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a b s t r a c t 

In this paper, we present a new problem arising at a tactical level of setting a last-mile parcel delivery 

service in a city by considering different Transportation Companies (TC), which differ in cost and service 

quality. The courier must decide which TCs to select for the service in order to minimize the total cost 

and maximize the total service quality. We show that the problem can be modeled as a new packing 

problem, the Generalized Bin Packing Problem with bin-dependent item profits (GBPPI), where the items 

are the parcels to deliver and the bins are the TCs. The aim of the GBPPI is to select the appropriate 

fleet from TCs and determine the optimal assignment of parcels to vehicles such that the overall net cost 

is minimized. This cost takes into account both transportation costs and service quality. We provide a 

Mixed Integer Programming formulation of the problem, which is the starting point for the development 

of efficient heuristics that can address the GBPPI for instances involving up to 10 0 0 items. Extensive 

computational tests show the accuracy of the proposed methods. Finally, we present a last-mile logistics 

case study of an international courier which addresses this problem. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The transportation services market is estimated to be worth ap-

proximately 3 trillion euros worldwide with a gross value added

(GVA) of 600 billion in the EU-28 at basic prices, corresponding ap-

proximately to 5% of the total GVA ( European Commission, 2017 ).

In the past decade, new challenges emerged thanks to an increased

awareness of stakeholders and companies to a more general vision

of the transpor tation sustainability taking into account economic,

environmental and social aspects. In particular, last-mile delivery

raised as one of the more complex, challenging, and innovating

topic. In more detail, the explosion of e-commerce and the need

of a global vision of the sustainability of the last-mile brought

researchers and practitioners to define new business and opera-

tional models. These models must fulfill the increasing demand

and the high standards in terms of quality of service required by e-

commerce and traditional companies and flexibility asked by end

users. In this paper, we consider a crucial aspect in the manage-

ment of last-mile logistics operations, i.e., the planning of the fleet
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sed in a given urban area to deliver the parcels. More precisely,

e address the tactical problem of setting a last-mile parcel deliv-

ry service in a city by considering different transportation com-

anies, which differ in cost and service quality. We also show how

his problem can be modeled as a packing problem, namely the

eneralized Bin Packing Problem with bin-dependent item profits

 GBPPI ). Packing problems deal with the assignment of items to

ins. In the tactical problem presented here, the item model the

arcels while the bins represent the vehicles of the TCs available

or the deliveries. 

The contribution of this paper is twofold. The first contribu-

ion refers to the packing problems literature. In details, the in-

roduction of the bin-dependent item profits provides a more flex-

ble packing problem ( GBPPI ) that enables to tackle the majority of

eal-world performance indicators and to address problems with

ixed objective functions. The mixed objective function consists

f two terms with opposite signs: (1) the total cost of the bins

sed to be minimized; and (2) the total bin-dependent profit of

he selected items to be maximized. Although the introduction of

in-dependent item profits might seem an irrelevant development

f the original Generalized Bin Packing Problem ( GBPP ), we show

hat this modification in the problem setting revolutionizes the

ethodologies. It is known from the literature that small changes
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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n the objective function do not alter problem complexity ( Tadei,

erboli, & Perfetti, 2014 ). However, we show that this is not the

ase for the GBPPI . This unexpected behavior can be noticed in at

east two circumstances. First, as we show in Section 5.3 , if a com-

ercial solver is used to address both the GBPP and the GBPPI ,

he percentage gap significantly increases with the same compu-

ational time on instances with the same number and typology

f items and bins. Second, all the more so, classical heuristic ap-

roaches of packing problems, such as the Best Fit and Next Fit de-

reasing procedures, fail when the profit becomes bin-dependent.

o overcome these issues, after providing an integer-programming

e propose efficient methodologies which take bin dependency of

rofits into account. 

The second contribution of the paper is to use the GBPPI to ad-

ress a real case study arising in last-mile logistics which involves

n international courier. Every day, the courier has to serve its cus-

omers. Even if the customers can both ask for pick-ups and de-

iveries, we can relax this scenario. In fact 85% of the operations

f a courier are deliveries ( Perboli, Rosano, Saint-Guillain, & Rizzo,

018 ). Therefore, we can just take into account the effects of deliv-

ries. 

In order to perform the service, the courier uses a set of trans-

ortation companies (TCs) which fulfill parcel deliveries using their

wn fleet. The courier must decide each day which TCs to select

or the service in order to minimize the total cost and maximize

he total service quality. That decision must be taken in a short

ime (approximately 10 minutes after all parcels to deliver become

nown) to ensure a prompt assignment of parcels to vehicles and,

herefore, an efficient service. Minimizing the total cost and max-

mizing the total service quality are conflictual objectives. Exist-

ng models for last-mile logistics only partially consider conflictual

bjectives while addressing the selection of different TCs ( Perboli,

obbato, & Perfetti, 2014b; Perboli, Tadei, & Gobbato, 2014c ). The

ntroduction of bin-dependent item profits allows the use of the

BPPI in last-mile logistics ( Crainic et al., 2014; Tadei, Perboli, &

aldi, 2012 ). 

The remainder of this paper is organized as follows: in

ection 2 , we introduce the problem and review important lit-

rature on packing problems on which the GBPPI is based. In

ection 3 , the GBPPI model is described, and in Section 4 heuristics

or addressing the GBPPI are introduced. Instance sets and compu-

ational results are given in Section 5 . In more detail, we compare

he GBPPI with the classical GBPP , showing how the introduction

f the bin dependency of the profits makes our problem much dif-

cult to solve. Then, we show the accuracy and the effectiveness

f our metaheuristics and finally we show how using the GBPPI

o solve the problem faced by an international courier of choosing

he mix of delivery options/sub-contractors can bring to a reduc-

ion of its operational costs, with a clear benefit for the company.

onclusions are provided in Section 6 . 

. Problem setting and literature review 

The operations concerning the very last leg of the supply chain,

he so-called last-mile logistics , have emerged as one of the most

roblematic ones to manage, optimize, actuate, and control. These

perations, in fact, face significant fulfillment constraints, higher

ocial, environmental and economic costs, and the complexity to

aintain their economies of scale and expected service levels.

n the recent years, following the enormous increase of the e-

ommerce and the relative growth of parcel deliveries (and re-

urns) in our cities, last-mile challenges have become more and

ore complex, and many researchers have focused on finding so-

utions at various levels. 

