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The Double PEC Wedge Problem:
Diffraction and Total Far Field

Vito Daniele, Guido Lombardi, Senior Member, IEEE, Rodolfo S. Zich, Honorary Member, IEEE

Abstract—Complex scattering targets are often made by struc-
tures constituted of wedges that may interact at near field. In
this paper we examine the scattering of a plane electromagnetic
wave by two separated arbitrarily oriented perfectly electrically
conducting (PEC) wedges with parallel axes. The procedure to
obtain the solution is based on the recently developed semi-
analytical method known as Generalized Wiener-Hopf Technique
(GWHT) that allows a comprehensive mathematical model of
the problem in the spectral domain avoiding multiple steps
of interaction among separated objects. The numerical results
are presented to validate the procedure in terms of spectral
quantities, GTD/UTD diffraction coefficients and total far fields
for engineering applications. The structure is of interest in
electromagnetic applications, in particular to accurately predict
path-loss in propagation with diffraction phenomena.

Index Terms—Wedges, Wiener-Hopf method, Integral equa-
tions, Electromagnetic diffraction, Near-field interactions, Prop-
agation, Antenna technologies, Radar applications, EMC, Elec-
tromagnetic Shielding, Wireless communication.

I. INTRODUCTION

THE accurate and efficient study of diffraction problems
are of great interest in electromagnetic engineering com-

munities, in particular when studying structures made of mul-
tiple wedges with near-field interactions. Moreover the quasi-
analytical solution of canonical problems allow to investigate
physical/engineering insights of the problem by decomposing
the field into components. Moreover these solutions are useful
to benchmark numerical codes.

In this paper we consider the classical canonical scatter-
ing problem constituted of two separated arbitrarily oriented
Perfectly Electrically Conducting (PEC) wedges with parallel
axes immersed in free-space with impedance Zo and propaga-
tion constant k.

The problem is of interest for a variety of applications
where field strength is a sensible topic. Examples of appli-
cation comprehend propagation, radar technologies, antenna
technologies, EMC, electromagnetic shielding, security scan
in complex scenarios, wireless communication... In particular
in electromagnetic propagation, fields diffracted by multiple
objects are not exactly predicted by ray techniques. To improve
the prediction of path loss in propagation with diffraction
phenomena, we propose a new comprehensive model for the
double PEC wedge problem that takes into account the entire
structure in one shoot.
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Fig. 1: Scattering of an electromagnetic wave by two PEC wedges.
Two cartesian reference systems are reported, with coordinates
(x, y, z) and (x2, y2, z) and centered respectively in O and O′′.
They are related together via x2 = x − s, y2 = y + d. Cylindrical
coordinates (ρ, ϕ, z) centered in O and (ρ2, ϕ2, z) centered O′′ are
used too. The figure represents the case with positive s and d.

The proposed problem allows multiple configurations but
for the sake of simplicity we make reference to Fig. 1 to illus-
trate the method. Cartesian coordinates as well as cylindrical
coordinates are used to describe the problem. Two origins are
considered: the edge of the upper wedge is chosen as origin
O for coordinates (x, y, z) and (ρ, ϕ, z), while the edge of the
lower wedge is chosen as origin O′′ for coordinates (x2, y2, z)
and (ρ2, ϕ2, z). The two reference systems are related together
via x2 = x − s, y2 = y + d; corresponding cylindrical coor-
dinate relations are easily derived. Fig. 1 shows the two PEC
wedges respectively defined by ρ > 0,Φa < ϕ < π − Φb
and ρ2 > 0,−π + Φd < ϕ2 < −Φc with translational sym-
metry along the z axis(parallel axes). To distinguish the
same physical quantity defined with respect to different
origins/coordinates we use the notation F̈ (x2, y2, z) =
F (x, y, z) = F̈ (ρ2, ϕ2, z) = F (ρ, ϕ, z). In the following we
consider s as the staggered parameter along x and d as the
distance along y between the x and x2 axes(see Fig. 1). We
assume d with positive values, while s can be either positive
as in Fig. 1 or negative. Five regions are identified: region
A, B, C, D are the angular regions delimited respectively
by 0 < ϕ < Φa, π − Φb < ϕ < π,−Φc < ϕ2 < 0,
−π < ϕ2 < −π + Φd (with Φf > 0, f = a, b, c, d) and
the layer region E with −d < y < 0.

In this work we consider time harmonic electromagnetic
field with a time dependence specified by ejωt which is
omitted. For the sake of simplicity, the structure is illuminated
from region A by an Ez-polarized plane wave with azimuthal
direction ϕ = ϕo and with propagation constant k, however
generalization to Hz polarization or skew incident case is
possible and it doubles the equations.

Eiz = Eoe
jk ρ cos(ϕ−ϕo) (1)
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In diffraction theory the scattering by an isolated impen-
etrable wedge constitutes a fundamental wave problem with
impact in different areas (electromagnetics, acoustics, fracture
mechanics, elasticity...) and therefore it has been intensively
studied. In particular several original methods had been con-
ceived in the past [1]-[5] and they constitute a heritage of
mathematical-physical literature. The most important spectral
methods to study wedges are the Sommerfeld-Malyuzhinets
(SM) technique (see [6]-[9] and reference therein) and the
methods based on the Kontorovich-Lebedev (KL) transform
(see [10]-[13] and reference therein).

Recently, the authors of this paper have proposed the Gen-
eralized Wiener-Hopf Technique (GWHT) that is a novel and
effective spectral technique to solve electromagnetic problems
constituted of isolated impenetrable and penetrable wedges
(see [14]-[23] and reference therein).

The Wiener-Hopf (WH) method [24]-[26],[10],[23] is a well
established technique to solve problems in all branches of
engineering, mathematical physics and applied mathematics; a
brief historical perspective is reported in [27]. In the last four
decades, extensions of the technique by other authors have
been reported, see for instance a non exhaustive bibliography
[28]-[52],[27],[23] and references therein. In the authors’
opinion, the GWHT together with the SM technique and the
methods based on the KL transform completes the spectral
techniques capable to handle isolated wedge problems.

Recently, the GWHT is able to further extend the class of
solvable problems, in particular for the capability to handle
complex scattering problems constituted of angular and rect-
angular/layer shapes (see [53]-[57] and references therein).

The GWHT can now easily formulate complex scattering
problems in terms of Generalized Wiener-Hopf equations
(GWHEs). Although, in general, the relevant GWHEs of the
problems cannot be solved in closed form, this limit has
been successfully overcome by resorting to the Fredholm
Factorization [22]-[23]. The Fredholm factorization is a semi-
analytical method that provides very accurate approximate
solutions of GWHEs of a given problem. Its efficiency is
based on the reduction of the classical factorization problem
to system of Fredholm integral equations of second kind, by
eliminating some of the WH unknowns via contour integration.

The application of the GWHT consists of four steps:

1) Deduction of GWHEs in spectral domain possibly with
the help of equivalent network modelling,

2) Approximate solution via Fredholm factorization,
3) Analytic continuation of the approximate solution,
4) Evaluation of field with physical interpretation.

Taking inspiration from [58]-[59], in steps 1-2 network
modelling orders and systematizes the procedure to obtain the
spectral equations for complex problems avoiding redundancy,
see for example [55] and reference therein. Moreover, in
practice, steps 2 and 3 substitute the fundamental procedure of
the classical WH technique [22]-[23], i.e. 1) the factorization
of the kernel, 2) the computation of solution via decomposition
and 3) the application of Liouville’s Theorem.

In this paper the formulation of the double PEC wedge
problem is done by applying the GWHT. Efficient approximate

solutions are obtained via Fredholm factorization. Preliminary
works on this topic has been presented in [60]-[63].

The literature shows several works that are related to
the canonical problem examined in the paper; however, we
assert that our method has the advantage to model the global
structure with a true comprehensive mathematical model in
spectral domain that avoids multiple steps of interaction among
separated objects like in iterative physical optics or like in
ray-tracing with multiple diffraction coefficients. Moreover the
method is independent from the distance between the two
wedges. Basically the solutions of the method are spectral
quantities (WH unknowns) that contain the global information
of fields. The benefit of the semi-analytical solution is that
the solution can be analyzed in terms of field components
via inverse spectral transformation and asymptotics (see for
instance [56]-[57]). Moreover the mathematical model is valid
for any d > 0 and s and therefore it allows the analysis of
general configurations either with narrow wedges or with far
wedges.

Focusing the attention on separated wedges, the literature
presents related problems constituted of right angled wedges,
apertures between two wedges, radiation from flanged waveg-
uides and it ends with the current problem with non-coplanar
wedges, see [64]-[81] and reference therein.

The paper is divided into eight Sections including the
introduction. Section 2 presents the mathematical definitions
and background preparatory to the WH equations of the
five regions reported in Section 3. Section 4 shows the
reduction of the equations to integral representations via
Fredholm factorization. Both WH equations and the integral
representations derived during the procedure can be easily
interpreted as network relations. In the same Section the
integral representations allow to obtain the factorization of
the problem and the solution in terms of spectra. In particular
Fredholm integral equations of second kind are derived for
selected spectral unknowns. Section 5 is devoted to the analytic
continuation of the approximate solution that is necessary to
estimate physical/engineering quantities reported in Section
6 as GTD/UTD diffraction coefficients and total far fields.
Finally Section 7 provides validation and convergence of the
proposed method and it compares our results with the ones
obtained by a fully numerical technique embedding singular
modelling [82]-[84], thus demonstrating the superiority of the
proposed semi-analytical technique for infinite canonical prob-
lems with respect to the case of finite structure. Conclusions
are reported in Section 8.

