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Data Driven Optimization of Charging Station Placement
for EV Free Floating Car Sharing

Michele Coccaa, Danilo Giordanoa, Marco Melliaa and Luca Vassioa
aDepartment of Electronics and Telecommunications, Politecnico di Torino, first.last@polito.it

Abstract— Free Floating Car Sharing (FFCS) is a transport
paradigm where customers are free to rent and drop cars of a
fleet within city limits. In this work we consider the design of
a FFCS system based on Electric Vehicles (EVs). We face the
problem of finding the minimum number of charging stations
and their placement, given the battery constraints of electric
cars, the cost of installing the charging network, and the time-
varying car usage patterns of customers.

Differently from other studies, we base our solution on actual
rentals collected from traditional combustion FFCS systems
currently in use in two cities. We use about 450 000 actual
rentals to characterize the system utilization. We propose a
user-behavior model and system policies for the charging events.
Then we evaluate via accurate trace driven simulations the
performance with different charging station placement policies.
We first present greedy solutions, and then perform a local
optimization with a meta-heuristic that 1) guarantee system
operativeness, i.e., car batteries never get depleted, and 2)
minimize users’ discomfort, i.e., users are only seldom forced
to drop cars in a far-away charging station.

Results show that it is possible to guarantee service continuity
by installing charging stations in just 6% of city areas, while
15% of equipped zones guarantee limited impact on users’
discomfort.

I. INTRODUCTION

The majority of the world population live in an urban
environment.1 Cities increasingly face problems caused by
transport and traffic. The question of how to enhance mobil-
ity while at the same time reducing congestion and pollution
is a common challenge to all major cities worldwide.

Smart and shared mobility are seen as a key component
to reduce emissions and reduce traffic congestions in urban
centers [1]. Given a fleet of vehicles, Free Floating Car
Sharing (FFCS) systems allow users to pick and drop any
car everywhere inside an operative area using a smart-phone
application, and billing the customer only for the actual
rental time. FFCS systems reduce the number of private cars
increasing the number of available parkings. A further step
is to convert internal combustion cars into Electric Vehicles
(EVs), strongly reducing emissions and pollution in cities [2].

This conversion has, however, several challenges. Indeed
EVs require to frequently charge the battery at a dedicated
Charging Station (CS), with a full battery top-up that could
require several hours. This creates discomfort for users when-
ever they are asked to return the car to a charging pole [3].
The design of the charging station network becomes thus
vital to guarantee both service continuity and users’ comfort

1https://data.worldbank.org/indicator/SP.URB.
TOTL.IN.ZS

maximization. The optimization of the CSs placement is a
key problem given also the cost of charging poles installation.

Past studies already faced the CSs placement problem
considering the mobility in a big city. For instance, authors
of [4] state how the parking time is an important metric to
optimize the CSs distribution, and validate their algorithms
with artificial traffic patterns. Other works proposed a mathe-
matical formulation and validated it using simulation, e.g., to
minimize the total installation cost [7], or the impact on the
electric grid [5], or additional distance the users are called
to walk when forced to drop the EV to a CS [6].

The availability of actual data is key to drive these
optimizations, and most studies use simulations to evalu-
ate proposed solutions. A common approach is to validate
models with trace driven simulations where traffic demand
is extrapolated from Interview Travel Surveys (e.g., in Sin-
gapore [8], Lisbona [9], or Beijing [10]).

More recently, authors have started using rental traces
collected from actual car sharing systems. For instance
authors of [12] use real rental traces collected from a station
based car charging system in use in France to feed their
simulation. Traces in a campus were used also in [13] to
predict the usage of CSs given their placement. Authors of
[11] study the design of a self-driven EV taxi fleet to replace
the current Munich’s taxi service, using actual trips recorded
by taxis.

In our past works we were among the first to collect
longitudinal data of actual rentals of FFCS systems using
traditional combustion vehicles [14], [15]. We used this data
for dimensioning a FFCS system with EVs and identifying
its possible system policies. We also perform a preliminary
study of the CSs placement problem.