The most important innovations in this area generally share

he vision of reducing as much as possible the negative externali-
ies while maintaining the process sustainability in terms of costs

nd quality. For example, new collaborative business models ex-

loiting crowd-tasking ( Wang, Zhang, Liu, Shen, & Lee, 2016 ) or

ynchro-modality ( Giusti, Manerba, Perboli, Tadei, & Yuan, 2018;

e Souza, Goh, Lau, Ng, & Tan, 2014 ) have appeared, accom-

anied by a steadily increasing use of self-service technologies,

uch as parcel lockers, or greener solutions, such as electric ve-

icles and bicycles ( Ranieri, Digiesi, Silvestri, & Roccotelli, 2018;

akulenko, Hellström, & Hjort, 2018 ). Moreover, it has also been

hown that a more appropriate modeling of the customers’ be-

avior and more adequate pricing schemes for the service time-

onstraints may help in de-stressing the so-called Attended Home

eliveries, in which the parcel must be delivered within a precise

ime window in order to find the customer at home ( Manerba,

ansini, & Zanotti, 2018; Ülkü & Bookbinder, 2012 ). 

While at an operational level the optimization of last-mile

ogistics reduces to deal with vehicle routing and scheduling

roblems (generally complicated by the presence of multiple

epots, products, and distribution echelons or by hard loading

onstraints ( Boysen, Schwerdfeger, & Weidinger, 2018; Manerba,

ansini, & Riera-Ledesma, 2017; Zhou, Baldacci, Vigo, & Wang,

018 ), the tactical planning is instead fundamental to evaluate the

ptions (e.g., the various transportation tenders) and allocate the

ight resources (vehicles, operators, products) to the right place

depots, facilities, distribution centers) for the day-by-day opera-

ions ( Aljohani & Thompson, 2018; Holzapfel, Kuhn, & Sternbeck,

018 ). In the last decade, there have been interesting developments

n the packing literature so that, in addition to their classical uses

t the operational level, packing problems have gradually appeared

s tools for modeling strategic and tactical decisions taken in the

ransportation and supply chain sectors ( Crainic et al., 2014; Per-

oli et al., 2014b ). This has led, for instance, to new problems, such

s the Variable Size and Cost Bin Packing Problem ( Crainic, Perboli,

ei, & Tadei, 2011 ), the Multi-handler Knapsack Problem under Un-

ertainty ( Perboli et al., 2014c ), and the Generalized Bin Packing

roblem ( GBPP ) ( Baldi, Crainic, Perboli, & Tadei, 2012 ). The prob-

em studied in this paper is indeed a generalization of the GBPP

nd it is used to provide decision support at a tactical level for

ast-mile logistics. 

Packing problems look for an optimal assignment of items to

 set of bins able to accommodate them. In the GBPPI , bins are

haracterized by their capacity and cost of use, and are classified

y type, i.e., bins of the same bin type have the same capacity

nd cost. The items can be compulsory (i.e., mandatory to load) or

on-compulsory, and are characterized by weight and profit. The

tem profits depend on the bin types. The aim of the GBPPI is to

oad compulsory items and profitable non-compulsory items into

ppropriate bins in order to minimize net cost. This is given by

he difference between the total cost of the bins used and the to-

al profit accruing from the loading of the items. As already dis-

ussed in Section 1 , the GBPPI naturally arises in last-mile-logistics

ptimization, where a courier responsible for parcel delivery faces

 tactical problem involving the following decisions: (1) select a

umber of TCs, (2) select a number of vehicles from the fleet of

he chosen TCs, and (3) assign parcels to the chosen vehicles. In

he GBPPI , the TCs are modeled by the bin types and vehicles by

he bins. This implies that cost and capacity for bins of the same

ype represent the transportation cost and the maximum weight

or each vehicle of the fleet of a particular TC. Moreover, each TC

as a limited fleet with a maximum number of available vehi-

les. Parcels are represented by items. Therefore the weight of an

tem models the weight of a parcel, while its profit takes into ac-

ount the economic value for the courier due to delivery and the

ain due to the service quality of TCs. The courier knows service

uality based on feedback from consignees. This feedback takes

nto account a number of factors including punctuality, integrity
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of parcels at the delivery, and courtesy. Compulsory items repre-

sent priority parcels which have to be consigned in the current

delivery, while non-compulsory items are those parcels which

delivery can be procrastinated. Finally, the courier might cope with

municipality traffic limitations on the maximum number of circu-

lating vehicles. 

The GBPPI is an evolution of bin packing problems which we

briefly recall here. The oldest problem is the Bin Packing Problem

( BPP ), which consists of a set of items to be loaded into bins of

equal size such that the number of bins used is minimum ( Crainic,

Perboli, Pezzuto, & Tadei, 20 07a; 20 07b; Martello & Toth, 1990 ).

The Variable Sized Bin Packing Problem ( VSBPP ) is a generaliza-

tion of the BPP , which was proposed in the 1980s by Friesen and

Langston (1986) , and involves the introduction of bin types. Monaci

(2002) and Haouari and Serairi (2011) studied exact algorithms,

whereas heuristic approaches were adopted in Haouari and Serairi

(2009) , Hemmelmayr, Schmid, and Blum (2012) , and Maiza, Labed,

and Radjef (2013) . A more interesting variant where there is no

correlation between the volume and the cost of the bins is dis-

cussed in Crainic et al. (2011) for the deterministic form and in

Crainic et al. (2014) for the stochastic one. 

The Generalized Bin Packing Problem ( GBPP ) is a generaliza-

tion of previous bin packing problems, involving the introduction

of item profits as well as compulsory and non-compulsory items.

Heuristics, and exact and approximate algorithms can be found

in Baldi et al. (2012) and Baldi, Crainic, Perboli, and Tadei (2014) .

Online and stochastic variants were discussed in Baldi, Crainic, Per-

boli, and Tadei (2013) and Perboli, Tadei, and Baldi (2012) . Finally,

approximation issues were studied in Baldi and Bruglieri (2016) . 

The analysis of the literature shows how all problems stud-

ied have costs and profits associated to just one of the two sets:

usually costs to bins and profits to items. Actually, to the best of

our knowledge, no study considers a dependency of the profits

from both items and bins. This feature prevents the use of classical

heuristics, namely the Best Fit and Next Fit Decreasing heuristics,

to address the GBPPI . 

