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Abstract

The honeybee swarming process is steered by few scout individuals, which are the unique informed on the location of
the target destination. Theoretical and experimental results suggest that bee coordinated flight arises from visual signals.
However, how the information is passed within the population is still debated. Moreover, it has been observed that honeybees
are highly sensitive to conflicting directional information. In fact, swarms exposed to fast-moving bees headed in the wrong
direction show clear signs of disrupted guidance. In this respect, we here present a discrete mathematical model to investigate
different hypotheses on the behaviour both of informed and uninformed bees. In this perspective, numerical realizations,
specifically designed to mimic selected experiments, reveal that only one combination of the considered assumptions is able to
reproduce the empirical outcomes, resulting thereby the most reliable mechanism underlying the swarm dynamics according
to the proposed approach. Specifically, this study suggests that (i) leaders indicate the right flight direction by repeatedly
streaking at high speed pointing towards the target and then slowly coming back to the trailing edge of the bee cloud; and
(ii) uninformed bees, in turn, gather the route information by adapting their movement to all the bees sufficiently close to
their position.

Keywords: Bee swarming; collective dynamics; alignment mechanisms

AMS subject classification: 92D50, 92D40, 92D25, 93C20

1. Introduction.

The self-organization and collective dynamics of large groups of animals, such as fishes, birds, insects, is
a fascinating phenomenon that in last decades has attracted the interest of different research communities,
e.g., ecologists, biologists, sociologists, applied mathematics and physicists, see for instance, [1–5] and
reference therein. In this context, an intriguing example to study is the coordinated flight of honeybees
when they move with the specific aim of reaching a new nest site. As explained, among others, in [6–9],
this phenomenon arises in late spring and early summer when old honeybee colonies that achieve the
maximum of their capacity generate new swarms. In more details, a queen and several thousands of
worker bees leave the old colony and look for a suitable location for a new hive. Specifically, the selection
of the proper location for the new nest is performed by a small fraction of the new colony, i.e., less then
5% [10–12]. These insects, called scout bees, explore the surrounding area, while the rest of the swarm
compactly settle on the branch of a tree located few meters away from the original hive to protect the
queen [13]. When a scout bee finds a suitable location for the new nest, it returns to the rest of the colony
and performs a waggle dance to describe the explored site. Scout bees may initially promote different
locations, however, after some hours (or days) a quorum is reached [14]. The entire swarm then finally
takes off and compactly flies towards the new nest driven by the few scout/informed bees [9,15,16].

In this respect, biologists have provided different hypotheses to shed light on how the dynamics of
thousands of insects constituting a swarm can be dictated by such a small portion of the population.
The most reliable assumption on the honeybee guidance mechanism is that the informed bees guide the
rest of the insect population via visual signals. Specifically, according to the streaker hypothesis proposed
by M. Lindauer in 1955, see [10], scout bees have been observed to transmit the direction of movement
to the other individuals by streaking at high speed through the swarm, pointing towards the target
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destination [8,12,15,17]. However, how the informed bees iteratively carry out these fast flights within
the swarm is still among the questions left unanswered. In this regard, T. D. Seeley in [9] suggested
two possible behaviours: a scout bee that reach the leading edge of the swarm could either (i) slowly
fly back toward the trailing edge of the cloud (back-and-forth flight hypothesis), or (ii) wait that the
rest of the swarm pass it (go-and-stop flight hypothesis). Furthermore, another aspect still unknown is
how the non-informed bees gain the flight direction from the informed ones, i.e., if a follower honeybee
synchronises its movement to a specific group of individuals (e.g., scouts bees or fast moving insects) or
to all groupmates close to it.

In this regard, mathematical models provide useful instruments to investigate the mechanisms un-
derlying collective dynamics of living individuals. In literature, there in fact exists several models that
describe the coordinated migration of large groups of animals at different level of details. In particular,
the description of the position and/or the state of any single agent and of the environment provides
large systems of ordinary or stochastic differential equations (microscopic/stochastic models), see some
examples in [18–21]. For huge groups of living individuals, these systems result computationally inten-
sive, so that continuum models consisting of partial differential equations for averaged quantities, as the
mean density or mean velocity of the agents, can be preferred, see, for instance, [22–26]. Alternatively,
an intermediate approach results in kinetic models, i.e., differential or integro-differential equations for
the probabilistic distribution of the living individuals in position and state spaces, as presented, among
others, in [27–29].