Here, starting from these two works, we rely on a larger
dataset containing about half a million of real FFCS rentals
recorded in Turin and Milan (Italy) for more than two
months. First we characterize the usage pattern and then we
propose a simple customer behavior model and system policy
for the charging events. Differently from the other works
based on real traces, in this work we focus on finding the
required number of CSs and choose their placement. This is
a challenging problem since we want to have as less CSs as
possible to reduce costs, but at the same time we want the
system to be usable and practical for users, e.g., customers
should be rarely forced to return the car to a far-away CS.

Given recorded rentals we solve the CSs placement prob-
lem using first greedy algorithms, whose performance is
thoroughly compared using accurate simulations. Then we

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS


further optimize CS placement with a meta-heuristic algo-
rithm.

We observe that wisely equipping just 6% of city areas
(square region with 500 m side) guarantees to sustain the
system and all trips, i.e., car battery never depletes. More-
over, results show that a good charging station placement in
≈15% of city areas would guarantee that more than 98% of
the trips successfully end in the desired arrival area, with 2%
of users that are rerouted to a charging station, which is less
than 1.8 km far.

II. DATA COLLECTION AND CHARACTERIZATION

We collect data from a FFCS system having a combustion
engine fleet. We first describe the data collection methodol-
ogy and then we provide a characterization of the data which
is instrumental for the CS placement problem.

A. Data collection and filtering

Modern FFCS like car2go, DriveNow or Share ’n Go
allow users to book a car through web service accessible
with a web interface or a smartphone app. Some offers open
APIs to access data about system status.2 By leveraging
these API, we developed UMAP [14], a web-crawler that
collects car2go’s information and is able to rebuild car rental
history by reconstruction the parkings and rentals periods for
each car. In a nutshell, we take a snapshot of the available
cars every minute and derive parking and rental periods
by observing which cars are available or booked at each
snapshot.

We characterize each rental by its starting and final posi-
tion, duration, and enrich it via a possible traveled distance
between starting and final position as provided by Google
Map service 3. Parkings instead record the position and
duration. Trip distances reflect the energy consumed during
a rental, while parking positions and durations offer infor-
mation about the energy an electric vehicle could obtain if
connected to a CS. From September 5th, 2017 to November
2nd, 2017, we recorded about 125 000 rentals in Turin and
320 000 in Milan. We observed an average daily fleet of 377
vehicles in Turin and 749 in Milan.

B. Rental and parking characterization

Fig. 1 shows the Empirical Cumulative Distribution Func-
tion (ECDF) of the rentals duration observed in Turin and
Milan.4 Notice the log scale on x-axis. Turin is smaller and
less populated than Milan, condition which is reflected trav-
eled distance. Indeed the maximum distance reaches 28 km
in Milan, 19 km in Turin. For both cities approximately 97%
of rentals cover less than 10 km. In Turin, the trips are in
median 300 meter shorter (3.4 km with respect to 3.7 km)

2car2goAPI, https://www.car2go.com/api/tou.htm service
subject to approval by car2Go. Approval granted in Sept. 2016 and dis-
continued in Jan. 2018.

3https://developers.google.com/maps/
documentation/distance-matrix/

4We filtered the dataset keeping only those rentals having a traveled
distance greater than 700 m, since users may cancel the booking without
moving the car and the car GPS sometimes gives inaccurate measure.

0.7 km 1 km 2km 3km 5 km 10 km 28.0 km
Rentals Distance

0.00

0.25

0.50

0.75

1.00

E
C

D
F

Milan

Turin

Fig. 1. Empirical Cumulative Distribution Function of rental distances as
observed in current FFCS.
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Fig. 2. Heatmap showing frequency of parkings per zone in Turin (a) and
Milan (b). The cells cover the operative area.

than in Milan. In more details, in Turin it is possible to
observe a steep slope at the end of the ECDF which is due
to the trips from and to Turin Airport, located 15 km far from
the city center. They represent 2.1% of rentals.