3. The GBPPI model 

In this section, we propose a model for the GBPPI . We define

the following: 

• I : set of items 
• n = |I| : number of items 
• I C ⊆ I: set of compulsory items 
• I NC ⊆ I: set of non-compulsory items. Clearly, I C and I NC are

a partition of set I , i.e., I C ∪ I NC = I and I C ∩ I NC = ∅ 
• J : set of bins 
• m = |J | : number of bins 
• T : set of bin types 
• σ : J −→ T : indicator function, where given bin j ∈ J , reveals

its type t ∈ T , i.e., σ ( j) = t iff bin j ∈ J belongs to type t ∈ T 
• p it : profit generated by item i ∈ I when accommodated into a

bin of type t ∈ T 
• w i : volume of item i ∈ I
• C t : cost of a bin of type t ∈ T 
• W t : capacity of a bin of type t ∈ T 
• L t : minimum number of bins to be used of type t ∈ T 
• U t : maximum number of bins to be used of type t ∈ T 
• U ≤ ∑ 

t∈T U t : maximum number of bins to be used 

• S ⊆ J : set of bins used in a solution of the GBPPI 

• W res (b) : b ∈ S: residual volume of a bin for a solution of the

GBPPI . This is given by the capacity of bin b minus the sum of

the volumes of the items loaded in b . 

An optimal solution of an instance of GBPPI must satisfy the

following requirements: 
• The overall cost given by the difference between the cost of the

bins used and the profits incurred by the loaded items is mini-

mized. 
• All compulsory items must be accommodated into some bins. 
• The sum of the volumes of the items loaded into a bin cannot

exceed the capacity of that bin. 

In order to provide a model for the GBPPI , we need to introduce

he following binary variables: 

 i j = 

{
1 if item i ∈ I is accommodated into bin j ∈ J 

0 otherwise 
(1)

 j = 

{
1 if bin j ∈ J is used 

0 otherwise 
(2)

 model for the GBPPI can then be formulated as follows: 

in 

∑ 

j∈J 
C σ ( j) y j −

∑ 

j∈J 

∑ 

i ∈I 
p i σ ( j) x i j (3)

. t. 
∑ 

i ∈I 
w i x i j ≤ W σ ( j) y j j ∈ J (4)

∑ 

j∈J 
x i j = 1 i ∈ I C (5)

∑ 

j∈J 
x i j ≤ 1 i ∈ I NC (6)

∑ 

j ∈J : σ ( j )= t 
y j ≤ U t t ∈ T (7)

∑ 

j ∈ J: σ ( j )= t 
y j ≥ L t t ∈ T (8)

∑ 

j∈J 
y j ≤ U (9)

 j ∈ { 0 , 1 } j ∈ J (10)

 i j ∈ { 0 , 1 } i ∈ I, j ∈ J (11)

he objective function (3) ensures that the solution minimizes

he total net cost, given by the cost due to the bin used minus

he profit obtained from the loading of the items into the bins.

onstraints (4) are the so-called capacity constraints that ensure

hat the sum of the volumes of the items loaded into a bin does

ot exceed the bin capacity. Constraints (5) ensure that all com-

ulsory items are loaded, whereas constraints (6) state that non-

ompulsory items may or may not be accommodated. Constraints

7) –(9) are bin usage constraints. Finally, constraints (10) –(11) force

he variables involved to be binary. 

We point out that the presence of bin usage constraints (7) –(9)

nd a limited number m of bins might lead to infeasible solutions.

s shown in Baldi et al. (2012) , in order to ensure that the prob-

em is feasible, a dummy bin with a large capacity and high cost is

dded to the problem. 

Model (3) –(11) inherits all the variables and constraints from

he Emodel for the GBPP described in Baldi et al. (2012) except for

he objective function. Although the change in the objective func-

ion due to the introduction of bin-dependent item profits might

eem trivial at first glance, in Section 5.3 we present a detailed

omparison between the GBPP and the GBPPI and show that the

atter is harder to solve. Moreover, as we show in Section 4 , the

ntroduction of bin-dependent item profits implies a relevant gen-

ralization of the constructive heuristics used to tackle both prob-

ems. 
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. Heuristics 

In this section, we present efficient heuristics for addressing

he GBPPI . As mentioned in the introduction and will be shown

n Section 5.3 , the use of commercial solvers is not sufficient to ef-

ciently address the problem, in particular if fast solutions with a

omputational time of at most 10 minutes are required (i.e., the av-

rage time for reaching decisions at the operational level). For this

eason, we developed a series of heuristics useful for addressing

he GBPPI . The common principle of our heuristics is to address

roblems where the sign of the objective function can be either

ositive, null, or negative. In previous bin-packing problems the

oal was to minimize a single objective: the number of bins used,

he wasted space, etc. This implied an objective function which is

lways non-negative. Vice versa, in generalized bin packing prob-

ems like the the GBPP or the GBPPI , we deal with an objective

unction which terms can have different signs. In fact, minimizing

he net cost implies the optimization of two contributes: the mini-

ization of the costs (which signs are non negative) and the maxi-

ization of the profits (which signs are non positive). As it will be

hown in this section, our heuristics take this broadening of the

bjective function into account. Thus, they are also suitable to ad-

ress those problems with a mixed target in the objective function.

he proposed heuristics are: 

• one constructive heuristic named Best profitable ( BP ) 
• one constructive heuristic named Best Assignment ( BA ), 
• one metaheuristic named Greedy Adaptive Search Procedure

( GASP ) ( Festa & Resende, 2011 ), 
• a parallel matheuristic named Model-Based Matheuristic

( MBM ). 

These heuristics provide a flexible trade-off between quality of

olution and computational time, in light of the imposed maxi-

um computational time of 10 minutes. 