II. MATHEMATICAL DEFINITIONS AND BACKGROUND

With reference to Fig. 1, considering the geometry and the
source (1) of the problem, the field is independent from z
and it has non-null Ez(x, y), Hx(x, y), Hy(x, y) (from here
on z dependence is omitted) that are governed by the wave
equation. To meet mathematical requirements of WH tech-
nique small vanishing losses are assumed in the medium:
k = k′ − jk′′ where k′, k′′ > 0 and k′′ << k′. The starting
point to deduce the Wiener-Hopf equations of the problem
is to subdivide the entire geometry into the four angular
regions (A,B,C,D) and the planar region (E) as described
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in Section I. According to the coordinate systems and the
notation described in Section I, the boundary conditions of the
problem are: 1) zero Ez on the PEC faces, i.e. Ez(ρ,Φa) =
Ez(ρ, π − Φb) = 0 for any ρ, Ëz(ρ2,−Φc) = Ëz(ρ2,−π +
Φd) = 0 for any ρ2; 2) continuity of Ez, Hx at interfaces y =
0,−d, i.e. Ez(x, 0−) = Ez(x, 0+), Hx(x, 0−) = Hx(x, 0+),
Ez(x,−d−) =Ez(x,−d+), Hx(x,−d−) =Hx(x,−d+), with
y=0±=±δ and y=−d±=−d± δ and vanishing δ>0.

The formulation of the problem in the spectral domain is
based on the definition of the Laplace/Fourier transforms:

V up+ (σ, ϕ) =
∞∫
0

Ez(ρ, ϕ)ejσ ρdρ

Iup+ (σ, ϕ) =
∞∫
0

Hρ(ρ, ϕ)ejσ ρdρ
, (y ≥ 0) (2)


v(η, y) =

∞∫
−∞

Ez(x, y)ejη xdx

i(η, y) =
∞∫
−∞

Hx(x, y)ejη xdx
, (−d ≤ y ≤ 0) (3)


V lw+ (σ, ϕ2) =

∞∫
0

Ëz(ρ2, ϕ2)ejσ ρ2dρ2

I lw+ (σ, ϕ2) =
∞∫
0

Ḧρ(ρ2, ϕ2)ejσ ρ2dρ2

, (y ≤ −d) (4)

The GWHEs are written in terms of the following quantities
labeled axial spectral unknowns defined at y = 0 (5) and
y2 = 0 (6):

V1+(η) = V up+ (σ = η, 0), I1+(η) = Iup+ (σ = η, 0),
V1π+(η) = V up+ (σ = η,−π), I1π+(η) = Iup+ (σ = η,−π),
V1−(η) = V1π+(−η), I1−(η) = −I1π+(−η)

(5)

V2+(η) = V lw+ (σ = η, 0), I2+(η) = Ilw+ (σ = η, 0),
V2π+(η) = V lw+ (σ = η,−π), I2π+(η) = Ilw+ (σ = η,−π),
V2−(η) = V2π+(−η), I2−(η) = −I2π+(−η)

(6)

In order to relate the axial spectral unknowns, located at
the interface of the regions, we report the explicit definitions
using cartesian coordinates:
V1+(η)=

∞∫
0

Ez(x, 0)ejη xdx; I1+(η)=
∞∫
0

Hx(x, 0)ejη xdx,

V1π+(η)=
0∫
−∞
Ez(x, 0)e−jη xdx; I1π+(η)= −

0∫
−∞
Hx(x, 0)e−jη xdx

(7)



V2+(η) =
∞∫
0

Ëz(x2, 0)ejηx2dx2 = e−jη s
∞∫
s
Ez(x,−d)ejη xdx,

I2+(η) =
∞∫
0

Ḧx(x2, 0)ejηx2dx2 = e−jη s
∞∫
s
Hx(x,−d)ejη xdx,

V2π+(η) =
0∫
−∞

Ëz(x2, 0)e−jηx2dx2 = ejη s
s∫
−∞

Ez(x,−d)e−jη xdx,

I2π+(η) =−
0∫
−∞

Ḧx(x2, 0)e−jηx2dx2=−ejη s
s∫
−∞

Hx(x,−d)e−jη xdx

(8)

Furthermore, to obtain the GWHEs of the regions, we need
to define the radial Laplace transform of the magnetic field
along the PEC faces of the wedges:

If+(−mf )=

∞∫
0

Hρ(ρ, ϕf )e−jmfρdρ=Iup+ (σ =−mf , ϕf ), f = a,b (9)

with ϕa = Φa, ϕb = π − Φb; and

If+(−mf )=

∞∫
0

Ḧρ2 (ρ2, ϕ2f )e−jmfρ2dρ2 =Ilw+ (σ =−mf , ϕ2f ), f = c,d

(10)

with ϕ2c = −Φc, ϕ2d = −π + Φd.
With reference, for instance, to the η complex plane, the

spectral unknowns are labeled with ± subscripts: + indicates
plus functions in the complex plane η, i.e. functions that con-
verge in an upper half-plane (Im[η] > Im[ηup]); conversely −
indicates minus functions that converge in a lower half-plane
(Im[η] < Im[ηlo]). The + (−) functions are considered non-
conventional (non-standard) if Im[ηup] > 0 (Im[ηlo] < 0).
We recall that we have selected propagation constant k with
a negative (vanishing) imaginary part to mostly avoid the
presence of singularities on the real axis of the η plane.

According to our problem the Laplace transform of the
source Eiz (1) at y = 0 is

V i1+(η) =

∞∫
0

Eiz(x, 0)ejη xdx =
jEo
η − ηo

(11)

with a pole ηo = −k cos(ϕo) whose location in η complex
plane depends on the incident angle ϕo (i.e. ηo is in the 2nd
or 4th quadrant along the segment that connects k to −k).

From (3) and (7)-(8) we note that{
v(η, y = 0) = V1+(η) + V1π+(−η)

i(η, y = 0) = I1+(η)− I1π+(−η)
(12){

v(η, y = −d) = ejηsV2+(η) + ejηsV2π+(−η)

i(η, y = −d) = ejηsI2+(η)− ejηsI2π+(−η)
(13)

In the following Sections we examine each region starting
from the GWHEs to obtain the relevant integral representations
by contour integration. In particular we use the contours
γ1η and γ2η that are respectively the smile and the frown
integration line in η-plane [22]-[23], i.e. the real axis of η′-
plane indented at η′ = η with a small semi-circumference
respectively in the lower and in the upper half plane.

The application of Fredholm factorization is based on
integral decomposition of the Wiener-Hopf unknowns. The
classical decomposition equations (see Ch. 3 of [23]) apply
to conventional (or standard) plus functions. Non-standard
functions, due to the presence of poles located in the stan-
dard conventional regular half-plane, require modified Cauchy
decompositions formula:

1
2πj

∫
γ1η

F+(η′)
η′−η dη′=F+(η)− Fns+ (η), 1

2πj

∫
γ2η

F+(η′)
η′−η dη′=−Fns+ (η)

1
2πj

∫
γ2η

F−(η′)
η′−η dη′=−F−(η) + Fns− (η), 1

2πj

∫
γ1η

F−(η′)
η′−η dη′=Fns− (η)

(14)

for η ∈ R and where Fns+ (η) and Fns− (η) are the non-standard
part of F+(η) and F−(η). To demonstrate this result, we
recall that

∫
Γ1η

F+(η′)
η′−η dη

′ → 0 (
∫

Γ2η

F−(η′)
η′−η dη

′ → 0) where

Γ1η (Γ2η) is the half-circumference with radius |η|→∞ in the
upper(lower) η half-plane. Note that (14) hold for η∈R. From
here on, this assumption is valid unless otherwise specified.

We assert that, in scattering problems with plane wave exci-
tation, the non-standard parts derive from Geometrical Optics
(GO) contributions and they are known a priori using ray
theory. Finally, in this paper we denote the azimuthal direction
of GO waves with ϕlab where the subscripts lab are in upper
case (lower case) if referred to a wave that leaves (approaches)
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the wedges: for instance, the wave reflected from the PEC face
at ϕ = Φa propagates as ejkoρ cos(ϕ−ϕra) = e−jkoρ cos(ϕ−ϕRA)

with ϕra = 2Φa − ϕo and ϕRA = ϕra − π with respect to
the reference O of Fig. 1. In the following we use the dummy
pedex go to refer to quantities related to an incoming GO wave
with direction ϕgo.