Next we analyze the parkings habits in the two cities.
We divide the operative area with a grid where each cell
side is 500 m and count how many parkings are observed
in each cell. We consider as active only the zones having
at least 1 parking in the data collection period. We observe
261 zones in Turin, and 549 in Milan. Fig. 2 shows them,
with colors that reflect the number of parkings: the more
the zone is red, the more frequently people parked inside
it. In Turin, Fig.2(a), the zone having more parkings (47
per day on average) is in correspondence of the main train
station. In general most of the parkings happen to be in the
downtown area: here we observe lot of parkings but lasting
short time. Fig. 2(b) shows the same trend in Milan. The
parkings are concentrated in city center, which is bigger than
in Turin. Here the most frequented area recorded about 100
parkings per day on average. It is interesting to notice the
big peripheral area which extend for more than 10 km from
the city center and where the number of parkings are few
units. This is due to the fact that car2go imposes an extra
car-drop fee in this area to discourage the users to park too
far from the city center.

In a nutshell, people mostly use the FFCS to move to and
in the downtown area, where lot of parkings of short duration
(less than 1 hour) are recorded. Instead in the periphery
there are fewer parkings, which last longer (up to days) –
see [14], [15] for more details. Given this habit, we next

https://www.car2go.com/api/tou.htm
https://developers.google.com/maps/documentation/distance-matrix/
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investigate different charging station placement policies and
observe how they would perform assuming the same FFCS
uses a EV fleet. For this, we use a trace driven approach
that replays exactly the same trips as done by actual FFCS
customers.

III. SYSTEM MODEL AND SIMULATOR

Our goal is to study a FFCS system that uses EVs. We
assume the customers’ demand for the service is the same
as the one observed in today FFCS that we recorded in
our traces. For this, we use an event driven simulator that
accurately replays the events recorded in each trace, using
rental and parking events. We made the simulator available
as open source to the community.5

The fleet is the mean of the daily vehicles observed in
the trace. Cars are assumed to be Electric Smart ForTwo
model, equipped with a battery of capacity C = 17.6 kWh,
and nominal consumption of λ = 0.13 kWh/km.6

When a new rental starts, we assume that the customer
selects the closest available car with the highest State of
Charge (SOC). The simulator then changes the status of the
car from available to rented. For each trip of D km, the
simulator computes fraction of the battery energy consump-
tion ∆C = λ·D

C . We keep λ constant because both cities
do no present streets difference in altitude in the analyzed
areas. When the rental ends, it moves the vehicles to the
drop-off location, labels it back as available, and decreases
accordingly the battery SOC by ∆C. If, at the end of the
trip, the SOC is equal to or smaller than zero, an Infeasible
Trip is recorded. The percentage of Infeasible Trips accounts
for those rentals that would be infeasible because the battery
SOC does not allow to cover the desired distance.

For charging, we assume each CS is equipped with 4 poles
able to provide 2 kW/h for the time the car is plugged. Let
Z be the number of zones in the city (see Fig. 2), and N
the number of zones with a CS. We consider the next two
mechanisms that regulates when and how to plug the car in
a CS at the end of the rental:

• Safety policy: Whenever the SOC at the end of the
rental is smaller than a threshold α, then the customer
is obliged to return the car to the closest CS with at
least an available pole, and plug it. In case the customer
is forced to drive to a different zone from the one
desired, we call this a reroute event, and we compute
the new SOC of the car for the new route. If there are no
available charging poles in the whole city, the customer
returns the car in the desired arrival zone.

• Altruistic behavior: Whenever there is a free charging
pole in the desired arrival zone, the customer voluntarily
plugs the car with a probability p. This reflects users’
willingness to sustain the system and to easily find a
parking spot.

With these two mechanisms, the users could drop the car in
a location which is different from the desired one, which has

5https://github.com/michelelt/sim3.0
6https://www.smart.com/uk/en/index/smart-electric-drive.html

to be reached by walking. Given we assume squared zones of
500 m x 500 m, and place the CS at the center of a zone, the
altruistic behavior would cause an average walking distance
of about 150 m. Instead, the safety policy would reroute the
customer for at least 500 m.