.1. The constructive heuristics 

The proposed constructive heuristics are a variant of Best

it Decreasing ( BFD ) introduced by Johnson, Demeters, Hullman,

arey, and Graham (1974) to address BPP . As already discussed,

his generalization is necessary to address GBPPI and problems

ith a mixed objective function. Our constructive heuristics are

alled Best profitable ( BP ) and Best Assignment ( BA ), and operate

ith a list of available bins SBL and one of sorted items SIL . The

ajor variant implemented in order to address the GBPPI is the

roadening of the definition of the best bin. Let S ⊆ J be the set

f bins used in a solution of a bin packing problem, and let W res ( b )

e the residual volume of bin b ∈ S . In previous versions of the

in-packing problem, the best bin for an item was defined as the

ne that can accommodate the item such that the residual space is

inimized. In GBPPI , instead of considering the minimum residual

pace, we compute a figure of merit consisting of a weighted sum

hat takes into account both item profit and bin volume. Again,

his choice is motivated by the fact that in the GBPPI , we need to

onsider two factors. In classical bin packing problems the aim is

o minimize residual space in order to reduce the number of bins

sed or the cost of bin usage. The adoption of this approach in the

BPPI does not always guarantee effective outcomes because item

rofits in such cases rely heavily on bins. Our weighted figure of

erit, defined as α · p i σ ( j) − (1 − α) · W res ( j) , simultaneously ad-

resses these two loading policies. The term p i σ ( j ) maximizes item

rofit, whereas the term W res ( j ) minimizes residual space. α ∈ [0, 1]

s a coefficient that is varied during the execution of GASP (cf.

ection 4.2 ), and allows both loading policies to be spanned. 

A further generalization is that this definition of the best bin is

pplied to a subset of N � | SIL | items, rather than a single item.
hen we consider item i in list SIL , we take into account the

ublist SIL ′ = { i, i + 1 , . . . , i + N − 1 } . For each item, we compute

he best bin; at the end of this process, we select the best item

 

∗ ∈ SIL ′ and the best bin b that maximizes the aforementioned fig-

re of merit. Our computational experience confirmed that this

medium-term” memory improves the performance of the heuris-

ics. The behavioral difference between BP and BA heuristics can

e observed when we cannot load item i ∈ SIL into any of the al-

eady bins used in S . In this case, we try to select a new bin where

o accommodate item i . The BP heuristic considers item i with the

emaining succeeding items in SIL , and selects the bin that mini-

izes the difference between bin cost and the sum of profits from

tems that can be loaded into that bin. If this difference is positive

nd item i is non-compulsory, then item i is discarded because it

s not convenient to open a new bin. Similarly, the BA heuristic se-

ects the bin that maximizes profit for item i . Both heuristics per-

orm a post-optimization procedure consisting of two parts. In the

rst part, for each bin b ∈ S contributing to the solution, we try to

erform, if possible, the best swap with a bin b ′ ∈ J \ S that has

ot been used. Clearly, the swap is possible if the items loaded into

in b can also be accommodated into bin b ′ , and the difference be-

ween the cost of bin b and the sum of the profits of the items

oaded in it is greater than the difference between the cost of bin

 

′ and the sum of the profits of the same items loaded into bin

 

′ . Furthermore, in the second part of the post-optimization proce-

ure, we remove bins from the solution that are not profitable and

o not contain compulsory items. It is clear that the solutions pro-

ided by the BP and BA heuristics depend on the two parameters

and N . As we show in Section 4.2 , the values of these parameters

re varied using the GASP procedure, which employs BP and BA as

ub-heuristics. In contrast to classical bin packing heuristics such

s the Best Fit Decreasing, we wish to point out that the ordering

f items for the BP and BA is something outside the algorithmic

ramework. In fact, in Section 4.2 we show that GASP will be re-

ponsible to sort the items before using any constructive heuris-

ics. Otherwise, if the BP and BA are used as stand-alone heuris-

ics, many sortings of items are possible due to the presence of

ultiple and bin-dependent attributes. This behavior can also be

bserved in GBPP , where Baldi et al. (2012) studied different sort-

ngs for constructive heuristics. According to their study and to the

napsack-problem heuristics ( Martello & Toth, 1990 ), the best per-

ormance on average can be obtained sorting the items by non-

ncreasing profit over weight ratios and then by non-increasing

eight. 

.2. The GASP 

Greedy Adaptive Search Procedure ( GASP ) algorithms consist of

 multi-start procedure to find a good initial solution and of a loop

here, at each iteration, a new solution is generated by means of

 simpler heuristic. In our GASP for GBPPI , we employ the Best

rofitable and Best Assignment heuristics, which were already

escribed in Section 4.1 . 

Moreover, we try to improve the solution performing a steepest

escent local search where the neighborhood consists of “1 to 1

waps”. We perform the swaps each time an improving solution

s found. A swap consists in unloading one item, say i 1 , to create

ufficient room to accommodate an unloaded item i 2 . The swap is

nly performed if it is possible and profitable. 

At each iteration of the main loop, we try to generate a differ-

nt and improved solution by varying the order of the items in the

ist SIL . This is performed by associating a score with each item. A

core update procedure randomly assigns a different score value to

ach item. 

Finally, a long-term reinitialization procedure is executed each

ime a solution does not improve in consecutive iterations. Its pur-
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pose is to explore a different area of the feasible set by changing

parameters α and N of the constructive heuristics. The proposed

method incorporates some ideas from Perboli, Crainic, and Tadei

(2011) . The pseudo-code of our GASP is proposed in Algorithm 1 . 

Algorithm 1 The GASP . 

1: IS: initial solution provided by the multi-start initialization

procedure 

2: BS: best solution 

3: BS := IS

4: numConsecuti v e : number of consecutive non-improving solu-

tions 

5: numConsecuti v e := 0 

6: while time limit has not been reached do 

7: sort the items 

8: perform either the BP or the BA constructive heuristic 

9: store the resulting solution as CS

10: if CS < BS then 

11: BS := CS

12: perform “1 to 1” swaps 

13: numConsecuti v e := 0 

14: else 

15: numConsecuti v e := numConsecuti v e + 1 

16: end if 

17: score update procedure 

18: if numConsecuti v e = MAXCONSECUT IV E then 

19: long-term reinitialization procedure 

20: numConsecuti v e := 0 

21: end if 

22: end while 

The algorithm presented in this section satisfies the terminol-

ogy of the term GASP , namely Greedy Adaptive Search Procedure.

It is a greedy algorithm because it is based on the BP and BA

procedures that can be classified as greedy algorithms. It is also

an adaptive-search algorithm because the long-term reinitialization

procedure is helpful to explore new regions of the solution space. 

The GASP metaheuristic can be easily parallelized. Let P be the

set of available threads in a parallel computation. It is enough to

execute one GASP metaheuristic for each thread p ∈ P and with a

different seed for the random-number generator. Let BP ( p ) be the

final best solution provided by the GASP executed by thread p ∈ P,

then the overall best solution BS will be 

BS = min 

p∈P 
BS(p) . 