III. GWHES OF THE PROBLEM

Starting from the definitions reported in the previous Sec-
tions we define the GWHEs for each of the five regions of the
problem at Ez polarization.
A. Angular regions

According to the theory presented in [14]-[15] and using
the definitions of axial spectral unknowns (5)-(6) and radial
Laplace transforms of field components at PEC faces (9)-(10),
the GWHEs of the angular regions A,B,C,D are respectively

Yc(η)V1+(η)− I1+(η) = −Ia+(−ma(η))
Yc(η)V1π+(η) + I1π+(η) = Ib+(−mb(η))
Yc(η)V2+(η) + I2+(η) = Ic+(−mc(η))
Yc(η)V2π+(η)− I2π+(η) = −Id+(−md(η))

(15)

where Yc(η) = 1
Zc(η) = ξ(η)

kZo
is the free-space spectral

admittance defined in terms of the free space impedance
Zo = 1/Yo and the free-space spectral propagation constant
ξ(η) =

√
k2 − η2 with the assumption of the proper sheet of

η plane to be such that ξ(η = 0) = k.
Note that the spectral unknowns If+(−mf (η)) (f =

a, b, c, d) defined on the faces of the wedges depend on the
spectral variables mf related to the η complex plane via

mf (η) = −η cos Φf + ξ(η) sin Φf (16)

Equations (15) are GWHEs since the plus-η and minus-
mf (η) unknowns are defined into different complex planes
although related together. An important result is that a suitable
mapping depending on the aperture angle Φf of the angular
region reduces each of them to a classical WH equation in a
new complex plane ηf , f = a, b, c, d [14]-[15]:

ηf = −k cos

(
π

Φf
arccos

(
−η
k

))
, f = a, b, c, d (17)

B. Layered region
According to the classical spectral theory of layered regions

based on transmission line modeling [23],[58], the following
two-port model holds for region E in terms of the Fourier
transforms of field components (3) defined at y = 0,−d:{

−i(η, 0) = Y11(η)v(η, 0) + Y12(η)v(η,−d)
i(η,−d) = Y21(η)v(η, 0) + Y22(η)v(η,−d)

(18)

where
Y11(η) = Y22(η) = −jYc(η) cot[ξ(η)d]

Y12(η) = Y21(η) = j Yc(η)
sin[ξ(η)d]

(19)

By using (12) and (13) we obtain (20) in terms of axial
spectral unknowns. Note that the π+ functions in −η are
minus unknowns in η (6) and by changing η with −η in
(20) we obtain two additional GWHEs that are useful to
make symmetrical the system of equations even if we intro-
duce extra unknowns related to the original ones (note that
Yij(−η) = Yij(η), i, j = 1, 2 since they depend on η through
ξ(η)).

IV. FREDHOLM FACTORIZATION OF THE PROBLEM

The reduction of the GWHEs (15), (20) and modified (20)
(η → −η) to integral representations that allows to obtain a
system of Fredholm integral equations (FIEs) of second kind
for the solution of the problem constitutes the central point
of the proposed procedure. While the classical factorization
separates the minus unknowns from the plus unknowns by
manipulating the whole WH system of equations, the Fred-
holm factorization simply eliminates time after time some of
the unknowns by contour integration (14). The main advantage
of Fredholm factorization is that it is always applicable. Fur-
thermore the procedure is independent from the geometrical
form of the space located out of the considered region. One
of the main advantages is that the integral representations
can be obtained once and for all, by studying time after
time one single region. These characteristics of the Fredholm
factorization notably simplify the deduction of the FIEs of
the whole problem. In particular, network representations for
integral representations of WH equations [23],[55]-[57],[60]
turn out to be very useful since they model the whole problem
as an electrical network having as components the multi-
ports representing the single region. We anticipate that in the
final Fredholm equations the non-standard parts of the spectra
derived from (14) constitute the known second members of
the FIEs. If we eliminate minus functions, the Fredholm fac-
torization yields integral representations that couples the plus
functions. From here until the final FIEs, the observation point
is assumed always real in the spectral plane η. We note that
the formulation of our problem contains exponential behaviour
e±jηs (20), however the application of (14) is valid since
the closures of integration lines with half- circumferences at
infinity still give vanishing contributions [60].

In the following we focus the attention on one of the
angular regions, region A, and then we extrapolate the integral
representations of the angular regions B,C,D from it. Second,
we obtain the integral representation of the finite layer region
E. All integral representations are then interrelated as network
models and from them we derive the system of FIEs to get
the spectral solution of the problem.

A. Integral representation for the angular regions

With reference to region A (0 ≤ ϕ < Φa), (y > 0) at
Ez polarization the GWHE of this region is the first equation
reported in (15). By applying to the equation the mapping (17)
specified for this region (η̄a(η) = α(η))

η(α) = −k cos
[

Φa
π arccos(−αk )

]
α(η) = −k cos

[
π

Φa
arccos(−ηk )

] (21)

we obtain the following Classical Wiener-Hopf Equation
(CWHE) [14]-[15] in α plane

Ȳc(α) V̄1+(α)− Ī1+(α) = −Īa+(−α) (22)

where

V1+(η) = V̄1+(α), I1+(η) = Ī1+(α), Ia+(−ma) = Īa+(−α) (23)

and Yc(η) = Ȳc(α). V̄1+(α) and Ī1+(α) are plus functions in
α plane while Īa+(−α) is a minus function in α [14]. Note
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−I1+(η) + I1π+(−η) = Y11(η)[V1+(η) + V1π+(−η)] + Y12(η)[V2+(η) + V2π+(−η)]ejηs

ejηs(I2+(η)− I2π+(−η)) = Y21(η)[V1+(η) + V1π+(−η)] + Y22(η)[V2+(η) + V2π+(−η)]ejηs
(20)

that in general plus functions in η and minus functions in ma

are respectively plus functions in α and minus functions in α
but the viceversa is not true.

To obtain the integral representation of the angular region,
we apply the contour integration with the help of (14) in α
plane that allows to eliminate one of the unknowns. In order to
eliminate Īa+(−α), we apply the contour integration to (22)
along the contour γ1α which is the smile integration line:

1

2πj

∫
γ1α

Ȳc(α′) V̄1+(α′)− Ī1+(α′)

α′ − α
dα′ = −

1

2πj

∫
γ1α

Īa+(−α′)
α′ − α

dα′ (24)

To proceed with the estimation of (24) we need to examine
the spectral content of the quantities/unknowns reported in
the equation. The use of (14) yields attention on non-standard
poles of the spectral unknowns whose origin is related to the
considered source excitation, in our case an Ez plane wave
(1). Since the source is constituted of a plane wave, only
Geometrical Optics (GO) components with infinite support
gives poles in the spectra of the unknowns, i.e. incident plane
wave, reflected plane waves, multiple reflected plane waves.
The infinite support of the GO components is a mathematical
requirement (Laplace transform) to get poles in the spectrum.
Moreover the delay-phase shift of the GO components in
(24) due to the staggered parameter s (that generates shadow
boundaries) does not yield any contribution on the residue of
the Laplace transform of the GO components since they are
defined less than a field component with finite support (the
shadow) that is an entire function in Laplace domain.

First, let us focus on the incident plane wave with incoming
direction ϕo, outgoing direction ϕI = π − ϕo. From (11) we
note that the incident wave induces the pole ηo = −k cosϕo in
the η plane and taking into account (21) the spectral quantities
in α plane show the pole αo = α(ηo) = −k cos π

Φa
ϕo. As

the incident wave each GO component with infinite support
of the field induces a pole ηgo = −k cosϕgo and αgo =
α(ηgo) = −k cos π

Φa
ϕgo according to the incoming direction

of propagation ϕgo. The location of poles in the spectral planes
η and α (upper or lower half planes) is directly related to the
incoming direction ϕgo. From the studies of GO poles we
define the standard properties of plus and minus unknowns in
the GWHEs and in particular here in (24).

Since Īa+(−α) is a minus function in the α-plane, closing
at infinity the smile integration line γ1α in the lower half α-
plane, we capture the GO poles αgo with Φa/2 < ϕgo < Φa
(Residue theorem). From (14) in α plane, the RHS (Right-
Hand-Side) of (24) is equal to

− 1

2πj

∫
γ1α

Īa+(−α′)
α′ − α dα′ = −

∑
αgo

Riaα
α− αgo

u(ϕgo −
Φa
2

) (25)

where u(·) is the unitstep function (Heaviside) and Riaα are
the residues of Īa+(−α) at αgo that can be computed directly
in ma(η) plane using

Riaα = Riam
dα

dma

∣∣∣∣
mago

(26)

and Riam are the residues of the Laplace transform

IGOa+ (−ma) of the primary GO field HGO
ρ (ρ,Φa) at mago =

k cos(Φa − ϕgo).
Focusing the attention on the second contribution of the

LHS (Left-Hand-Side) of (24) and closing at infinity the smile
integration line γ1α in the upper half α-plane, we obtain
through Residue theorem and using (14)

1

2πj

∫
γ1α

Ī1+(α′)

α′ − α dα
′= Ī1+(α)−

∑
αgo

Riα
α− αgo

u(−ϕgo +
Φa
2

) (27)

where Ri1α are the residues of Ī1+(α) at αgo

Ri1α = Ri1η
dα

dη

∣∣∣∣
ηgo

(28)

and Ri1η are the residues of the Laplace transform IGO1+ (η) of
the primary GO field HGO

ρ (ρ, 0) at ηgo = −k cos(ϕgo).
Taking into account (24), we complete the integral repre-

sentation in η plane by considering the first term of the LHS:

1
2πj

∫
γ1α

Ȳc(α
′) V̄1+(α′)
α′−α dα′= 1

2πj

∫
γ̄1α

Ȳc(α(η′)) V̄1+(α(η′))
α(η′)−α(η)

dα
dη′ dη

′ =

= 1
2πj

∫
γ̄1α

Yc(η
′)V1+(η′)

α(η′)−α(η)
dα
dη′ dη

′
(29)

where γ̄1α is the image in η plane of the smile integration
line γ1α defined in α plane and where the inverse mapping
α = α(η) of (21) is used. The next step is to warp in η
plane the contour γ̄1α into γ1η . The warping can capture
singularities either of the integral kernel 1/(α(η′)− α(η)) or
of the unknowns as GO poles located in the proper sheet of η
plane (see definition in Section III-A). Let us discuss later the
singularities of the integral kernel and by taking into account
the GO singularities we have

1
2πj

∫
γ̄1α

Yc(η
′)V1+(η′)

α(η′)−α(η)
dα
dη′ dη

′ = 1
2πj

∫
γ1η

Yc(η
′)V1+(η′)

α(η′)−α(η)
dα
dη′ dη

′+

−
∑
αgo

Yc(ηgo)Rv1α

α(η)−αgo (u(Φa
2 − ϕgo)− u(π2 − ϕgo))

(30)
where Rv1α are the residues of V̄1+(α) at αgo

Rv1α = Rv1η
dα

dη

∣∣∣∣
ηgo

(31)

with Rv1η residues at ηgo = −k cos(ϕgo) of V GO1+ (η) which
is the Laplace transform of the primary GO field EGOz (ρ, 0).