In this context, we opt for a microscopic/discrete model based on the phenomenological characteri-
zation of the behavior of each individual, being therefore suitable to highlight how different assumptions
result in the collective dynamics. With the same perspective, several microscopic models for the coor-
dinated flight of honeybees towards a new nest have already been proposed, for instance, in [30–33].
Specifically, the works by S. Janson et al. [30], K. Diwold et al. [31] and R. Fetecau et al. [32] deal
with discrete models based on the assumption of a back-and-forth flight of scout bees and on selected
hypotheses for the behaviour of follower individuals. In particular, uninformed bees are assumed to align
to all groupmates in their neighbourhood in [30], and to closest individuals that move two-fold faster
in [31,32]. In our previous work [33], both the hypotheses proposed by M. Lindauer (back-and-forth flight
and go-and-stop flight) have been mathematically investigated in combination with distinct assumptions
for the set of individuals involved in the synchronisation process of uniformed bees. The numerical re-
sults provided in [33] allow us to exclude that follower individuals consider only fast-flying bees and to
identify three combinations of the assumptions on scout behaviour and alignment mechanism that result
in an efficient and coherent swarming. Specifically, both M. Lindauer hypotheses result in a compact
and productive swarm dynamics when we assume that followers align to all groupmates falling within a
given neighbourhood; while only the go-and-stop hypothesis results realistic under the assumption that
followers do not consider the presence of the scouts in their way back to the rear edge of the swarm.

The goal of this work is to further investigate these three plausible combinations of hypotheses ac-
counting for the empirical evidences provided by T. Latty and coworkers in [34], which studied if and
how the migration of real swarms is affected by the presence of a fast-flying traffic line of honeybees
pointing towards a different destination. Specifically, they made different artificial swarms, constituted
by the queen bee and about 6000 workers per swarm, located in a tree-less field. The swarms were divided
in two treatment groups: test swarms and control swarms. To reach the nestbox, test swarms had to fly
through a traffic area of fast flying bee foragers headed in a wrong direction, while control swarms were
allowed to migrate toward the new nest in absence of bee foragers. To set up the traffic area affecting the
dynamics of test swarms, eight honeybee colonies were placed in a row not far from the swarm mount,
while a large lucerne field was located on the other side of the minimum path that would lead the swarm
to the nest box. As a result, compact and productive navigation of swarms were essentially disrupted
whenever they were exposed to a traffic area of fast moving bees headed in a wrong direction. It revealed
that the presence of honeybee foragers (whose mean velocity is in the range of streakers mean speed)
confuses the transmission of flight information provided by the scout bees and leads to noticeable effects
of disrupted guidance, as dispersion of the group and, in most cases, failing to approach the selected nest
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Conflicting flight information in honeybee swarming

Figure 1. Left panel: Representation of honeybee perception region (green area); the attraction neighbourhood (red area);
the repulsion neighbourhood (blue area) and the alignment region (dashed region). Right panel: Representative initial
condition reproducing the experimental setting. Yellow and red dots respectively denote the uninformed individuals and the
scout bees with a streaker role. Dashed lines define the domain portion represented in Figure 4.

site.
In this respect, in Section 2, we propose an extended version of the model presented in [33] to

describe the dynamics of both the informed and non-informed individuals that collectively fly towards a
new nest, and of the group of honeybee foragers who individually move to provide food to their hives.
In Section 3, we test the above cited hypotheses on honeybee behaviour by performing proper numerical
simulations specifically designed to reproduce the experimental scenarios considered in [34]. The possible
coherence between the experimental and the modeling outcomes would reveal which are, according to the
proposed model, the most reliable assumptions underlying the swarm dynamics, thereby pointing out the
consistency of the proposed approach. Finally, some conclusive considerations are reported in Section 4.

2. Mathematical model.

System representation. The dynamics of the migrating swarm and of the group of fast-moving foraging
bees is here described in the planar domain R2: as in [33], we indeed consider a planar section, parallel to
the ground, of the system of interest. The nest site selected by scout bees, i.e., the target of the migrating
colony, is represented by a dimensionless point xnest ∈ R2. Moreover, we denote by xhive

h ∈ R2, with
h = 1, . . . , 8, and Ωfood ⊂ R2, the centers of the eight hives and the food source, respectively, that have
been used by T. Latty and coworkers to produce the highway of fast flying bees.
Each bee is represented by a dimensionless point with concentrated mass located at xi ∈ R2 and is further
characterised by (i) a unit vector gi ∈ R2 denoting its gazing direction; (ii) a status variable si identifying
its actual role/behaviour; and (iii) its actual velocity vi ∈ R2. Entering in more details, the introduction
of the gazing direction gi allows us to implement the visual hypothesis at the basis of the proposed model
by defining a perception region for each bee i:

(1) Ωvis
i (t) =

{
y ∈ R2 : |y − xi(t)| ≤ dvis,

y − xi(t)

|y − xi(t)|
· gi(t) ≥ cos θvis

}
,

being dvis and θvis the visual depth and the half visual angle, respectively, see Figure 1 (left panel).
Despite, in principle, the individual gazing direction can evolve as an independent degree of freedom, we
here assume that it is constantly aligned to the actual velocity of honeybee i, i.e., we set

(2) gi(t) =
vi(t)

|vi(t)|
, for all t ≥ 0.