4.2.1. Multi-start initialization 

The purpose of our multi-start initialization procedure is

twofold: to feed the main loop of GASP with a good initial solu-

tion, and automatically calibrate the parameters used by the con-

structive heuristics. As already discussed when introducing the

constructive heuristics, in contrast to the classical bin packing

problem the concept of best bin does not merely depend on the

residual volume. The introduction of bin-dependent item profits

makes it impossible to define the best bin just in terms of resid-

ual volume. In fact, the following factors should be taken into ac-

count: (1) the residual volume itself, (2) the item profit, and (3) the

bin type. The multi-start initialization is an auto-calibrating proce-

dure where the Best profitable heuristcs is executed a number of

times, each time varying the parameter N within a given range.

The value of N providing the best solution is used in the following

part of the heuristic. 

4.2.2. Score update 

Item scores are randomly extracted from a discrete uniform dis-

tribution. The motivation for this choice is that working with in-
eger values rather than real values implies a faster resolution of

he sorting procedure. We prefer to distribute the item scores in a

ange proportional to the number of items, and then use integer

cores rather than concentrating the scores with real values within

 smaller range. 

.3. The Model-Based Matheuristic 

We present here a parallel matheuristic for the GBPPI , where

 set of computer threads P run simultaneously. It consists of

 loop, where at each iteration each thread solves a subproblem

sing model (3) –(11) . The resolution of subproblems with model

3) –(11) allow us to take into account two targets at the same time,

amely the minimization of the cost and the maximization of the

rofits. Thus, this matheuristic is suitable to address problems with

 similar structure. 

In each subproblem, a small set of bins is randomly selected

rom the incumbent solution and the set of available bins. Then,

e solve model (3) –(11) using these bins, the items loaded into the

ins in the incumbent solution, and the items that have not been

oaded in the incumbent solution. In order to further improve the

iven solution, we merge couples of partial solutions that do not

ave any bins and items in common. The best solution is updated

f the new solution is an improvement over the incumbent one.

his process continues until an overall time limit is reached. 

According to the taxonomy of parallel methods proposed by

rainic and Toulouse (2010) , this approach can be classified as

C/RS/MPSS, where the following hold: 

• 1C: One Control, i.e., one master thread controls all the remain-

ing threads. 
• RS: Rigid Synchronization, i.e., at each iteration, we wait for all

threads to complete their computations. 
• MPSS: Multiple points same strategy, i.e., each thread solves a

different subproblem, but using the same strategy. 

We chose to use this kind of parallelism because it can easily

e implemented in our matheuristic. As we show in the next sec-

ion, although the matheuristic can be exploited without parallel

omputation, this approach is strongly recommended when GBPPI

s employed as a subproblem of a larger problem, and significantly

mproves the performance of the matheuristic. The main steps of

he MBM matheuristic are shown in Algorithm 2 . 

lgorithm 2 The MBM matheuristic. 

1: P: set of threads 

2: IS: initial solution provided to the MBM metaheuristic 

3: BS: best solution 

4: BS := IS

5: while time limit has not been reached do 

6: for all p ∈ P do 

7: randomly select a subset b(p) of bins from the set of bins

S making up solution BS. 

8: solve a GBPPI subproblem with a solver with a time limit

of 1s, the bins b(p) plus selected available bins, the items

loaded into bins b(p) , and the items not loaded in solu-

tion BS. 

9: end for 

10: merge partial solutions provided by each thread and store

the new current solution in CS. 

11: if CS < BS then 

12: BS := CS 

13: end if 

14: end while 

The initial solution can be any feasible solution. However, for

etter results it is important to start with a good solution. In our
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Table 1 

Instance features. 

Features Values 

# of items 25 

50 

100 

200 

500 

Item volume I1: [1, 100] 

I2: [20, 100] 

I3: [50, 100] 

Bin types A: 100, 120, 150 

B: 60, 80, 100, 120, 150 
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omputational tests we used the solution found by the GASP as

nitial solution of the MBM . 

. Computational results 

In this section we analyze different com putational aspects of

he GBPPI . First, we compare the GBPPI with the classical GBPP ,

howing how the introduction of the bin dependency of the prof-

ts makes our problem much difficult to solve. Then, we show the

ccuracy and the effectiveness of our metaheuristics. Finally, we

how how using the GBPPI to solve the problem faced by an in-

ernational courier of choosing the mix of delivery options/sub-

ontractors can bring to a reduction of the operational costs, with

 clear benefit for the company. 

.1. Test environment 

We extended the original instances for the GBPP ( Baldi et al.,

012 ) by introducing bin dependency in the item profits. Table 1

ists the features of these instances in terms of items and bin types.

Ten instances were generated for each combination of features

n Table 1 , for a total of 300 instances. For each instance, the min-

mum and the maximum number of available bins for bin type

 ∈ T is respectively set to 

L t = 0 , ∀ t ∈ T 

 t = 

⌈ 

∑ 

i ∈I w i 

W t 

⌉ 

, ∀ t ∈ T . 

he aforementioned 300 basic instances are then used to generate

our classes of instances, numbered from 0 to 3, differing for the

resence of compulsory items and the profit of the not compulsory

nes. Class 0 considers the special case in which all the items as

ompulsory, and thus the items have no profit associated to them.

n classes 1 and 2 all the items are non compulsory and an item

rofit p i of item i ∈ I is given by 

p i ∈ �U(0 . 5 , 3) w i � class 1 

p i ∈ �U(0 . 5 , 4) w i � class 2 

espectively, where U denotes uniform distribution. 

Finally, Class 3 is a 500-item class, with 60 instances selected

rom classes 0–2 with 0, 25, 50, 75, and 100% of compulsory items.

Given the item profit (for the instances of classes from 1 to 3),

he bin-dependant profit p i t is generated as 

p i t = p i + θt 

ith 

t = max 
l∈ L 

{ 

0 . 4 

C min C max 

W t 
ϑ 

} 

. (12) 

ike in Perboli et al. (2014c) , ϑ can either be extracted from a uni-

orm distribution U(0 , 1) or from a Gumbel distribution G(0 , 1) .
alues in (12) ensure that profit values approximate realistic set-

ings. C min and C max are the extremes of the uniform distribution

nd of the truncated Gumbel distribution. This is done to avoid

nrealistic values. For the sake of brevity, we refer to instances of

BPPI with item profits extracted from a Gumbel distribution ac-

ording to (12) as Gumbel instances, and instances of GBPPI with

tem profits extracted from a uniform distribution according to

12) as uniform instances. GBPPI instances are also available on

ine ( ORO group, 0 0 0 0 ). 