Since our aim is to obtain an integral representation in η
plane, using (25), (27) and (30), (24) becomes

1
2πj

∫
γ1η

Yc(η
′)V1+(η′)

α(η′)−α(η)
dα
dη′ dη

′ = I1+(η)−
∑
αgo

Riaαu(ϕgo−Φa
2

)

α(η)−αgo
+

−
∑
αgo

Ri1αu(−ϕgo+ Φa
2

)

α(η)−αgo
−
∑
αgo

Yc(ηgo)Rv1α(u(π
2
−ϕgo)−u( Φa

2
−ϕgo))

α(η)−αgo

(32)

We note that (32) is an integral representation that relates
the spectral unknowns V1+(η) and I1+(η). However this
representation is with singular kernel. The next step consists of
deriving a new integral representation with compact kernel by
means of regularization. We observe that integrating V1+(η)
along the contour γ2η and closing the contour at infinity in
the upper half η-plane, from (14) we obtain
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1

2πj

∫
γ2η

Yc(η)V1+(η′)

η′ − η dη′ = −
∑
ηgo

Yc(η)Rv1η

η − ηgo
u(
π

2
−ϕgo) (33)

Subtracting (33) from (32) it yields

Yc(η)V1+(η)−I1+(η)+
1

2πj

∞∫
−∞

(
Yc(η′)

dα
dη′

α(η′)− α(η)
−
Yc(η)

η′ − η

)
V1+(η′)dη′=Ica(η)

(34)
where Ica(η) is the source of the integral representation (34)
that is the combination of all sums appearing in (32) and (33).

Note that Ica(η) depends on the GO field of the complete
problem (easily obtainable by GO analysis ignoring delay-
phase shift), while the kernel of (34) depends only on the
geometrical parameters of region A.

Going back to the kernel singularities as outlined before
(30), we need to investigate their effect in (34) to get a general
integral representation that is valid on the real axis of the
proper sheet of η plane. The regularization procedure has re-
moved the singularity at η′ = η in (34), however the integrand
can be singular for η′ 6= η due to the roots of α(η′)−α(η). The
roots η′ = pΦa

n (η) = η cos(2nΦa)− ξ(η) sin(2nΦa) , n ∈ N0

(see (94) for details) in the proper sheet define singularity lines
that, if crossed by the observation point η, can give further
contributions (correction terms) in the derivation of the integral
representation (34). Therefore the accurate location of pΦa

n (η)
in relation to the amplitude of Φa is of great importance.
If pΦa

n (η) is located in the upper half proper η plane, the
singularity gives contribution since it is captured while closing
the integration contours to derive the integral representation.
In this case we need to compute the value of V1+(pΦa

n (η))
(due to the singularity lines) in terms of V1+(η) by using the
Cauchy’s integral formula, see eqs. (71) of [55]. Note that this
expression of V1+(pΦa

n (η)) is zero for pΦa
n (η) located in the

lower half proper η plane.
The final integral representation is reported in (35) for real

η and η′, however the same eq. is valid for integration line
different from the real axis but with observation points lying
on the integration line [55].

I1+(η) = Ya[V1+(η)]− Isca(η) (35)

with
Ya[...] = Yc(η) +

1

2πj

∫ ∞
−∞

ya(η, η′)[...]dη (36)

ya(η, η′) =
Yc(η

′)

α(η′)− α(η)

dα

dη′
− Yc(η)

η′ − η +

+∞∑
n=1

qΦa
n (η)u(π

2
− nΦa)

η′ − pΦa
n (η)

(37)

pΦa
n (η) = η cos 2nΦa −

√
k2 − η2 sin 2nΦa (38)

qΦa
n (η) =

1

kZo
(η sin 2nΦa +

√
k2 − η2 cos 2nΦa) (39)

Isca(η) = Ica(η)−
+∞∑
n=1

qΦa
n (η)V ns1+ (p

Φa
n (η))u(

π

2
− nΦa) (40)

For obtuse aperture angle (π/2 < Φa < π) (35) reduces
to (34) since no singularity line is captured. Eq. (35) is valid
also for observation points η near the integration line till a

new singularity line η′ = pΦa
n (η) is crossed. In this case, to

get a representation with extended validity we need to consider
further contribution due to the singularity. This behaviour is
known in literature as sectional analytic function [85].

In (35) we have used an abstract notation that is associated
to a network interpretation of the integral representation.
In particular region A is modelled via a one port network
(Norton model) where the current I1+(η) is related to the
voltage V1+(η) through the algebraic-integral operator admit-
tance Ya[...] and the short circuit current Isca(η). Pictorial
illustration of the model is given in Fig. 2.

Fig. 2: Norton equivalent network model of region A corresponding
to (35).

We can extrapolate (or rigorously demonstrate as per re-
gion A) that region B, C, and D have integral representa-
tions/network models similar to region A.

For region B, starting from 2nd eq. of (15), the final
representation for real η and η′ is:

I1π+(η) = −Yb[V1π+(η)] (41)

with
Yb[...] = Yc(η) +

1

2πj

∫ ∞
−∞

yb(η, η
′)[...]dη (42)

yb(η, η
′) =

Yc(η
′)

β(η′)− β(η)

dβ

dη′
− Yc(η)

η′ − η +

+∞∑
n=1

q
Φb
n (η)u(π

2
− nΦb)

η′ − p
Φb
n (η)

(43)

pΦb
n (η) = η cos 2nΦb −

√
k2 − η2 sin 2nΦb (44)

qΦb
n (η) =

1

kZo
(η sin 2nΦb +

√
k2 − η2 cos 2nΦb) (45)

β(η) = −k cos

[
π

Φb
arccos(−η

k
)

]
(46)

Note in (41) the absence of a short circuit current (source of the
integral representation). In fact, since we have assumed plane
wave illumination from region A, the spectra of the unknowns
in region B are free from pole singularities that arise only
from GO components with infinite support (finite support GO
component yields entire function in Laplace domain).

For region C, starting from 3rd eq. of (15), the final
representation for real η and η′ is:

I2+(η) = −Yc[V2+(η)] + Iscc(η) (47)

with
Yc[...] = Yc(η) +

1

2πj

∫ ∞
−∞

yc(η, η
′)[...]dη (48)

yc(η, η
′) =

Yc(η
′)

γ(η′)− γ(η)

dγ

dη′
− Yc(η)

η′ − η +

+∞∑
n=1

qΦc
n (η)u(π

2
− nΦc)

η′ − pΦc
n (η)

(49)
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pΦc
n (η) = η cos 2nΦc −

√
k2 − η2 sin 2nΦc (50)

qΦc
n (η) =

1

kZo
(η sin 2nΦc +

√
k2 − η2 cos 2nΦc) (51)

γ(η) = −k cos

[
π

Φc
arccos(−η

k
)

]
(52)

Iscc(η) = Icc(η)−
+∞∑
n=1

qΦc
n (η)V ns2+ (p

Φc
n (η))u(

π

2
− nΦc) (53)

Note that Icc(η) depends on the GO field of the complete
problem as discussed for region A and it is related to the
spectra of the unknowns of 3rd eq. in (15), i.e. the non-
standard residue/poles of V2+(η), I2+(η), Ic+(−mc(η)).

Finally, from the 4th eq. of (15), region D shows for real η
and η′ the model

I2π+(η) = Yd[V2π+(η)] (54)

with

Yd[...] = Yd(η) +
1

2πj

∫ ∞
−∞

yd(η, η
′)[...]dη (55)

yd(η, η
′) =

Yc(η
′)

δ(η′)− δ(η)

dδ

dη′
− Yc(η)

η′ − η +

+∞∑
n=1

q
Φd
n (η)u(π

2
− nΦd)

η′ − p
Φd
n (η)

(56)

pΦd
n (η) = η cos 2nΦd −

√
k2 − η2 sin 2nΦd (57)

qΦd
n (η) =

1

kZo
(η sin 2nΦd +

√
k2 − η2 cos 2nΦd) (58)

δ(η) = −k cos

[
π

Φd
arccos(−η

k
)

]
(59)

As per region B no source is present in the integral represen-
tation (54), for the absence of GO components with infinite
support.

Eqs. (41),(47),(54) extend their validity for observation
point η out of the integration line as commented for region
A (model (35)).

As per region A, the three angular regions B,C,D show in-
tegral representations (respectively (41) (47), (54)) that can be
interpreted as abstract network models. Pictorial illustrations
of the models are given in Fig. 3.

Fig. 3: Norton equivalent network model of regions B, A, C, D in
the same geometrical order as reported in Fig. 1 and corresponding
respectively to (41),(35),(47),(54).

B. Integral representation for the layer region

With reference to region E (−d < y < 0) at Ez polarization
the GWHEs of this region are given in (20). Note that in
this case the unknowns are defined in the same complex
plane η as in classical WH equations but a problematic
exponential behavior depending on the staggered parameter s
is present. Interesting attempts to deal with exponential factors
in WH equations based on weak factorization are reported in
[33],[34],[52] and references therein.

In this paper we propose a novel effective method to deal
with exponential factors in WH equations that is based on
Fredholm factorization [22]-[23], [86].