In order to model both the migrating swarm and the bee foragers involved in the experiments described
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in [34], the set of possible values of the status variable si is defined as follows

(3) si(t) =


“U”, if i is a uninformed bee;
“S”, if i is a scout with a streaker role;
“P”, if i is a scout with a passive role;
“F”, if i is a bee forager,

where the first three values characterize the individuals constituting the migrating colony (according
to [33]), and the last one denotes honeybee foragers. Both the uninformed bees, i.e., i such that si =“U”,
and the foraging bees, i.e., i such that si =“F”, never change their role. In fact, according to the biological
observations in [9,34], uninformed bees can not acquire the knowledge about the new nest location but
just follow the direction indicated by scouts bees; while bee forgers do never join the migrating swarms.
Conversely, scout bees repeatedly undergo status transitions: they have a streaker role, i.e., i is such that
si =“S”, when they fly fast through the swarm pointing towards the nest, and a passive role, i.e., i such
that si =“P”, otherwise. Specifically, a streaker bee maintains its status until it reaches the leading edge
of the swarm, then as soon as its position satisfies the condition

(4) |xi(t)− xnest| < min
k 6=i : sk(t)6=“F”

xk(t)∈Ωvis
i

(t)

|xk(t)− xnest|,

it becomes a passive leader. On the other hand, when a passive leader approaches the trailing edge of
the bee cloud, i.e., in mathematical terms

(5) |xi(t)− xnest| > max
k 6=i : sk(t)6=“F”

xk(t)∈Ωvis
i

(t)

|xk(t)− xnest|,

it turns again to have a streaker role.

Honeybee dynamics. Honeybee dynamics are described by a system of first-order ordinary differential
equations based on the assumption that the insect velocity is proportional to the acting forces rather
than to their acceleration. Such relation, called overdamped force-velocity response (see [35–37] for further
comments) is at the basis of several models reproducing the collective behaviour of honeybees (see, for
instance, [30,31]), as well as of other living individuals characterised by a complete and intelligent body
control, e.g., humans or other animals (see among others, [38–42]). Under this assumption, the equation
of motion of the i-th bee reads as

(6)
dxi(t)

dt
= min

{
vsi(t)max (t), |vi(t)|

} vi(t)

|vi(t)|
,

where v
si(t)
max denotes the maximal speed of the i-th individual according to its actual status, and avoids

unrealistically high speeds. The velocity of each individual is defined by the superposition of different
velocity contributions, i.e.,

(7) vi(t) = v
si(t)
i (t) + vavoid

i (t) + vgroup
i (t) + vrand

i (t).

In Equation (7), vsi
i denotes the directional migratory mechanism established according to its actual

status si. vavoid
i and vgroup

i respectively implement the natural tendency of each insect to maintain a
minimal comfort distance from other bees, and to remain in the neighbourhood of other individuals.
Finally, vrand

i accounts for fluctuations possibly affecting honeybee dynamics. In order to complete the
description of the model, we now discuss each velocity term starting from the directional ones.

Directional velocity component of uniformed individuals, vU
i . Uniformed bees, being unaware of the posi-

tion of the new nest, are only able to synchronise their movement with a specific set of groupmates, say
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N align
i . In this respect, the directional velocity component of the i-th uniformed individual is an alignment

term that writes

(8) vU
i (t) = vUmax(t)

< vj(t) >j∈N align
i (t)

| < vj(t) >j∈N align
i (t)

|
,

where

(9) < vj(t) >j∈N align
i (t)

=
1

#N align
i (t)

∑
j∈N align

i (t)

vj(t).

Accounting for the empirical suggestions and the numerical results reported in [33] and reference therein,
we consider two possible definitions of the alignment set of a given uninformed individual:

HP N1 - the i-th uninformed bee aligns its flight to all insects falling within a given neighbourhood, re-
gardless of their status, i.e.,

(10) N align
i (t) = {j 6= i : xj(t) ∈ Ωvis

i , 0 < |rij(t)| ≤ dalign};

HP N2 - the i-th uninformed bee synchronises its flight to all surrounding individuals that fall within a
given region, except passive leaders, i.e.,

(11) N align
i (t) = {j 6= i : xj(t) ∈ Ωvis

i , 0 < |rij(t)| ≤ dalign, sj(t) ∈ {U,S,F}},

being rij(t) := xj(t) − xi(t) and dalign the depth of the alignment region. In this respect, we highlight
that assumption N2, as well as assumption A4 in [33], translate in mathematical terms the biological
hypothesis that scouts in a passive role become almost invisible to the followers, see [8,9].