In the following section, we vary N from 1% to 30% of
total zones Z in both cities, corresponding to a maximum
of 72 and 135 zones in Turin and Milan, respectively. Given
the maximum traveled distance observed in the trace is 28 km
(Fig.1), we choose α = 0.25 which corresponds to guarantee
enough charge to support a single trip of at maximum 33 km.
The number of poles per CS (equal to 4), the fleet size, the
car model, and the supplied power for each plug (2 kW)
are considered constant. Finally, we assume p = 0.5, i.e.,
we assume that in the half of the rentals, the customers are
willing to plug the vehicle in case there is a free pole in their
arrival zone.

Our goal is to find a smart placing of a small number
of charging stations for zeroing the percentage of infeasible
trips, minimizing at the same time the probability of being
rerouted and the average walking distance after a reroute.

IV. GREEDY PLACEMENT APPROACH

There are
(
N
Z

)
possible placement solutions, which makes

it prohibitive to find exhaustively the optimal solution. For
this, we first propose greedy placement policies. Later, we
refine the solution by running a local search meta-heuristic.

For greedy placement, we assign to each zone z ∈ Z a
likelihood lz . Then we assign a CS to the top N zone, sorting
them by decreasing likelihood. We consider three policies:

• random placement - RND: lz is an independent and
identical distributed random uniform variable, so that
CSs result placed at random;

• average parking time - Avg-Time: lz is the average
parking duration in z as recorded in the trace, so that
CSs are placed in zones where cars remain parked for
the longest time.

• Average number of parkings - Avg-Parking: lz is the
average number of parkings per day recorded in z in
the trace, so that CSs are placed in zones where cars
are parked with the highest probability.

We compare now the performance in terms of infeasible
trips for the three different CS greedy placement policies
with different number of CSs. We consider both Turin and
Milan. In both cases, we use the actual data of rentals
recorded in the whole period to define the average parking
duration and the number of parking per zone that we use then
to guide the CS placement. For each resulting placement, we
then simulate all rentals as recorded in the trace.

Fig. 3 shows the percentage of infeasible trips for increas-
ing number of CS. Top x-axis reports the actual number
N , while bottom x-axis reports the percentages of zone
equipped with a CS to ease comparison. Consider Turin
first - detailed in Fig. 3(a). As expected, when N has high
values, the system is able to guarantee that all rentals can be
successfully completed. That is, the CS system guarantees
enough charging opportunities so that it is always possible

https://github.com/michelelt/sim3.0
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Fig. 3. Percentage of infeasible trips in Turin (a) and Milan (b).

to find a free charging pole when the battery runs below the
minimum charing level α. Coupled with the Safety Policy,
this guarantees the car battery never depletes.

Considering CS placement, the random placement (RND)
has the worst performance. Interestingly, the average parking
time (Avg-Time) performs worse than the average number of
parking (Avg-Parking) policy. Indeed the zones having the
highest average parking time are those in the peripheries.
Cars that reach those areas, stay parked for long time and
will be rented rarely because the demand in those zones is
low. As such, the pole stays occupied for long time, with little
benefits (the car battery being at full charge), and eventually
precluding the charging chance to vehicles with low battery.
The Avg-Parking policy perform the best: 5.3% of zones (14
actual CSs in total) guarantee to sustain all rentals in Turin
– as detailed by the inset in Fig. 3(a).

Moving to Milan, Fig. 3(b), we observe the previous
differences to be much more striking. Recall that Milan has
a much larger operative area than Turin, with a bigger fleet.
However, most of the rentals still occur in the downtown
area, which is relatively small. Indeed, cars that reach the
periphery stay parked for days before someone rents them.
Placing a charging station in such areas would be almost
useless since cars would stay plugged to a charging pole that
results occupied for long time. This diminishes the actual
charging capacity of the system, ultimately causing cars
to run out of battery. A random placement performs then
poorly, even when more than 25% of zones are equipped
with CSs. The Avg-Time policy suffers from the same
problem, with most CSs uselessly placed in the periphery.
Again, placing charging station in areas with high parking
probability guarantees the best results. Just N = 33 CSs
(6.0% of zones) would guarantee all rentals in Milan.