Based on the observation made at the end of Section III-B,
we double the equations reported in (20) by interchanging
η with −η. Using the Fredholm factorization we eliminate
the minus functions respectively I1π+(−η), I2π+(−η) in
the original version of (20) and I1+(−η), I2+(−η) in the
modified (20) while interchanging η with −η. The result is
integral representations that relates the plus unknowns, i.e the
plus currents [I1+(η), I2+(η), I1π+(η), I2π+(η)] to the plus
voltages [V1+(η), V2+(η), V1π+(η), V2π+(η)].

Let us focus the procedure on the original 1st eq of (20) and
then we extrapolate the integral representations of the other
three equations. To obtain the relevant integral representation,
we apply the contour integration γ1η with the help of (14)
that allows to eliminate the unknown I1π+(−η) which is a
standard minus unknown in η (Ins1π+(−η) = 0 since no GO
component with infinite support is present). The left-hand side
(LHS) of the 1st eq in (20) yields

1

2πj

∫
γ1η

−I1+(η′) + I1π+(−η′)
η′ − η dη′=−I1+(η) + Ins1+(η) (60)

Repeating the γ1η integration on the right-hand side (RHS)
of the 1st eq. in (20), it yields

1

2πj

∫
γ1η

Y11(η′)[V1+(η′)+V1π+(−η′)]+Y12(η′)ejη
′s[V2+(η′)+V2π+(−η′)]

η′ − η
dη′

(61)

Let us consider separately the integrand for each voltage
unknown. Starting from the contribution of V1+(η), since

1

2πj

∫
γ2η

Y11(η)V1+(η′)

η′ − η dη′ = −Y11(η)V ns1+ (η) (62)

1
2πj

∫
γ1η

Y11(η′)V1+(η′)
η′−η dη′ − 1

2πj

∫
γ2η

Y11(η)V1+(η′)
η′−η dη′ =

= Y11(η)V1+(η) + 1
2πj

∞∫
−∞

(Y11(η′)−Y11(η))V1+(η′)
η′−η dη′

(63)

we have
1

2πj

∫
γ1η

Y11(η′)V1+(η′)
η′−η dη′ = Y11(η)V1+(η)+

+ 1
2πj

∞∫
−∞

(Y11(η′)−Y11(η))V1+(η′)
η′−η dη′−Y11(η)V ns1+ (η)

(64)

Focusing on the contribution of V2+(η) in (61) (similarly
to what has been reported for V1+(η)), using (14), since

1

2πj

∫
γ2η

Y12(η)V2+(η′)ejηs

η′ − η dη′ = −Y12(η)V ns2+ (η)ejηs (65)
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1
2πj

∫
γ1η

Y12(η′)V2+(η′)ejη
′s

η′−η dη′ − 1
2πj

∫
γ2η

Y12(η)V2+(η′)ejηs

η′−η dη′ =

= Y12(η)V2+(η)ejηs + 1
2πj

∞∫
−∞

(Y12(η′)ejη
′s−Y12(η)ejηs)V2+(η′)

η′−η dη′

(66)
we have

1
2πj

∫
γ1η

Y12(η′)V2+(η′)ejη
′s

η′−η dη′ = Y12(η)V2+(η)ejηs+

+ 1
2πj

∞∫
−∞

(Y12(η′)ejη
′s−Y12(η)ejηs)V2+(η′)

η′−η dη′−Y12(η)V ns2+ (η)ejηs

(67)

For what concerns the contribution of V1π+(−η) in (61),
recalling V ns1π+(η) = 0 and using (14), since

1

2πj

∫
γ1η

Y11(η)V1π+(−η′)
η′ − η dη′ = 0 (68)

we have

1
2πj

∫
γ1η

Y11(η′)V1π+(−η′)
η′−η dη′= 1

2πj

∞∫
−∞

(Y11(η)−Y11(−η′))V1π+(η′)
η′+η dη′

(69)

Considering the contribution of V2π+(η) in (61) (similarly
to what has been reported for V1π+(η)), recalling V ns2π+(η) = 0
and using (14), since

1

2πj

∫
γ1η

Y12(η)V2π+(−η′)ejηs

η′ − η dη′ = 0 (70)

we have
1

2πj

∫
γ1η

Y12(η′)V2π+(−η′)ejη
′s

η′−η dη′ =

= 1
2πj

∞∫
−∞

(Y12(η)ejηs−Y12(−η′)e−jη
′s)V2π+(η′)

η′+η dη′
(71)

The final regularized integral representation of the 1st eq.
in (20) is given by equating (60) to (61) with the help of
(64),(67),(69),(71):

−I1+(η) = Ye11[V1+]+Ye12[V2+]+Ye13[V1π+]+Ye14[V2π+]+Isce1(η)
(72)

where the η dependence of the voltages is omitted.
In (72) we have used network notation where the algebraic-

integral operator admittances Ye1j , j = 1, 2, 3, 4 have the
following explicit forms:

Ye11[V1+] = Y11(η)V1+(η) + 1
2πj

∞∫
−∞
ye11(η, η′)V1+(η′)dη′

Ye12[V2+] = Y12(η)V2+(η)ejηs + 1
2πj

∞∫
−∞
ye12(η, η′)V2+(η′)dη′

Ye13[V1π+] = 1
2πj

∞∫
−∞
ye13(η, η′)V1π+(η′)dη′

Ye14[V2π+] = 1
2πj

∞∫
−∞
ye14(η, η′)V2π+(η′)dη′

(73)

with
ye11(η, η′) = Y11(η′)−Y11(η)

η′−η

ye12(η, η′) = Y12(η′)ejη
′s−Y12(η)e+jηs

η′−η

ye13(η, η′) = Y11(η)−Y11(−η′)
η′+η

ye14(η, η′) = Y12(η)ejηs−Y12(−η′)e−jη
′s

η′+η

(74)

In (72) we have also defined Isce1(η) that collects all
the non-standard GO singularities that are extracted in
(64),(67),(69),(71):

Isce1(η)=Ins1+(η) + Y11(η)V ns1+ (η) + Y12(η)ejηsV ns2+ (η) (75)

Using network notation Isce1(η) is a short-circuit current at
port 1, while V1+(η) and I1+(η) are the voltage and current
at the same port. V2+(η), V1π+(η), V2π+(η) are respectively
the voltage at port 2,3,4. Eq. (72) represents the first out of
four constitutive relations of the 4-port model that relates the
plus unknowns defined on the layer.
By repeating the same procedure to the 2nd eq of (20) and to
the modified eqs. of (20) while interchanging η with −η, we
get the complete integral representation of the layer. The final
representation is reported in (76). In (76) algebraic-integral
operator admittances show repetitions almost in a symmetrical
form. To complete the definition of kernels in (76) we report
the algebraic-integral operator admittances of the second row:

Ye21[V1+] = Y21(η)V1+(η)e−jηs + 1
2πj

∞∫
−∞
ye21(η, η′)V1+(η′)dη′

Ye22[V2+] = Y22(η)V2+(η) + 1
2πj

∞∫
−∞
ye22(η, η′)V2+(η′)dη′

Ye23[V1π+] = 1
2πj

∞∫
−∞
ye23(η, η′)V1π+(η′)dη′

Ye24[V2π+] = 1
2πj

∞∫
−∞
ye24(η, η′)V2π+(η′)dη′

(77)

with
ye21(η, η′) = Y12(η′)e−jη

′s−Y12(η)e−jηs

η′−η

ye22(η, η′) = Y22(η′)−Y22(η)
η′−η

ye23(η, η′) = Y21(η)e−jηs−Y21(−η′)ejη
′s

η′+η

ye24(η, η′) = Y22(η)−Y22(−η′)
η′+η

(78)

To complete the definition of source term in (76) we report:

Isce2(η)=−Ins2+(η) + Y22(η)V ns2+ (η) + Y21(η)e−jηsV ns1+ (η)

Isce3(η)=−Y11(η)V ns1+ (−η)− Ins1+(−η)− Y12(η)e−jηsV ns2+ (−η)

Isce4(η)=−Y22(η)V ns2+ (−η) + Ins2+(−η)− Y21ejηsV ns1+ (−η)

(79)

Note that (79) are valid with the assumption that the plane
wave source originates from region A, otherwise non-standard
terms arise also from π+ unknowns. As anticipated, (76) is
interpreted as a generalized Norton model with four ports. Fig.
4 shows a pictorial illustration of the model.

Fig. 4: Generalized Norton equivalent network model of region E
corresponding to (76).