Computational resources were provided by hpc@polito 

 HPC@POLITO, 0 0 0 0 ), on a system with Opteron 2.3 gigahertz

rocessors and 124 gigabytes of RAM. The matheuristic was im-

lemented in C++, with eight threads. We used the commercial

olver CPLEX 12.6 ( Cplex 12.6., 0 0 0 0 ) to solve each subproblem

nd for the comparison between the GBPP and the GBPPI (see

ection 5.3 ). Notice that, to avoid simmetry issues, the following

onstraints can be added to model (3) –(11) : 

 j ≤ y j+1 ∀ j ∈ J : σ ( j) = σ ( j + 1) . (13)

.2. Calibration 

We select the 20% of the instances and run the algorithm

ithin a range of parameters. The values yielding the best perfor-

ance are then selected. 

At each iteration of the GASP scores are randomly extracted in

he range [0, 4 n ] from a uniform and discrete distribution, where n

s the number of items. 

We set the maximum number of iterations of GASP to 20 0 0 and

he maximum number of consecutive non-improving solutions to

00. 

The matheuristic randomly selects from a uniform discrete dis-

ribution min (4 , k − 1) bins from the incumbent solution, where

 is the number of bins in the incumbent solution. This number is

elatively small because greater values would cause the solver to

ake more time for the resolution of each subproblem. Moreover,

mall values of the available bins allow an easier merging of the

ubproblems. For the same reasons we added 3 extra available bins

or each bin type in addition to the selected bins. Furthermore,

e used the following time limits: 1 second for each subproblem

olved with the solver, and 120 seconds for the matheuristic in

otal. 

.3. Comparison between the GBPP and the GBPPI 

We compare here the classical version of the GBPP versus the

ew GBPPI . It is important to design a heuristic that is accurate

nd fast at the same time, in order to be able to exploit the bene-

ts of the GBPPI in a city logistics setting, as discussed in Section 1 .

To make the comparison, we selected 30 instances of the GBPP

long with the corresponding Gumbel and uniform instances of the

BPPI , as explained in the text. Thus, the number of instances in

his instance set is 90. The number of items range from 25 to 500.

e solved each instance with the solver, eight threads and a time

imit of six hours. Furthermore, we monitored the percentage gap

rovided by the solver after one minute, 10 minutes, one hour, and

ix hours of computation. The results of these initial tests are sum-

arized in Table 2 , where we show the gaps in mean percentage

etween test instances, grouped by the number of items and type

f instances. In particular, C denotes the original instances of GBPP ,

 stands for the Gumbel instances of GBPPI , and U represents the

niform instances of GBPPI . 

From Table 2 , we can see that the gaps provided by the solver

or the GBPPI instances (both Gumbel and uniform) are clearly

igher than those of the original GBPP . For example, the gap in

ean percentage of the 500-item- GBPP instances is 0.43%, whereas
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Table 2 

Comparisons between the classical GBPP and the new GBPPI . 

Items Problem 1 Minute 10 Minutes 1 Hour 6 Hours 

C 0.34 0.00 0.00 0.00 

25 G 0.00 0.00 0.00 0.00 

U 2.29 0.43 0.43 0.00 

C 0.55 0.38 0.32 0.29 

50 G 3.53 2.12 1.41 0.87 

U 2.92 1.60 1.17 0.86 

C 1.25 0.83 0.67 0.52 

100 G 4.37 3.31 2.71 2.13 

U 4.86 3.75 3.18 2.43 

C 3.49 1.02 0.71 0.62 

200 G 11.35 8.40 4.72 3.75 

U 9.31 5.02 3.71 3.50 

C ∗∗∗ 1.43 1.40 0.43 

500 G ∗∗∗ 38.19 5.54 2.50 

U ∗∗∗ 20.57 5.52 2.72 

Table 3 

Percentage gaps of the constructive algorithms with 

the bin dependent profits generated according to 

the Gumbel and Uniform distributions. 

Items Gumbel Uniform 

25 13.07 14.28 

50 15.05 14.06 

100 14.76 12.56 

200 13.77 11.86 

500 9.98 8.24 

Overall 13.32 12.20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Comparison between the BFD and the proposed 

constructive algorithms. 

Items Gumbel Uniform 

25 40.55 42.01 

50 44.76 42.56 

100 41.74 41.31 

200 37.87 35.88 

500 33.38 32.33 

Overall 39.66 38.82 
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the gap in mean percentage of the corresponding GBPPI instances

is 2.50% for the Gumbel instances and 2.72% for the uniform in-

stances. This suggests that the introduction of the dependence of

item profits on bins involves greater computational effort. 

It is worth remarking on the trend in gaps with respect to the

range of the minutes. This interval is crucial in city-logistics set-

tings, where decisions need to be made quickly ( Perboli, De Marco,

Perfetti, & Marone, 2014a ). It was not possible to report the per-

centage gaps for the 500-item instances after one minute of com-

putation because the solver was unable to determine an initial so-

lution (i.e., the percentage gap was arbitrarily large). The percent-

age gaps provided by the solver after 10 minutes for the GBPPI

instances were acceptable for the 25-item instances only. As the

number of items increased to 50, the gaps increased to 2.12% for

Gumbel instances and to 1.60% for uniform instances. The percent-

age gaps tended to increase as the number of items increased.

This trend became considerably more evident for the 500-item in-

stances, with the GBPP instances having a mean percentage gap of

1.43 and the GBPPI having gaps of 38.19% and 20.57%, respectively,

for the Gumbel and uniform instances. These gaps were clearly

prohibitive. Moreover, for some instances the solver was unable to

find an initial solution after 10 minutes of computation. All these

considerations indicate that the solver alone is not appropriate to

address GBPPI in a city-logistics environment where decisions are

made quickly and the number of items is greater than 500. 