In a nutshell, placing the CSs in an area where cars

Algorithm 1: Local search algorithm
Input : oldSolution = InitialSolution
Output: newSolution
while #Iterations ≤ MaxIter do

followDirection = False;
CS=ChoseRandomCS(oldSolution);
for dir in {north, east, south, west} do

newSolution = MoveCS(CS, dir);
Simulate(newSolution);
if isBetter(newSolution, oldSolution) then

oldSolution = newSolution;
followDirection = True;
dirDescent=dir;

end
end
if followDirection == True then

for zone in {from CS to border in dirDescent}
do

newSolution = MoveCS(CS, zone);
Simulate(newSolution);
if isBetter(newSolution, oldSolution) then

oldSolution = newSolution;
else

break;
end

end
end
#Iteration+=1;

end

are frequently returned (and rented) allows to maximize the
probability of finding a free charging pole. This guarantees
enough top-up battery opportunities to recover the (small)
amount of energy consumed by the (short) trips.

V. CHARGING STATION PLACEMENT OPTIMIZATION

In this section we investigate how to minimize the cus-
tomers’ discomfort due to forcing them to plug the car to a
nearby zone equipped by a CS. When the system forces a
user to drive and park the car in a charging station that is not
in her desired zone, it means that the customer has walked
by at least 500 m to reach her destination. We compute the
Average Walked Distance (AWD) among all these rerouted
trips. Intuitively, the AWD decreases as the charging zone
percentage increases, since the likelihood of finding a nearby
charging zone increases.

Given all trips are guaranteed, the probability of being
rerouted, and the Average Walked Distance are secondary
performance indexes that we want to minimize. To this end,
we design a local search approach. Given our optimization
problem, previous placement policies fall in the category of
greedy algorithms: they make a local choice that maximize
a fitness function at each step (placing the next CS in the
zone with the currently highest lz), without ever tracing
back. Local search algorithms are meta-heuristics that instead
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consider several solutions and select the best one found. The
generation of solutions typically is performed by imposing
small modifications to the current solution, generating a set
of neighbor solutions among which to pick the best.

We consider as single objective to minimize the weighted
sum of 1) the number of infeasible trips, 2) the AWD, and
3) the reroutes probability. The weights are given in order to
give priority to them in the order here given (i.e., infeasible
trips is the most important to minimize).

Our local search algorithm is similar to a hill climb with
coordinate descent. Alg. 1 sketches the algorithms pseudo
code. It receives in input the set of zones that the Avg-
Parking greedy algorithm has equipped with CSs. Then, it
randomly extracts one of CS zone, and builds 4 new solutions
where the CS is moved to the closest zones (north, east south,
and west), if not yet equipped with a CS. These neighbor
solutions differ from the current one only by the placement
of one CS. We run a trace driven simulation to evaluate
if the new solution performs better than the old one. If
there are improvements (according to the single objective),
the algorithm accepts the new solution. Once identified the
direction of improvement, this is followed by moving the
CS along the same direction through a line search, until new
best solutions are found. After the line search, the two steps
are repeated by extracting another CS at random, and trying
to move it. The algorithm stops after a maximum number of
iterations.

To speed up the local search algorithm, both the two
steps of the algorithms are actually parallelized in our code.
Moreover, we let it evaluate the performance considering a
subset of all events recorded in the trace (the first week
of data). At the end the local search, we run a complete
simulation considering the best found placement.

VI. PLACEMENT OPTIMIZATION RESULTS

In the following, we run the local search optimization
algorithm selecting the Avg-Parking as initial solution. We
set the maximum number of iteration equal to 1 000.

We focus first to the percentage of infeasible trips. Fig.
4 shows results in Milan. Here the local search algorithm
is able to reduce infeasible trips compared to the greedy
solution. In particular it reduces to 0 infeasible trips at 5.6%
of zones equipped with CSs. Recall that there are no infea-
sible trips for more than 6.0% of the zones, already for Avg-
Parking policy. Instead, in Turin the optimized placement
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generate much smaller advantage in terms of infeasible trips
and are therefore not shown for brevity.