Directional velocity components of scout bees, vS
i and vP

i . The characteristic dynamics of the informed
individuals change with their status. Specifically, scout bees with a streaker role are assumed to fly at
high speed pointing towards the target nest, i.e., in mathematical terms

(12) vS
i (t) = vSmax(t)

xnest − xi(t)

|xnest − xi(t)|
.

On the other hand, for the passive leaders, we consider the two possible behaviours proposed by T.D. See-
ley in [9] and already implemented in [33].

HP L1 - Passive leaders slowly fly back towards the rear edge of the swarm, in order to slightly influence
the movement of the uninformed swarming bees. In this respect, for the i-th passive leader bee,
we define

(13) vP
i (t) = vPmax(t)

xk̄(t)− xi(t)

|xk̄(t)− xi(t)|
− xnest(t)− xi(t)

|xnest(t)− xi(t)|∣∣∣∣ xk̄(t)− xi(t)

|xk̄(t)− xi(t)|
− xnest(t)− xi(t)

|xnest(t)− xi(t)|

∣∣∣∣ ,
where k̄ denotes the uninformed insect farthest from the new nest according to the following
relation

(14) |xnest − xk̄(t)| = max
k : sk(t)=U

xk(t)∈Ωvis
i

(t)

|xnest − xk(t)|.

HP L2 - Passive leaders stop and wait to be passed by the rest of the groupmates. For the i-th passive
leader, we indeed set

(15) vP
i (t) = 0.
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Directional velocity components of bee foragers, vF
i . Bee foragers individually move back and forth between

their original hive and a food source. In particular, it has been experimentally observed that bees pointing
to a desirable source of food, fly at a speed comparable to that of the fast-flying streakers, so we can
assume vFmax = vSmax. We then state that, at regularly spaced instant times, a bee forager i leaves a
randomly selected hive and begins to fly fast towards a point in the lucerne field, said xfood

i ∈ Ωfood,
which is randomly selected as well. In this respect, vF

i is first given by

(16) vF
i (t) = vFmax(t)

xfood
i − xhive

h

|xfood
i − xhive

h |
.

The frequency of the foragers’ liftoff is set according to the experimental amount of bee traffic nF recorded
in [34], i.e., the number of bees leaving the hives over 1 min. Once reached the food source, foragers change
their desired travel direction to come back home. Finally, it is worth to stress that we neglect the dynamics
of bee foragers within the hives, since it does not affect the behaviour of the migrating swarm.

Interaction velocity contributions, vavoid
i and vgroup

i . These two velocity contributions implement repulsive
and attractive inter-individual interactions, respectively. They are both defined as the superposition of
binary interactions that result in vectors aligned to the line ideally connecting the couple of interacting
insects, and whose moduli depend on their mutual distance. In particular, stating that the coordinated
behaviour of honeybees is regulated by visual signals, it is likely to assume that the i-th bee interacts with
individual j only if xj ∈ Ωvis

i . Moreover, the resulting pairwise interaction velocity component is repulsive
if their relative distance |rij | is lower then the comfort distance davoid and it is conversely attractive if
|rij(t)| < dgroup, where davoid < dgroup ≤ dvis. The interaction repulsive and attractive interaction sets of
the i-h individual are thus given by

(17)
N avoid

i (t) = {j 6= i : xj(t) ∈ Ωvis
i , 0 < |rij(t)| ≤ davoid};

N group
i (t) = {j 6= i : xj(t) ∈ Ωvis

i , davoid < |rij(t)| ≤ dgroup}.

see Figure 1 (left panel). Notice that each bee can simultaneously synchronise and be repelled/attracted
to a perceived groupmate, as the alignment region intersect with the ones related to the interactions, i.e.,
dalign ∈ (davoid, dgroup), see again Figure 1 (left panel). In agreement with [33,43] and reference therein,
the interaction velocity contributions are finally defined by

(18)

vavoid
i (t) =

∑
j∈N avoid

i (t)

favoid

(
1

davoid
− 1

|rij(t)|

)
rij(t)

|rij(t)|
,

vgroup
i (t) =

∑
j∈N group

i (t)

4 fgroup
(dgroup − |rij(t)|)(|rij(t)| − davoid)

(dgroup − davoid)2

rij(t)

|rij(t)|
,

i.e., among the large variety of the possible interaction laws, we opt for a classical Newtonian-type
hyperbolic kernel to implement short-range repulsive interactions, and we choose a parabolic shape for
the attractive long-range interactions.