In Table 3 , we list the percentage gaps between the algorithms

proposed in this paper and the percentage gap of the best (mini-

mum) between the Best profitable ( BP ) and Best Assignment ( BA )

constructive heuristic with respect to the solver the best solution

found by the solver with a time limit of 1 hour. The results are

reported according to the type of instance (Gumbel and uniform)

and the number of items (from 25 to 500). This means that both

algorithms are used and the best solution is kept. The reason for

this choice is twofold: (1) these constructive heuristics are simple

and to execute each of them does not impact on the overall com-

putational time, and (2) the BP and BA algorithms do not dominate
ach other. Over the 600 instances, in 225 instances (about one

hird) the BP was better than the BA . For the remaining instances,

he BA provided a better result. 

The best constructive heuristic was compared to the solver with

ne thread only because the execution of BP and the BA heuristic

oes not require parallelism. The computational time of the con-

tructive heuristic was practically zero, but this immediate execu-

ion was paid for in terms of the highest percentage gaps. In fact,

he overall is quite high, with a mean gap greater than 12%. This

emarks again the difficulty given by the introduction of the bin

ependency of the items’ profits. In fact both the BP and BA ex-

ends quite known concepts in the packing literature that normally

ives gaps less than 1% ( Baldi et al., 2012; Crainic et al., 2011 ). Ac-

ually, as already noticed in multi-dimensional packing problems

 Crainic, Perboli, & Tadei, 2008; Perboli et al., 2014b ), the presence

f multiple ordering options deteriorates the performances of tra-

itional concepts. This, in conjunction with a profit scheme linking

he sets of bins and items, make the best and next fit concepts to

ave bad performances. 

Results in Table 3 become more significant if we compare the

roposed constructive heuristics with those constructive heuris-

ics designed for previous bin-packing problems. The most effective

onstructive heuristic is the Best Fit Decreasing ( BFD ) ( Baldi et al.,

014 ). We used the instances presented in this section to compare

he BP and BA with the BFD . As already discussed in Section 4.1 ,

he main innovations for the new constructive methods are the

ntroduction of a memory for the candidate items to be accom-

odated and a mixed figure of merit for selecting the best bin.

n Table 4 , we report the percentage gap of the best constructive

unction with the classical BFD , namely 

00 · BF D − min (BP, BA ) 

| BF D | . 

These results show that while the BFD is still useful for the

BPP , it has to be replaces with better constructive heuristics

hen addressing the GBPPI because, as already discussed, the in-

roduction of bin-dependent item problems does not change the

olution set but strongly modifies the nature of the problem. 

.4. Computational results of the heuristic methods 

In Table 5 , we list the percentage gaps between the algorithms

roposed in this paper and the best solution found by the solver in

ne hour. The results are reported according to the type of instance

Gumbel and uniform), the number of items (from 25 to 200), and

he number of threads (one and eight). We also wanted to estimate

he benefits of a parallel computation in comparison with a single-

hread approach. The columns in Table 5 describe the following:

ol. (1) is the type of distribution for item profits; col. (2) shows

he number of items; col. (3) shows the percentage gap in the best

onstructive heuristic with respect to the solver with one thread;

ols. (4) and (5) are the percentage gaps of GASP and the MBM

ith one thread with respect to the solver with one thread; and

ols. (6) and (7) are the percentage gaps of GASP and the MBM

ith eight threads with respect to the solver with eight threads.
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Table 5 

Percentage gaps in the proposed algorithms reported according to item 

profit distribution (column 1), number of items (column 2), and parallelism 

(columns 4–7). 

Distribution Items Constr. 1 Thread 8 Threads 

GASP MBM GASP MBM 

Gumbel 25 13.07 0.97 0.10 0.86 0.02 

50 15.05 3.94 0.16 2.69 0.14 

100 14.76 5.69 0.39 4.66 0.31 

200 13.77 6.89 0.12 4.56 −0.02 

500 9.98 2.99 −1.95 1.03 −2.94 

Overall 13.32 4.10 −0.24 2.76 −0.50 

Uniform 25 14.28 1.03 0.05 0.97 0.04 

50 14.06 3.71 0.24 2.89 0.17 

100 12.56 5.93 0.41 4.52 0.39 

200 11.86 7.24 0.19 5.01 0.16 

500 8.24 2.44 −2.19 1.04 −2.97 

Overall 12.20 4.07 −0.26 2.89 −0.44 

Overall 12.76 4.08 −0.25 2.82 −0.47 

Table 6 

Best computational times for the MBM reported ac- 

cording to item profit distribution (column 1), num- 

ber of items (column 2), and parallelism (columns 3–

4). 

Distribution Items 1 Thread 8 Threads 

Gumbel 25 2.94 2.48 

50 31.16 13.56 

100 64.97 47.30 

200 92.88 70.87 

500 99.03 104.50 

Overall 58.20 47.74 

Uniform 25 5.74 1.84 

50 29.00 14.31 

100 57.25 45.05 

200 93.70 74.67 

500 99.03 109.43 

Overall 56.94 49.06 

Overall 57.57 48.40 
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he best constructive heuristic was given by the minimum of the

est profitable and Best Assignment heuristics. 

In column 3 we report the results of the constructive heuris-

ics. Although this value was high, the Best profitable and Best

ssignment heuristics found their utility in the execution of GASP

nd MBM , which yielded much lower percentage gaps. Moreover,

rom Table 5 we can also observe the benefits of introducing par-

llelism. The percentage gap of GASP was almost halved when

witching from one to eight threads. This gap reduced from 4.08 to

.82%, which is a considerably improved result if we consider that

he computational time of GASP was approximately 1 second. The

ercentage gaps of the MBM were satisfactory. Again, parallelism
Table 7 

Comparisons between the branch and price and t

percentage gap of the branch and price with re

3, 5, 7, and 9 show the percentage gap of the 

function provided by the branch and price. 1 The

items only. 

Items Class 0 Class 1 

BEP MHEUR BEP MHEUR

25 0.00 0.01 0.00 0.02 

50 0.00 0.19 0.00 0.14 

100 0.02 0.32 0.03 0.26 

200 0.06 0.33 0.02 0.37 

500 0.12 0.38 0.12 0.34 

Overall 0.04 0.25 0.03 0.23 
mproved quality of solution. In fact, gaps reduced from −0.25 to

0.47% when the number of threads increased from 1 to 8. 

Table 6 presents the average computational times of the last

est solution found by the MBM . The columns in Table 6 indicate

he following: col. (1) represents the type of distribution for the

tem profits, col. (2) shows the number of items, cols. (3) and (4)

ist the average computational times needed to find the best solu-

ion for the MBM with one and eight threads, respectively. 