9 −I1+(η)
I2+(η)
I1π+(η)
−I2π+(η)

 =

 Ye11[·] Ye12[·] Ye13[·] Ye14[·]
Ye21[·] Ye22[·] Ye23[·] Ye24[·]
Ye13[·] Ye23[·] Ye11[·] Ye21[·]
Ye14[·] Ye24[·] Ye12[·] Ye22[·]


 V1+(η)

V2+(η)
V1π+(η)
V2π+(η)

+

 −Isce1(η)
−Isce2(η)
−Isce3(η)
−Isce4(η)

 (76)

C. FIEs of the Problem and Solution

The constitutive relations of the five regions reported as in-
tegral representations in (35),(41),(47),(54) and (76) (sketched
in Figs. 3-4) relate plus current unknowns to plus voltage
unknowns. Note that the models are obtained once and
for all. The complete problem (Fig. 1) is modelled via a
connected network, see Fig.5, amenable of simplification
by substitution in terms of voltages as in circuit theory.
The elimination of plus currents allows to obtain a system
of integral equations in terms of plus voltages V+(η) =
[V1+(η), V2+(η), V1π+(η), V2π+(η)]

′ whose kernel is of Fred-
holm type of second kind due to the regularization procedure
applied in the previous sub-sections. In normal form we obtain

V+(η) +
1

2πj

∫ ∞
−∞

M(η, η′) ·V+(η′)dη′ =N(η) (80)

for η ∈ R where the kernel is

M(η, η′) = Zt(η) ·Yt(η, η
′) (81)

with Yt(η, η
′) reported in (82) and

Zt(η)=

∣∣∣∣∣∣∣∣
Ze(η) ejη sZem(η) 0 0

e−jη sZem(η) Ze(η) 0 0
0 0 Ze(η) ejη sZem(η)
0 0 e−jη sZem(η) Ze(η)

∣∣∣∣∣∣∣∣ (83)

Ze(η) =
k Zo
2ξ(η)

, Zem(η) =
k Zoe

−jξ(η)d

2ξ(η)
(84)

The source term N(η) is

N(η) = Zt(η) ·

∣∣∣∣∣∣∣
Isca(η) + Isce1(η)
Iscc(η) + Isce2(η)

Isce3(η)
Isce4(η)

∣∣∣∣∣∣∣ (85)

A detailed discussion on (80) allows to ascertain that, in
absence of regions filled by materials different from the free
space, the singularities of V+(η) are the branch point η = k
and the poles ηgo = −k cos(ϕgo) arisen from GO contribu-
tions. While classical factorization requires some mathematical
skill and it is only available in relatively very few special cases
(geometry and source), the kernels M(η, η′) of (80) involve
simple mathematical functions. Simple numerical quadratures,
such as sample and hold, allow to obtain approximate solutions
of Fredholm type of second kind [87] as (80).

Taking into account the Meixner condition near the edges,
the asymptotic behavior of the unknowns of each components
of V+(η) for η →∞ is o(η−1−ν) with ν > 0 [88]. The fast
convergence of the unknowns allows to estimate the integral
in (80) on a limited spectral band.

To make a rigorous mathematical discussion and suggest
other properties and/or solution techniques of (80), we use
functional analysis. In particular it is possible to show that
in the generalized Hilbert space L2(R, µ(η)) where µ(η) is
a suitable weight with µ(η) = O(η−1/2), the matrix kernel
M(η, η′) is a compact operator [6],[55].

We note that when singularities are near the integration
line, in order to obtain fast convergence of (80), we need to

Fig. 5: Network equivalent model of the double PEC wedge problem.

warp the integration line on a suitable path v(u) that keeps
the singularities at a suitable distance. We observe that in
our problem the singularities of the kernel and of the source
term are located in the 2nd and 4th quadrant (see also Figs.
13-14 of [16]), therefore we warp the real axis into the
line Bθ : v(u) = uejθ, u ∈ R, 0 < θ < π/2 [22] that does not
capture singularities of the integrand. Both observation point
η and integration point η′ lie on Bθ, thus (80) becomes

V+(η) +

∫
Bθ

M(η, η′) ·V+(η′)dη′ = N(η), η ∈ Bθ (86)

Due to the presence of exponential factors ejη
′s in M(η, η′),

the closure at infinity between the real axis and Bθ with arcs
is possible only if 0 < tan θ < d/ |s|. However the solution of
the FIE (86) on the line Bθ is efficient also for small values of
θ that corresponds to small values of d with respect to |s|. To
estimate (86) we apply simple sample and hold quadrature in a
limited interval where A and h are respectively the truncation
and the step parameters of integration such that A/h ∈ N:

V+(v(u))+h

A/h∑
i=−A/h

M(v(u),v(h i))·V+(v(h i))v′(h i)=N(v(u)) (87)

By sampling (87) at u = hi with i = −A/h..A/h we obtain a
linear system with unknowns V+(v(h i)), whose solution al-
lows to reconstruct an approximate version of V+(η) through

V+(η) = −h
A/h∑

i=−A/h

M(η, v(h i)) ·V+(v(h i))v′(h i) + N(η) (88)

This representation is valid for observation points η ∈ Bθ
(with η′ ∈ Bθ) and by analytic continuation also for a strip
near η ∈ Bθ until observation point η crosses one of the
singularity lines of M(η, η′), see Section IV-A for definition.
Finally (35),(41),(47),(54) or (76) with discretized integrals
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Yt(η, η
′) =

∣∣∣∣∣∣∣
ya(η, η′) + ye11(η, η′) ye12(η, η′) ye13(η, η′) ye14(η, η′)

ye21(η, η′) yb(η, η
′) + ye22(η, η′) ye23(η, η′) ye24(η, η′)

ye13(η, η′) ye23(η, η′) yc(η, η′) + ye11(η, η′) ye21(η, η′)
ye14(η, η′) ye24(η, η′) ye12(η, η′) yd(η, η′) + ye22(η, η′)

∣∣∣∣∣∣∣ (82)

allow to obtain I+(η) = [I1+(η), I2+(η), I1π+(η), I2π+(η)]
′

in terms of the samples V+(v(h i)).

V. ANALYTIC CONTINUATION

In the following we combine two different techniques to
obtain the analytic extension of the approximate solution (88).
The first is based on the introduction of the angular complex
plane w and thus the representation of the GWHEs in this
complex plane that yields recursive equations. The second is
related to contour warping of the representation given in (80)
and (86) by taking care of singularity lines using the Cauchy’s
integral formula as described in Section IV-A.

The recursive equations strategy has been effectively applied
in several scattering problems dealing with isolated wedges
(see for example [16]-[21]) or dealing with complex structures
constituted of layers and wedges (see for example [53]-[57]).

In order to analytically extend an initial spectrum coming
from the approximate solution of FIEs, it is convenient to
define the spectrum in the angular complex plane w through
the mapping (89) (see the inverse mapping in [16]).

η = −k cosw (89)

From here on we introduce the following notations to
indicate the spectra in the w-plane:

F̂+(w) = F+(−k cosw), F̂d(w) = sinwF̂+(w) (90)

A fundamental property of the plus functions in w-plane is
that they are even function of w [14], i.e.

F̂+(w) = F̂+(−w), F̂d(−w) = −F̂d(w) (91)

This property is important to eliminate the (generalized) minus
functions in the GWHEs while represented in w plane.

The procedure to obtain recursive equations
that allows to analytically extend the spectra of
plus unknowns V̂1d(w), Î1+(w), V̂2d(w), Î2+(w),
V̂1πd(w), Î1π+(w), V̂2πd(w), Î2π+(w) is based on the
following steps using algebraic manipulations: 1) represent
the GWHEs (15), (20) and modified (20) (η → −η) in w
plane, 2) using symmetry of even functions in w and shifting
w we eliminate the currents on the faces in (15) and one of
the two currents in (20) and modified (20), 3) the system
of equation of point 2 allows to get each plus unknown in
terms of the all plus unknowns with argument (2π + w) or
(2Φf + w) (f = a, b, c, d). The results are the expressions
(92) that allow analytic extension of the spectra for any w
from an initial spectra coming from (88) and represented
in w plane. Note that the spectra of regions B and D are
decoupled from the spectra of regions A and C in (92).

To effectively implement the analytic continuation via (92)
and (91), we need an initial spectra of voltage/current un-
knowns valid at least in the strip −π < Re[w] < 0 of w
complex plane. In fact from (92) and (91) we get recursive
equations for plus functions of the following kind:

F+(w) =

 F+(−w) w > 0
Fnum+ (w) −π ≤ w ≤ 0

select appropriate (92) w < −π
(93)

where Fnum+ (w) is the initial approximate spectrum coming
from the solution of FIEs. Similar expressions can be easily
derived for odd functions d using (92).

However the validity strip of the initial approximate spectra
(88) (and related currents) can be limited in a strip smaller
than −π < Re[w] < 0 by the presence of singularity lines
(pΦf
n (η), f = a, b, c, d) of the kernel M(η, η′), in particu-

lar when the observation point crosses singularity lines not
captured in the derivation of (88) (see also Section IV-A).
In w-plane the singularity lines assume simple forms. They
are parallel to the image of the integration contour Bθ (86):
Bwθ : w′ = − arccos(−vejθ), v ∈ R. For an angular region of
aperture Φa, they are defined respectively in α, η, w planes by

α(η) = α(η′), η 6= η′

η′ = pΦa
n (η) = η cos(2nΦa)− ξ(η) sin 2nΦa, η 6= η′

w = −w′ + 2nΦa, w
′ 6= w

(94)

with η′ ∈ Bθ, w′ ∈ Bwθ and n ∈ N0, thus the singularity lines
are easily countable and located in w plane.

In general, to get a representation with extended validity at
least in −π < Re[w] < 0 we need to locate accurately the
singularity lines and to extract correction terms as described
in Section IV-A and [55].

VI. DIFFRACTION AND FAR FIELD

The pairs of axial spectral unknowns
{V̂1d(w), Î1+(w)}, {V̂1πd(w), Î1π+(w)}, {V̂2d(w), Î2+(w)},
{V̂2πd(w), Î2π+(w)} provide the Laplace transforms in
the w plane of the electromagnetic field respectively for
{y = 0, x > 0}, {y = 0, x < 0}, {y2 = 0, x2 > 0},
{y2 = 0, x2 < 0} that are the interfaces towards regions
A,B,C,D. Given the axial spectra we can obtain the spectra
in any azimuthal direction in the regions. In the following
we focus the attention on the angular region A, and then we
extrapolate the results for angular regions B,C,D from it.