Random fluctuations, vrand
i . The random velocity term vrand

i finally accounts for the realistic possibility
that fluctuations can affect the behaviour of each individual. The modulus and the direction of this
velocity component are here assumed to be random variables which uniformly vary within the ranges of

values [0, v
si(t)
max /10] and [0, 360◦), respectively.

3. Numerical results.

The aim of the simulations proposed in this section is to point out the sets of assumptions relative to
the behaviour of the passive leaders and the alignment mechanism of the uninformed bees that are able
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to reproduce the empirical results presented by T. Latty and coworkers in [34]. In this perspective, we
design two simulation settings to reproduce the dynamics either of “control swarms” that fly towards a
target nest in the absence of other bees, and of “test swarms” exposed to a flux of fast-moving bees. In
both scenarios, we will test the three different combinations of the proposed hypotheses (N1, L1), (N1,
L2), and (N2, L2). As a remark, we here discard the set of assumptions (N2, L1), since proper numerical
results presented in [33] demonstrated that it is not able to reproduce the coordinated and productive
migration of a swarm even in the absence of other bees.

Simulation details. In all simulations, we consider a migrating colony of 500 individuals. As commented
above, we are indeed dealing with a planar section of the larger control/test swarm. As shown in Figure 1
(right panel), these bees are initially randomly distributed within a round area of radius 4 m centered at
(10 m, 30 m), leading to a realistic density of about 8 bees/m2 [9]. The initial gazing direction gi(0) of each
individual is randomly generated. In agreement with the experimental literature [15], we assume that 4%
of the migrating individuals are informed of the location of the new nest, while the remaining 480 bees
are uninformed. In particular, all scouts initially have a streaker role, i.e., si(0) = S, then they are able
to undergo status transitions according to the evolution of the system, as defined in Equations (4)-(5).
We here recall that uninformed bees are conversely not able to become scouts. The nestbox constituting
the target of the migrating colony is located 100 m far from the initial position of the swarm, i.e., at
xnest = (110 m, 30 m). The eight hives from where bee foragers start flying to provide food for their
colony, are respectively located at xhive

1 = (22 m, 5 m), xhive
2 = (22.5 m, 5 m), xhive

3 = (23 m, 5 m), xhive
4 =

(23.5 m, 5 m), xhive
5 = (24 m, 5 m), xhive

6 = (24.5 m, 5 m), xhive
7 = (25 m, 5 m) and xhive

8 = (25.5 m, 5 m),
according to the experimental scenario. Finally, the food source is represented by the rectangle area
Ωfood = [30, 60] × [50, 60] m2. According to the experimental scenario described in the previous section,
the hives and the food site are located on either sides of the straight path connecting the initial position
of the swarm and the nest site, see again Figure 1 (right panel).

Table 1. Model parameters.

Par. Descr. Val. Ref.

θvis half visual angle 156.5◦ [44]
dvis depth of visual field 20 m [33]

vUmax maximal speed of uninformed bees 3 m/s [34]

vSmax maximal speed of streakers 9.4 m/s [9,12,34]

vPmax maximal speed of passive scouts 3 m/s [8,9]

vFmax maximal speed of foragers 9.4 m/s [34]
nF bee traffic [25, 85] bees/min [34]
davoid extension of the avoidance region 0.3 m [9]
dalign extension of the alignment region 2 m [42,45]
dgroup extension of the attraction region 20 m [33]

favoid avoidance coefficient 1 m2/s [33]

fgroup attraction coefficient 10−6 m/s [33]

The entire model parameter setting used in all numerical simulations is summarized in Table 1. These
values have been set by taking advantage of the empirical measurements reported in the literature of
the field and of the parameter estimation performed in [33]. The bee visual region in Equation (1) is
characterised by setting the half visual angle θvis = 156.5◦ and the visual depth dvis = 20 m. The former
is a measure provided in [44]. The latter is an estimate proposed in [33] to allow each insect to potentially
see all groupmates (provided that the swarm is not completely dispersed) and it is small enough to avoid
that the target destination initially falls within the visual field of uninformed individuals. The maximal
flight speeds introduced in Equation (6) are estimated according to the empirical measurements reported
in [34] and reference therein. Specifically, the flight of uninformed individuals in the swarm do not exceed
vUmax = 3 m/s [34], while scouts in the streaker role are able to fly up to vSmax = 9.4 m/s [9,12,34].
The maximal speed of passive leaders is assumed to be equal to that of uninformed individuals, i.e.,
vPmax = vUmax, according to the biological hypothesis that scouts in a passive role become almost invisible to
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Figure 2. Trajectory of a representative bee scout upon either the back-and-forth hypotheses L1 (left panel) and the go-
and-stop hypotheses L2 (right panel). The trajectory is red when the scout has a streaker role, and it is blue when it has a
passive role. The yellow shadow represents the entire bee cloud.

