considers personal features and the other two. 

In the former case, almost 32% of IM tours are correctly classified, while car use is 

predicted together with other means for an additional 42.46% of cases. On the other 

hand, when only travel-related features enter into the analysis, IM tours are 

predominantly classified as tours involving the use of active means (bike and feet). 

Against intuition, considering an additional travel related feature such as trip distance 

improved the latter results but only marginally (IM tours that are correctly identified 

increase from 1.77% to 11.85% and IM tours labelled as BW tours decrease from 

45.38% to 38.85%). Therefore, trip distance was excluded from the features listed in 

Table 2. The problems of recognition in this class are probably due to its large 

dimension, since it collects more than 77% of all tours (see Table 1), well attesting the 

widespread use of cars irrespective of the travel patterns by a significant portion of the 



population. Many of these tours seem to have transport-related features that would make 

them suitable for active means; conversely, personal features of motorists are distinct 

from those of travellers walking and biking (31.98% of correct matching versus 3.97% 

of incorrect classification of IM tours as BW ones).  

On the other hand, IM tours have features quite different from PT tours, so that 

the substitution potential of private means by public transport seems rather limited 

considering this tour-level analysis (incorrect classifications of IM tours as PT ones 

ranging from 1.39% to 4.87%). The latter result would have been hardly observable in a 

trip-level analysis which does not consider travel constraints at the tour level.  

Interesting results are obtained modifying the features space used in the 

classification. Jointly considering all “T” features and one of the socioeconomics 

variables, or a combination of them, is not able to ameliorate the results obtained when 

only “T” features are considered. On the contrary, considering the socioeconomics 

domain, which is characterized by a rather correct recognition pattern, and adding any 

“T” feature, results are worsened and they resemble to those reported in the first row of 

Table 3 except when only “Y_EDU” and/or “Y_WKD” are considered. In the latter 

case, results in the third row of Table 3 are almost unchanged. All “T” features except 

those two have therefore a small discriminatory power to single out IM tours. 

Tours only involving the use of public transport are well categorized (see bold 

percentages in rows 4-6 of Table 3). Contrary to IM tours, tour-related features have 

much higher predictive power than personal characteristics. A deeper analysis of the 

features reveals that PT tours have the highest occurrence on weekdays (“Y_WKD” 

variable) and that “N_ACT” is almost always equal to 1. This is due to the fact that the 

majority of PT tours are for education purposes and are made by underage students 



travelling by school bus. Therefore, socioeconomic features alone and especially age 

already have a good predictive power compared to IM and BW tours. 

Tours done by active means show similar patterns concerning the importance of 

travel-related features, while personal features are not at all good predictors. In other 

words, the choice of both public transport and bike and walking seems more linked to 

the considered tour-related patterns, while bikers and walkers are not really 

distinguishable from motorists through the personal features considered (23.00% of BW 

tours are classified as IM ones). The latter result seems to contradict that, as stated 

previously, “personal features of motorists are distinct from those of travellers walking 

and biking”, given the fact that less than 4% of IM tours are classified as BW tours. The 

explanation lies in the fact that bikers and walkers have a more specific profile that can 

be shared with that of some of the motorists, while motorists’ profiles are much more 

heterogeneous and they cannot be all assimilated to those of bikers and walkers. The 

capability of pointing out such asymmetries is one attractive feature of this 

classification technique, compared to more synthetic goodness of fit measures or 

significance levels of exogenous variables in statistical inference methods, which can 

give less punctual indications.  

Finally, the check if the addition of a “T” variable would increase the 

recognition percentage for this class is done. The results show that this happens with 

“N_ACT” and “Y_WORK”, showing that these two tour characteristics play a role in 

the choice of active means.  

Multimodal Classes 

In the dataset, multimodal classes represent a smaller number of tours if compared to 

monomodal ones (see the last column of Table 1). Looking at the corresponding rows in 

the bottom half of Table 3, the classifier provides usually reasonable matchings, even if 



accuracy is sometimes not very high. However, for such multimodal tours SVM tends to 

assign some of them, usually more than 10%, to a unimodal class implying the use of 

one of the corresponding travel modes. For example, 43.57% of “IM PT” tours are 

correctly labelled, while 36.83% of them go in the PT class. This reinforces the previous 

finding on the relatively tenuous difference between multimodality and monomodality 

choice in a tour.  