With reference to angular region A, the spectra for any
direction ϕ is obtained through the expressions [89]:{
V̂1d(w,ϕ)= Zo(Î1+(w−ϕ)−Î1+(w+ϕ))+V̂1d(w−ϕ)+V̂1d(w+ϕ)

2

I1+(w,ϕ)= Zo(Î1+(w−ϕ)+Î1+(w+ϕ))+V̂1d(w−ϕ)−V̂1d(w+ϕ)
2

(95)

for 0 ≤ ϕ ≤ Φa, where V̂1d(w,ϕ) = sinwV̂1+(w,ϕ) =
sinwV1+(−k cosw,ϕ) and Î1+(w,ϕ) = I1+(−k cosw,ϕ)
that are respectively an odd and an even function of w.

The exact total field for 0 < ϕ < Φa is given by the
following inverse Laplace-w transforms:

Ez(ρ, ϕ) = k
2π

∫
λ(Br)

V̂1+(w,ϕ)ejkρ cosw sinwdw

Hρ(ρ, ϕ) = k
2π

∫
λ(Br)

Î1+(w,ϕ)ejkρ cosw sinwdw
(96)

where λ(Br) is the mapping of the Bromwich Br contour of
the η-plane into the w-plane, see for example [20] for details.

By applying the steepest descent path (SDP) method to
equations (96), the total field is composed as in (97):

Ez(ρ, ϕ) = Egz (ρ, ϕ) + Edz (ρ, ϕ) (97)

where Egz (ρ, ϕ) (98) and Edz (ρ, ϕ) (99) are respectively the
contribution related to GO poles and the integral along the
SDP that is the diffracted component
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V̂1d(w) = 1
2

[
−ZoÎ1+(2π + w) + ZoÎ1+(w + 2Φa) + V̂1d(2π + w)− V̂1d(w + 2Φa)+

−e−jks cos(w)+jkd sin(w)
(
−ZoÎ2+(2π + w) + ZoÎ2+(w + 2Φc) + V̂2d(2π + w) + V̂2d(w + 2Φc)

)]
Î1+(w) = 1

2Zo

[
ZoÎ1+(2π + w) + ZoÎ1+(w + 2Φa)− V̂1d(2π + w)− V̂1d(w + 2Φa)+

−e−jks cos(w)+jkd sin(w)
(
ZoÎ2+(2π + w)− ZoÎ2+(w + 2Φc)− V̂2d(2π + w)− V̂2d(w + 2Φc)

)]
V̂2d(w) = 1

2

[
ZoÎ2+(2π + w)− ZoÎ2+(w + 2Φc) + V̂2d(2π + w)− V̂2d(w + 2Φc)+

−ejks cos(w)+jkd sin(w)
(
ZoÎ1+(2π + w)− ZoÎ1+(w + 2Φa) + V̂1d(2π + w) + V̂1d(w + 2Φa)

)]
Î2+(w) = 1

2Zo

[
ZoÎ2+(2π + w) + ZoÎ2+(w + 2Φc) + V̂2d(2π + w) + V̂2d(w + 2Φc)+

−ejks cos(w)+jkd sin(w)
(
ZoÎ1+(2π + w)− ZoÎ1+(w + 2Φa) + V̂1d(2π + w) + V̂1d(w + 2Φa)

)]
V̂1πd(w) = 1

2

[
ZoÎ1π+(2π + w)− ZoÎ1π+(w + 2Φb) + V̂1πd(2π + w)− V̂1πd(w + 2Φb)+

−ejks cos(w)+jkd sin(w)
(
ZoÎ2π+(2π + w)− ZoÎ2π+(w + 2Φd) + V̂2πd(2π + w) + V̂2πd(w + 2Φd)

)]
Î1π+(w) = 1

2Zo

[
ZoÎ1π+(2π + w) + ZoÎ1π+(w + 2Φb) + V̂1πd(2π + w) + V̂1πd(w + 2Φb)+

−ejks cos(w)+jkd sin(w)
(
ZoÎ2π+(2π + w)− ZoÎ2π+(w + 2Φd) + V̂2πd(2π + w) + V̂2πd(w + 2Φd)

)]
V̂2πd(w) = 1

2

[
−ZoÎ2π+(2π + w) + ZoÎ2π+(w + 2Φd) + V̂2πd(2π + w)− V̂2πd(w + 2Φd)+

−e−jks cos(w)+jkd sin(w)
(
−ZoÎ1π+(2π + w) + ZoÎ1π+(w + 2Φb) + V̂1πd(2π + w) + V̂1πd(w + 2Φb)

)]
Î2π+(w) = 1

2Zo

[
ZoÎ2π+(2π + w) + ZoÎ2π+(w + 2Φd)− V̂2πd(2π + w)− V̂2πd(w + 2Φd)+

−e−jks cos(w)+jkd sin(w)
(
ZoÎ1π+(2π + w)− ZoÎ1π+(w + 2Φb)− V̂1πd(2π + w)− V̂1πd(w + 2Φb)

)]

(92)

Egz (ρ, ϕ) = −jk
∑
i

Res[V̂1d(w, ϕ)]wi(ϕ) e+jkρ cos wi(ϕ) (98)

Edz (ρ, ϕ) = −ke
−jkρ

2π

∫
SDP

V̂1d(w,ϕ)ekρh(w)dw (99)

where h(w) = kρ(cosw+1), wi(ϕ) = woi±ϕ and woi are the
poles of the axial spectrum V̂1d(w). As an alternative, classical
GO considerations can be used to obtain the GO components.
Since on the SDP h(w) is a continuous real function, which
rapidly goes to −∞ toward the end points of the path, as kρ→
∞, the main contribution in (99) is located near the saddle
point −π, thus the diffracted component can be approximated
with the GTD component:

Egtdz (ρ, ϕ) = Eo
e−j(kρ+

π
4

)

√
2πkρ

DA(ϕ,ϕo) (100)

DA(ϕ,ϕo) =
−kV̂1d(−π, ϕ)

jEo
(101)

This expression makes the importance of the analytic con-
tinuation of Section V clear. In fact, to estimate V̂1d(−π, ϕ)
in 0 < ϕ < Φa, we need the axial spectra defined in the range
−π − Φa < w < −π + Φa, see (95).

Uniform expressions of the total far field Etotz = Egz +Eutdz

are obtained via the Uniform Theory of Diffraction (UTD),
which removes caustics of GTD at shadow boundaries [90]:

Eutdz (ρ, ϕ) = Eo
e
−j(kρ+π

4 )
√

2πkρ
CA(ϕ,ϕo) (102)

CA(ϕ,ϕo) = DA(ϕ,ϕo) +
∑
go

Γgo
1− F

(
2kρ cos2 ϕ−ϕgo−π

2

)
cos

ϕ−ϕgo−π
2

(103)

where Γgo are the coefficients of the GO components
of incoming direction ϕgo and the function F (z) is the
Kouyoumjian-Pathak transition function defined in [90] and its
application in the framework of WH formulations is reported
in (63) of [16].

Following the same procedure we obtain similar expressions
for the other angular regions. In particular we observe that for

regions B and D (while illuminating the structure from region
A with a plane wave) the spectra do not contain any GO poles
since no GO component shows infinite support. In this case
the asymptotic evaluation of fields contains only a regular (no
caustics) GTD component due to the integral along the SDP.

For region B π−Φb < ϕ < π (ϕ1 = π−ϕ), we have [54]:

Edz (ρ, ϕ1) = −ke
−jkρ

2π

∫
SDP

V̂1πd(w,ϕ1)ekρh(w)dw (104)

{
V̂1πd(w,ϕ1)= Zo(Î1π+(w+ϕ1)−Î1π+(w−ϕ1))+V̂1πd(w−ϕ1)+V̂1πd(w+ϕ1)

2

I1π+(w,ϕ1)= Zo(Î1π+(w−ϕ1)+Î1π+(w+ϕ1))+V̂1πd(w+ϕ1)−V̂1πd(w−ϕ1)
2

(105)
that yields the GTD component:

Egtdz (ρ, ϕ1) = Eo
e−j(kρ+

π
4 )

√
2πkρ

DB(ϕ1, ϕo) (106)

DB(ϕ1, ϕo) =
−kV̂1πd(−π, ϕ1))

jEo
(107)

We recall that the asymptotic field for region A and B
is computed with reference coordinate system centered in
O, while for regions C and D is computed with reference
coordinate system centered in O′′ (see Fig. 1). To obtain the
GTD diffraction coefficients and total field in regions C and
D the expression obtained for A and B can respectively be
used by substituting the spectral components defined at y = 0
(labeled 1) with the ones defined at y2 = 0 (labeled 2).

VII. VALIDATION AND NUMERICAL RESULTS

With reference to the problem of Fig. 1 at Ez polarization, in
this Section we provide validations and numerical tests of the
proposed method in relation to the geometrical and physical
parameters: s, d, Φa, Φb, Φc, Φd, ϕo and Eo = 1V/m in (1).
For the sake of brevity and with minimum impact, we impose
Φd = 0 and 0 < ϕo < Φa, thus the problem is reduced of 1
region and (80) can be simplified by eliminating the unknowns
of region D, thus the system of equations is reduced from size
4 to size 3. In fact by rotation the structure of Fig. 1 can
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be reduced to this case. Note that with this assumptions the
source term N(η) (108) is reduced to three components

N(η) = Zt(η) ·

∣∣∣∣∣∣
Isca(η) + Isce1(η)
Iscc(η) + Isce2(η)

Isce3(η)

∣∣∣∣∣∣ (108)

As stated in Section II, to meet mathematical requirements
of the WH technique small vanishing losses are assumed in the
medium, and in the following numerical examples we assume
k = k′−j10−8k′. For computational purpose we have selected
k′ = 1. The analysis of problem for practical values of geomet-
rical/electromagnetic parameters is obtainable by scaling the
quantities according to [17], [57]. In particular a different value
of k′ (for example k′ = p such that knew = p(1 − j10−8))
changes the computed spectrum F+(η) to k

knew
F+( kη

knew
),

and the distance d and s becomes respectively kd/knew and
ks/knew. Note that in our formulation the dependence on d
and s appears always as kd and ks thus all quantities are
invariant for constant kd and ks.