the followers, see [8,9]. As a remark, the measurements performed in [34] allow us to estimate the maximal
speed of honeybee foragers equal to that of scouts in the streaker role, i.e., vFmax = vSmax = 9.4 m/s.
Plausible values for the outbound bee traffic nF fall in the range [25, 85] bees/min, so that the resulting
ratio between the number of scouts and nF is consistent with the quantities recorded in [34].
The model parameters that characterize honeybee mutual interactions (affecting all individuals regardless
their status) and the alignment mechanism (regulating the behaviour of uniformed insects only) are set
exactly as in [33]. The minimal comfort distance between individuals davoid is fixed at 0.3 m, according
to the measurements reported in [9]. The extension of the alignment region dalign is assumed to be equal
to 2 m, accounting for the values of the ratio davoid/dalign tested by Couzin and colleagues in [42,45].
We further set dgroup = dvis, assuming that each bee tends to maintain a minimal connection with
any other individual it sees. The technical coefficients favoid and fgroup are finally settled at 1 m2/s
and 10−6 m/s, respectively, following the parametric estimation proposed in [33]. In particular, in [33],
we ran a series of numerical realizations looking for pairs of parameters that (i) result in a crystalline
equilibrium configuration of the swarm without superposition of individuals, when the evolution of the
system is regulated by attractive/repulsive stimuli only; and (ii) allow the specific flight of scouts through
the swarm under either hypotheses L1 and L2, when the evolution is regulated by the complete dynamics
(see the Appendix of [33] for further details). On one hand, the numerical results reported in [33] show
that requirement (i) is satisfied if the parametric relation favoid/fgroup > 1.07 · 105, derived by [43,46,47]
and reference therein, holds. To account for requirement (ii), we conversely have to verify that the
interaction parameter values used in [33] are still admissible even though we here opt for a different value
of the maximal speed of uniformed bees. In fact, in order to mathematically reproduce the experiments
performed by T. Latty and coworkers, we here set vUmax equal to the empirically estimated value reported
in [34], i.e., 3 m/s, rather than to 6.7 m/s as in [33]. In this respect, we analyse the motion of the scout
bees through the cloud of uninformed individuals by running two series of computational tests involving
a modified control swarm whose dynamics is regulated only by the repulsive/attractive interactions and
the characteristic motion of scouts, L1 and L2, respectively. Specifically, with respect to the complete
model in Equations (6)-(7), we neglect the alignment mechanisms and the random contributions. Figure 2
shows the trajectories of a representative informed bee observed in the two cases: under hypothesis L1
(left panel), the informed bee is actually able to streak and fly back repeatedly through the swarm; under
hypothesis L2 (right panel), once the scout bee reaches the leading edge of the swarm, it stops waiting
the passage of the rest of the colony. However, the cloud of uninformed individuals (and, in turn, the
entire swarm) substantially maintains its initial position due to the absence of the alignment process.
These numerical results clearly demonstrate that the proposed variation in the model parameters do not
disrupt the specific behaviour of informed bees, i.e., the proposed set of parameter satisfies requirement
(ii) too.

Control and test swarms. We then turn to test the considered alternative combinations of the hypotheses
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on the behaviour of leader scouts, and on the alignment mechanism of uninformed bees, i.e., (N1, L1),
(N1, L2), and (N2, L2), looking for those able to reproduce the dynamics of both the control swarms
and the test swarms described in [34]. By considering the complete model defined in Equations (6)-(7),
we run six series of simulations for each couple of assumptions. First, we deal with the control case:
by setting nF = 0 bees/min, we show that, in absence of conflicting information, all proposed set of
hypotheses reproduce the coordinated and productive flight of honeybees towards their new nest. Then,
we look at the evolution of swarms exposed to five different levels of bee traffic (test cases): specifically,
nF is respectively set equal to 25; 40; 55; 70; 85 bees/min.
In order to identify the sets of assumptions able to reproduce the experimental outcomes presented by
T. Latty and co-workers, let us recall that in [34] they classify their empirical results accounting for the
fraction of the swarm that actually enters the nestbox. The proposed model, however, implements only
honeybee navigation toward the new nest, and not the entrance mechanism which conversely involves
specific features such as, for instance, the secretion of the Nasonov pheromone [12]. By considering that
honeybees begin to coordinate their entrance in the nest at about 10 m from the target [9], we record
the number of insects that simultaneously fall within the neighborhood Ωnest := [100, 120] × [20, 40] m2

around xnest, see Figure 1 (right panel). The dynamics of the bee population resulting from the considered
set of assumptions are then classified according to the following criterion.