Tours combining motorized individual and public transport means are not 

clearly distinguished from monomodal public transport tours, while they are seldom 

misclassified as monomodal IM tours. Considering the pervasive use of cars in the 

sample, the use of public transport is the real distinguishing feature considering both 

socioeconomic and travel related features. 

On the other hand, the joint use of individual motorized modes and active means 

is best explained when considering travel-related features of tours, while personal 

characteristics tend to blur the difference with the exclusive use of cars. Conversely, 

personal characteristics are important to correctly classify “PT BW” tours, since travel 

features would made them hardly distinguishable from monomodal BW tours. 

 A more disaggregate analysis shows that only the addition of “N_INC”, alone 

or in association with other variables, improves the accuracy results related to the class 

PT BW by avoiding considering them as IM BW tours. When a tour cannot be easily 

accomplished by simply walking or cycling, income has a determining role in the 

choice of which additional mode to use. 

Finally, more complex tours involving the use of more than two different travel 

means are obviously more hardly distinguishable by a classification algorithm, 

especially from other multimodal tours with only two different travel modes. 



Conclusion and future work  

In this paper Support Vector Machine, a classification technique, has been used to 

analyse a tour-based travel demand dataset, in order to check its ability in recognizing 

defined trends in travel mode choice. The research concentrates on the New York State 

dataset, where tours done during a day are derived from the U.S. National Household 

Travel Survey administered in 2009. We define from this database, and for each 

personal tour, nine variables that were then used to build the features space in which the 

SVM operated its classification process.  

When the entire set of these variables is taken into account for the evaluation 

and only one mode is used in the tour, good recognition results are obtained with the 

exception of the individual motorized mean class. The explanation stands in the large 

number of differently characterized people using cars for their daily travels. The public 

transport class is usually well recognized, since it refers mainly to a specific type of 

tours, those with education purpose. Thus, the relation with the feature “N_AGE” is 

certainly rather strong. Travel-related aspects seem to have higher influence in the 

choice of active means if compared to the socioeconomic ones. In particular, “N_ACT” 

and “Y_WORK” helps in the proper class recognition. 

In general, a smaller number of tours in the dataset is multimodal. In such cases, 

multimodal classes are often labelled as one of the related unimodal ones. Results show 

in particular how income has a determining role in the choice of using either public 

transport or an individual motorized means to a tour where the traveller is already 

biking or walking. 

The experience gained in applying SVM to study mode choices at the tour level 

shows the potential complementarities between such classification approach and more 

popular statistical inference and econometric models. In particular, SVM 

implementation is relatively easy and straightforward and it can predict to some extent, 



in a real settings where car use dominates, which tours are likely to be made by public 

transport or non-motorized means. Additionally, it is possible to assess how the 

predictive power of each feature changes according to the combination of travel means 

used in different tours, so that the method can be adapted to the specific problem under 

consideration. As an example, considering the number of activities in a tour beyond a 

set of socioeconomic characteristics of the traveller improves the recognition of tours 

involving the use of public transport and/or active means, while it worsens the 

recognition of tours partially or totally travelled by car. Such kind of assessment is more 

detailed compared to a measure of fit or significance level associated to an exogenous 

variable in a statistical model. 

To summarize, while the accuracy of results is probably not comparable to that 

of a good model, SVM can give a first approximation answer in case studies were large 

amount of data need to be quickly processed and heuristic solutions are acceptable. 

Potential applications could range from activity-based travel choices simulators to 

search engines supporting personalized travel planners. Also on a policy viewpoint this 

technique can be useful. By considering mismatches in a classification exercise, the 

analyst can identify which monomodal car tours could be completed by active means 

(these latter are IM tours that are classified as BW ones). These tours can then be the 

specific target of marketing campaigns such as voluntary travel behaviour change 

programs. 

A new method to study modal choice, based on a classification technique, has 

been proposed. Future work will concentrate on checking the behaviour of the classifier 

for more targeted kinds of tours, based on the related activity patterns, and in 

developing better classifying features beyond the consideration of basic travel-related or 

socioeconomic characteristics of the traveller. Moreover, given the innovative aspect of 



the proposed approach, another interesting development is to compare the obtained 

results with those derived from traditional mode choice models. 
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