The analysis of Table 6 reveals that the average time tended to

ncrease in line with instance size. Moreover, the overall average

ime was approximately one minute. 

Finally, we compared the MBM with the branch-and-price by

aldi et al. (2014) on the same instances as the classical GBPP .

e computed the percentage gaps of the MBM with respect to the

ranch-and-price results. The results are presented in Table 7 ac-

ording to the number of items. In particular, columns 2, 4, 6, and

 indicate the percentage gaps of the branch-and-price with re-

pect to its best lower bound computed at the root node (cf. Baldi

t al., 2014 for further details). Columns 3, 5, 7, and 9 present

he percentage gaps of the MBM with respect to the best objec-

ive function provided by the branch-and-price. The instances in

lass 3 were defined for 500 items only. The overall percentage gap

f the MBM compared to the branch-and-price was approximately

.22%. Nevertheless, we observed that for 34 instances, better re-

ults were found than those provided by the branch-and-price in

aldi et al. (2014) , and within a considerably smaller computa-

ional time. The time limit of the branch-and-price was one hour,

hile that of the MBM was two minutes. Moreover, for a third of

he instances of GBPP , the Model-Based Matheuristic could find the

ame results generated by the branch-and-price. 

.5. Smart city case study 

As described in Section 1 , the case study refers to the planning

f parcel deliveries of an international courier. In this case study,

e compare our MBM solutions with those of the courier based on

ts business policy. We analyzed 30 instances (i.e., 30 competitive

enders) with 10 0 0 daily parcel deliveries (i.e., the items), 10 TCs

i.e., the bin types), and up to 100 trucks (i.e., the bins) per TC,

vailable in an urban distribution area. 

In Table 8 , we present the percentage gaps of our MBM com-

ared to the business policy and the solver (this time with a time

imit of two hours) over the 30 competitive tenders. Our MBM al-

ays finds better results than those provided by the business pol-

cy and the solver. 

A more interesting outcome results from the analysis of the in-

tances from an economic and managerial point of view. The size

f each instance is representative of the daily parcels of a parcel

elivery company in a medium-sized city. If we compare the so-

ution with one based on expert opinion (tactical decisions based

n expert opinion and day-to-day decisions optimized by means
he MBM . Columns 2, 4, 6, and 8 show the 

spect to the best lower bound. Columns 

MBM with respect to the best objective 

 instances in Class 3 were defined for 500 

Class 2 Class 3 1 

 BEP MHEUR BEP MHEUR 

0.00 0.00 N/A N/A 

0.01 0.12 N/A N/A 

0.01 0.15 N/A N/A 

0.03 0.28 N/A N/A 

0.11 0.26 0.57 0.59 

0.03 0.16 0.57 0.59 
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Table 8 

Percentage gaps of the MBM compared with the business policy and the solver. Columns 

1 and 4 present the instance number of the case study, columns 2 and 5 the percentage 

gaps of the business policy compared to the MBM , and columns 3 and 6 the percentage 

gaps of the solver compared to the MBM . 

Instance Courier gap Solver gap Instance Courier gap Solver gap 

Instance 1 −4.10 −1.22 Instance 16 −3.19 −1.47 

Instance 2 −3.54 −0.98 Instance 17 −3.14 −1.04 

Instance 3 −3.89 −1.21 Instance 18 −3.17 −1.15 

Instance 4 −3.85 −1.86 Instance 19 −3.18 −0.69 

Instance 5 −3.80 −1.95 Instance 20 −3.70 −1.28 

Instance 6 −3.79 −1.12 Instance 21 −3.05 −2.15 

Instance 7 −3.82 −1.35 Instance 22 −3.05 −0.91 

Instance 8 −3.56 −1.18 Instance 23 −2.80 −2.25 

Instance 9 −3.84 −1.05 Instance 24 −3.14 −2.57 

Instance 10 −4.24 −0.92 Instance 25 −3.12 −2.57 

Instance 11 −3.45 −1.66 Instance 26 −2.88 −2.29 

Instance 12 −2.90 −0.52 Instance 27 −2.86 −2.62 

Instance 13 −3.24 −1.49 Instance 28 −3.10 −2.04 

Instance 14 −3.22 −1.27 Instance 29 −3.07 −1.83 

Instance 15 −3.33 −0.26 Instance 30 −2.89 −0.79 

Overall −3.36 −1.46 
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of specific optimization tools), the assignments given by GBPPI

achieve a constant reduction of the overall cost by between 3 and

4%. In terms of the economic impact of costs, this amounts to

120,0 0 0–180,0 0 0 euros for a medium-sized city (the interval de-

pends on different scenarios of annual numbers of parcels). More-

over, this economic impact will increase in the near future, due to

the increase in B2C flows resulting from e-commerce, mass cus-

tomization, and decentralized production ( Inc, 2016; 2017 ). 

6. Conclusions 

In this paper, we introduced a new packing problem named

Generalized Bin Packing Problem with bin-dependent item prof-

its ( GBPPI ). We have shown that GBPPI can be applied at both

tactical and operational levels. At the tactical level, GBPPI models

cross-country and multi-modal transportation settings. At an op-

erational level, GBPPI describes the problem of a courier selecting

the appropriate number and type of vehicles from a set of available

transportation companies. We have also demonstrated that the in-

troduction of bin-dependent item profits is not trivial in terms of

problem resolution. We presented a number of heuristics to ef-

ficiently address the problem within limited computational time.

We have also presented extensive computational results and a case

study of a well-known international courier operating in northern

Italy. 

GBPPI can also be a starting point for future research. In fact,

GBPPI can be exploited as a subproblem in the resolution of the

stochastic variant of GBPP , namely Stochastic Generalized Bin Pack-

ing Problem. Stochastic problems are affected by uncertainty. The

Progressive Hedging Algorithm is an iterative technique for ad-

dressing these problems ( Crainic, Gobbato, Perboli, & Rei, 2016;

Manerba & Perboli, 2019 ). At each iteration, random variables de-

scribing uncertain attributes are fixed to particular values. In this

way, each iteration of the Progressive Hedging Algorithm applied to

Stochastic Generalized Bin Packing Problem implies the solution of

a deterministic GBPPI subproblem. This solution may successfully

be performed through the heuristics proposed in this article. 
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