Definition 3.1. The coordinated and productive flight of a swarm toward the nest is disrupted if

(19) Nnest = max
t∈[0,T ]

{
#
{
j : sj(t) 6= “F”, xi(t) ∈ Ωnest

}}
≤ 450,

where # denotes the cardinality of a set and T is the period of observation of the realization. Otherwise,
the swarm successfully reaches the target nest.

All numerical tests are stopped at T = 1 min. By noticing that in control cases the time needed by the
simulated swarm to cover the straight path to reach the nest is about 35 sec (see Figure 4), it is clear
that this choice of T allows to properly classify as disrupted the dynamics of swarms that would arrive
at the target nest after large deflections from the straight path. Moreover, for each combination of the
set of assumptions and for each considered amount of bee traffic (included the control case), we run 10
independent simulations to account for the randomness present both in the initial distribution of the
swarm and in honeybee dynamics. The numerical results are then summarized in Figures 3-5.

Figure 3. Representation of the mean number of bees that reach the nest, i.e., the mean of Nnest defined in Equation (19),
arising from 10 independent numerical realizations for each combination of the bee behavioural assumptions and for each
level of the traffic bees nF . The error bars represent the variance obtained for each case.

Figure 3 reports the mean value and the relative variance of Nnest characterizing each case. These
computational outcomes first highlight that all control cases are characterized by Nnest = 500 (i.e.,
< Nnest >= 500, with zero variance), thereby pointing out that the considered set of assumptions on bee
behaviour equivalently reflect the empirical outcomes obtained by T. Latty and co-workers in the absence
of conflicting directional information. In fact, as shown by the representative snapshots in Figure 4, in all
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cases the honeybee swarm remains cohesive during all the dynamics and compactly reach the target nest
without large deviations from the straight path. This further confirms that the proposed variation in the
speed of uninformed bees w.r.t. [33], does not disrupt the coordinated flight of honeybees, but only gets
the swarm migration slightly lower.

Figure 4. Control cases. Representative evolutions of the bee swarms in the absence of fast-moving bee foragers upon the
three hypotheses combinations (N1, L1), (N1, L2) and (N2, L2). For each case, we here show only the portion of interest
of the entire empirical scenario represented in Figure 1 (right panel). Yellow dots denote uninformed individuals, red dots
scout bees with a streaker role, and blue dots passive leaders.

Figure 3 further highlights that upon the coupled set of assumptions (N1, L2) and (N2, L2), the swarm
productive navigation obtained in test cases is never disrupted by the presence of conflicting directional
information. In fact, regardless of the level of the traffic bees nF , the mean number of bees that reach
the target upon the coupled set of assumptions (N1, L2) and (N2, L2) is still < Nnest >= 500, with
zero variance. In other words, the coordinated flight of the bee cloud remains undamaged after crossing
the traffic area of fast moving foraging bees and achieves undisturbed the nest exactly as in the control
case. This suggests that the presence of passive leaders waiting to be passed by the rest of swarm, i.e.
assumption L2, prevents followers from synchronizing their movement to fast moving forager bees and
disrupting the coordinated flight of the migrating colony. However, these in silico outcomes do not reflect
the experimental findings presented in [34], and therefore lead us to discard both the assumptions (N1,
L2) and (N2, L2).
On the contrary, honeybee dynamics obtained under the set of assumptions (N1, L1) are consistent with
the empirical outcomes presented in [34], as we have < Nnest > � 450, with negligible variance, for
any tested value of the bee traffic, see again Figure 3. In particular, only 24% of the numerical tests
we performed under the set of assumptions (N1,L1) result in a coordinated and productive flight of the
swarm. This is consistent with the work of T. Latty and coworkers, which observed that only one of their
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Figure 5. Test cases. Representative realizations of the dynamics of a swarm exposed to conflicting flight information, upon
the behavioural set of assumptions (N1, L1). Yellow dots denote uninformed individuals, red dots scout bees with a streaker
role, blue dots passive leaders, and greed dots forager bees.