The number of CSs affects the probability of a forced
rerouting. Fig. 5 details this. First notice that Milan has
higher rerouting probability than Turin, as a direct conse-
quence of the bigger operative area, fleet and number of
customers. Second, with more CSs, the probability to find
a CS in the desired arrival zone increases, and the altruistic
behavior guarantees a sufficient average SOC, which stays
over the security threshold α. With 15% or more of CS zones
the rerouting probability goes below 0.02 for both cases.
Having less than 2% trips that are rerouted, the FFCS system
could adopt some simple relocation policies with employees
that move cars that need a recharge, or consider incentives
to users to move these cars.

Being the less important part of the weighted objective,
the optimization does not influence the rerouting probability
much, and it is possible to observe a small improvement
between 4.5% and 6.0% of zones in Milan only.

We now analyze the Average Walked Distance after a
reroute event. Fig. 6 details AWD metric for both Turin
and Milan, before and after the local search optimization.
At first sight it is possible to see how the optimization
algorithm reduces the AWD in both cities. In Milan, the
average walked distance is decreasing monotonically with
increasing percentages of zones with CSs. This is explained
by the higher probability of finding a nearby free charging
station when the number of charging stations increases.
The difference between the local search and Avg-Parking
placement is in average equal to about 100 m, with the best
improvement of 190 m. Recall that in Milan customers have
to pay an extra fee to drop the car in the periphery. This
discourages them in using the FFCS service, so that most
of parkings actually occur within the downtown area limit –
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Fig. 7. Zones equipped with CSs with the Avg-Parking greedy placement
algorithm (a) and after the local search optimization (b) in Milan.

easily reachable within 1 250 m. To show this, we graphically
illustrate the algorithm placement tendency. Fig. 7(a) depicts
the CS placement by the Avg-Parking greedy policy. i.e.,
before the optimization. Fig. 7(b) depicts the final solution
found by the local search algorithm. It moved some CS
areas to cover also some residential zones in which we have
observed still significant number of parkings but not as high
as in the downtown areas. By moving some CS in those areas
we reduce the AWD for those rentals that are rerouted back
to downtown for a forced charge.

Moving to Turin, we observe a higher average walked
distance in Fig. 6. This is due to the fact that people tend
to use the FFCS service also to go to the periphery. Since
most CSs are in the downtown, customers may be rerouted
there, thus having to walk for more than 1 500 m. Having
fewer reroutes and more homogeneous usage than in Milan,
in Turin the local search algorithm offer a sizable gain. For
instance, the average gain is about 300 m, corresponding
about 21% improvement. This suggests that is could be
possible to find even better solutions, e.g., by using more
advanced meta-heuristic approaches. We leave this for future
work.

VII. CONCLUSION AND FUTURE WORK

In this work we studied gasoline FFCS system conversion
into EVs, by leveraging real FFCS rental data. We based
our study on a large dataset of actual rentals recorded in
operative FFCS systems. We focused on two different cities
as use cases.

We showed that a data driven smart placement of the CSs
guarantees the system sustainability: equipping the top 6%
of zones having the largest parking probability is enough to
guarantee no car run out of battery. Next we developed a
local search algorithm to further optimize the CS placement,
minimizing the number of infeasible trips, and the discomfort
for customers, that we evaluated as the probability of being
rerouted to a far-away charging station, and the average
walked distance they have to cover. Results showed that
15% of equipped zones guarantee limited impact on users’
discomfort, with more than 98% of the trips that successfully
end in the desired arrival area, and with less than 2% of trips
rerouted to a charging station, which is found at a distance
less than 1.8 km.

Given the complexity of the model which entails user
habits and complicated relationships between charging need
and availability, we believe data driven optimization is very
promising to optimize the design of future FFCS systems
with EVs. For this, we plan in the future to propose more
advances optimization algorithms that move one step beyond
the simple local search presented in this paper. We also
plan to extend our analysis to more cities and to propose
guidelines that can drive the policy makers to optimize the
design of EV charging station placement in case no data is
available.
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