six test swarms (i.e., 16%) reaches the nest. Despite the discrepancy in these values, this is in fact a good
starting point with respect to the above discarded set of assumptions.
Furthermore, the swarm dynamics resulting under the coupled assumptions (N1, L1) present clear signs of
disturbance of the scout guidance, including splitting, deviated path, and reclustering, in agreement with
the experimental outcomes described by T. Latty and coworkers in [34]. In this respect, representative
snapshots of three selected in silico experiments are provided in Figure 5. In the first row of Figure 5,
once the swarm passes the highway of bee foragers, some uninformed individuals at the rear of the
migrating group stop following the scouts and separate from the colony lured by foraging bees. According
to hypothesis L1, scouts begin to follow these confused bees trying to recluster the swarm but, at the
same time, they leave the rest of the uniformed individuals without a guide. These latter then mutually
align and wander in a randomly selected direction. In the second row of Figure 5, as soon as the swarm
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bumps into the forager highway, the uniformed bees begin to disperse, clearly confused by the presence
of conflicting directional information. In this case, scout bees are able to recluster the colony but not to
restore the productive migration of the swarm toward the nest, which therefore undergoes large deviations
from the optimal path. Finally, in the bottom row of Figure 5, the migrating bee population initially
seems to pass undamaged the traffic area where forager bees go back and forth between their hives and
the food source. The effect of the exposition of the swarm to conflicting information in fact arises at
about 20− 30 sec with the separation of the uninformed bees from the scouts individuals. However, the
scout individuals result able both to regroup the entire colony and to re-establish the swarm guidance
conducting all migrating bees to the nestbox. This is actually one of the few realizations in which, as
observed in a experimental test in [34], the simulated swarm reaches the nest in spite of the interaction
with bee foragers headed in a wrong direction.

4. Conclusions.

The biological phenomenon of honeybee swarming represents an interesting example of collective and
coordinated motion of animal groups, which has increasingly captured the interest of both the biological
and the modeling communities. The aim of this work has been to clarify the mechanisms underlying both
the swarming process and the effect of conflicting directional information on the honeybee guidance. In
this perspective, we have proposed an extended version of the model presented in [33] to test selected
assumptions on bee behaviour, and to find out the rules of motions that reproduce in silico the experiments
presented by T. Latty and coworkers in [34].

The numerical realizations described in the previous Section, have shown that both assumptions (N1,
L2) and (N2, L2) are not able to successfully reproduce the experimental findings. In these cases, in fact,
the bee cloud is able to achieve the nest, by substantially moving along the shortest straight path, even
if it has to cross the traffic area of the forager bees to reach the target. Conversely, scenarios comparable
to the experimental findings have emerged under the coupled hypotheses (N1, L1). In this case, in fact,
the introduction of the conflicting directionality of the fast-flying foragers had a strong impact on the
coordinated migration of honeybees and resulted in clear signs of disturbance of the scout guidance,
including splitting, deviated path, and reclustering. For these reasons, we have been led to discard both
the assumptions (N1, L2) and (N2, L2) in favor of (N1, L1). In other words, this study suggested that
the leading plausible assumptions behind the swarming process, according to the proposed model, are
the following: the uninformed bees could acquire the travel route synchronising their movement to all
the insects sufficiently close to their position regardless of their status, provided that the passive leaders
slowly come back from the front to the rear edge of the bee cloud.

In more details, under the behavioural assumptions (N1,L1) none of the simulated swarms presenting
signs of disrupted guidance, steered in direction of the lucerne field, nor towards the eight colonies, but
they rather seemed to randomly redirect their flight consistently with empirical evidences. This effect
could be attributed to the fact that the foragers alternatively moves back and forth, i.e., the bee highway
does not include one single preferential movement direction, but two opposite ones (i.e., from the colonies
to the field and viceversa). Therefore, it could be interesting to investigate in future works the effect of a
one-directional traffic flow on a flying swarm and, in this respect, to address new sets of simulations to
the question of how many misleading bees are necessary to completely redirecting the swarm towards a
different direction.

In literature, several studies have analysed the mechanisms underlying the decision-making process
in presence of multiple conflicting movement information within groups of both humans and animals,
see, for instance, [42,48,49]. These studies highlight that individuals generally tend to collectively select
the direction adopted by the majority of the informed individuals, thus following the largest group.
Furthermore, the quorum rule allows the naive individuals to neglect potentially incorrect information.
Conversely, in the experiments by T. Latty and coworkers, as well as in the model outcomes so far
presented, a small fraction of forager bees has caused the disruption of the swarm flight. Honeybee swarms
therefore appear more sensitive to conflicting information with respect to the other groups studied in
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literature. As suggested in [34], this observation could be related to the specific nature of the misleading
information. In fact, in this experimental scenario the disturbing traffic line of the foragers represent an
external source of flight information for the swarming bees while both in [42] and [48] divergent directional
information compete within the same group. Furthermore, we remark that the specific streaker guidance
mechanism itself could provide a minimum conflicting information when the leaders come back to the
rear edge of the swarm in order to streak again. These considerations could explain the strong effect of
the foraging bees on the swarming process.

Finally, a natural and substantial improvement of the model could be its three-dimensional extension.
It would allow to enrich the description of the behaviour of all individuals, and in particular, to test the
further assumptions that scout bees in a passive role tend to fly in the bottom region or along the
external sides of the swarm in order to limit counterproductive interactions with uninformed individuals,
as suggested in [8,9].
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