In the following we make self-convergence tests and valida-
tion thorough an independent fully numerical solution obtained
by a in-house code based on the Finite Element Method
(FEM) embedding singular modelling [82] with the following
setup: region truncated at a distance of ρ = 12λ from the
origin O with perfectly matched layer of cylindrical shape of
depth λ/2 and discretization via quadratic triangular elements
with max side length of λ/10. Although we have truncated
the structure at a large distance from the origin in FEM,
the truncation generates spurious diffraction/reflections that
compromise the precision of this solution. On the contrary
our semi-analytical method does not suffer of such limit and
this phenomenon demonstrates its superiority for the analysis
of infinite canonical problems with the only limit due to the
computation of asymptotics.

Solutions are reported in terms of spectra, GTD coefficients,
UTD fields, total far fields for validation, see Section VI
for details. We recall that the proposed solution is obtained
directly from the axial spectra of the complete problem and
not using multiple steps of interaction among separated objects
like in iterative physical optics or using multiple diffraction
coefficients as in ray-tracing technique.

The proposed significant test case analyzes in depth a
configuration of the double PEC wedge problem in free space.
All the properties of our solution are given in terms of spectral
quantities, diffraction coefficients, and total far fields. With
reference to Fig. 1, the physical parameters of the problem
in the selected test case are: Φa = 0.65π,Φb = 0.3π,Φc =
0.7π, krd = 2, krs = 3 and Eo = 1V/m,ϕo = 0.1π and
k = k′− jk′′ where k′, k′′ > 0 and k′′/k′ = 10−8. According
to GO, the E-polarized incident plane wave impinges on the
wedges and generates reflections from face A and C respec-
tively with azimuthal directions ϕRA = −π+2Φa−ϕo = 0.2π
and ϕRC = +π − 2Φc − ϕo = −0.5π. While computing
the solution of (86) we have selected θ = π/6 such that
0 < tan θ < d/ |s| = 2/3.

In particular we note that in this test case, while computing
(80)-(88), we need to consider the singularity line pΦb

1 (η),
see discussion of (35). Moreover, in this test case, due to the
presence of further singularity lines, the initial validity strip in
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Fig. 6: Test Case. Convergence of spectral components. Left: plots
of (a) |V1d(w)|, (b) |V1πd(w)|, (c) |V2d(w)| of the reference solution
(integration parameters A = 40, h = 0.1) for −π < w < 0. Right:
plots of the corresponding relative error in log10 scale of solution
with various integration parameters A, h with respect to the reference
solution.

w plane does not contain the segment −π < w < 0 useful for
the application of recursive equations (93) with (92) to get the
spectra for GTD computation (Section VI), i.e. −π − Φf <
w < −π+ Φf , f = a, b, c. Due to dependence of singularity
lines on the aperture angles of the angular regions, while esti-
mating the spectra for −π < w < 0 in this test case, we need
to consider the singularity lines pΦa

1 (η),pΦb
1 (η),pΦb

2 (η) and
pΦc

1 (η). In particular the extra singularity lines pΦa
1 (η),pΦb

2 (η)
and pΦc

1 (η) yield spectral singularities in w plane respectively
that pass through points w = −2Φa + π/2, w = −4Φb + π/2
and w = −2Φc+π/2, if not treated with correction terms. The
correction terms are computed as reported in (35) and using the
indications of Sections IV-A and V and [55]. A deep study of
singularity lines in general needs their graphic representation
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Fig. 7: Test Case. Plots of |V1d(w)|, |V1πd(w)|, |V2d(w)| of the
reference solution (integration parameters A = 40, h = 0.1) in
−2π < w < 0. Gray bars represent the limits useful for GTD
computation, i.e. −π − Φf < w < −π + Φf , f = a, b, c. Peaks
are observed in correspondence of GO poles.
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Fig. 8: Test Case. Plots of GTD diffraction coefficient in dB scale.
Top: regions A and B. Bottom: region C. Peaks occur for caustics of
GO (GO shadow boundaries).

together with integration lines used to derive and solve the
FIEs. Similar considerations hold using the Norton model of
angular regions to compute I+(η). The same property does
not occur in the Norton model of the layer region because of
the absence of singularity lines. Once obtained the spectra in
−π < Re[w] < 0 the application of recursive equations (93)
allow to obtain the spectra for any w.

To check the convergence we select several sets of integra-
tion parameters A and h for the solution of (86). In Fig. 6
we illustrate the convergence of the axial spectral voltages
in the segment −π < w < 0 before the application of
recursive equations. For each spectral component and selection
of integration parameters we have estimated the relative error
in log10 scale with respect to the reference solution A = 40,
h = 0.1. The plotted numerical results demonstrate the
convergence at least for A = 30, h = 0.2.

In Fig. 7 we show the spectra of the three voltage unknowns
reconstructed in −2π < w < 0 using the recursive equations
for the reference solution. The figure shows in gray bars the w-
limits useful for GTD computation. Peaks of the spectra are
observed in correspondence of GO poles, i.e. incident wave
wo = −ϕo = −0.1π, face A reflected wave wRA = −2Φa +
ϕo = −1.2π, face C reflected wave wRC = −2Φc − ϕo =
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Fig. 9: Test Case. Top-left: total far field at kρ = 10 for region A+B
with respect to the origin O (Fig. 1) and its composition in terms
of GO and UTD components for the reference solution (integration
parameters A = 40, h = 0.1). Top-left: total far field at kρ2 = 10 for
region C with respect to the origin O′′ (Fig. 1) and its composition in
terms of GO and UTD components for the reference solution. Bottom:
corresponding comparisons with the FEM solution as described in
main text.

−1.5π.
Using (101) for Region A and (107) for Region B and ex-

trapolating an analogous expression for for Region C (starting
from Region A) we compute GTD diffraction coefficients.
Fig. 8 shows the GTD diffraction coefficients in dB scale
for the problem under examination. Peaks occur for caustics
of GO (GO shadow boundaries), i.e. face A reflected wave
ϕRA = −π − wRA = 0.2π and face C reflected wave
ϕRC = π + wRC = −0.5π.

Fig. 9 shows on the top-left the total far field in regions
A and B at kρ = 10 with respect to the origin O (Fig. 1)
and its composition in terms of GO and UTD components
for the reference solution. In the same figure on the bottom-
left side we have reported the comparison between the solution
proposed in this paper and the FEM solution taken as reference
for comparison (see description at the beginning of this Section
for details) in terms of total far-field at kρ = 10.

Fig. 9 shows on the top-right the total far field in region
C at kρ2 = 10 with respect to the origin O′′ (see Fig. 1 and
notation in the Introduction) and its composition in terms of
GO and UTD components for the reference solution. In the
same figure on the bottom-right side we have reported the
comparison between the solution proposed in this paper and
the FEM solution in terms of total far-field at kρ2 = 10.

From bottom of Fig. 9 we observe a good agreement
between the FEM solution and the proposed solution except
for ϕ = π and ϕ2 = 0. This small discrepancy is due to the
application of saddle point technique for the approximation
of GTD field while the saddle point is near the branch point
η = +k. Improvements of asymptotics are out of the scope of
this paper, however solution for this kind of approximation are
reported in [58]. Finally to further validate the solution Fig. 10
presents a self-convergence study of the relative error of total
field with respect to the reference solution (A = 40, h = 0.1)
in terms of integration parameters A, h.

As stated at the beginning of this Section, according to
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Fig. 10: Test Case. Top, Bottom: respectively relative error in log10

scale of total far field for region A+B at kρ = 10 and C at
kρ2 = 10 with respect to the reference solution in terms of integration
parameters A, h.
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Fig. 11: Test Case. Top, Center, Bottom: respectively total far field
at kρ = 20 for region A+B and at kρ2 = 20 for region C. Legend
is reported in the center for all the three sub-figures.

our opinion we assert and demonstrate the superiority of
the proposed semi-analytical technique for infinite canonical
problems. Fig. 11 shows the comparison between the solution
proposed in this paper and the FEM solution in terms of
total far-field at kρ = 20 for region A+B and at kρ2 = 20
for region C. In this case we observe that, despite the facts
that the truncation of the geometry is quite far (at 12λ) and
refinement with quadratic triangular mesh is used (max side
less than λ/10), we observe spurious non physical oscillations
for FEM solution at kρ = 20 in region B that degenerate at
further distance.

VIII. CONCLUSIONS

In this paper, we present a new method to study the
scattering of a plane electromagnetic wave by two separated
arbitrarily oriented perfectly electrically conducting (PEC)

wedges with parallel axes. The problem is formulated in
a unique entire model based on GWHEs with the help of
network interpretations that takes into consideration the true
near-field interaction of the two wedges avoiding multiple
steps of interaction among separated objects. The proposed
method allows to accurately predict the effect of double PEC
wedge problem useful in the computation of path loss in
propagation with diffraction phenomena.

The numerical results are presented in terms of GTD/UTD
diffraction coefficients and total far fields for engineering and
physical applications such as propagation, radar technologies,
antenna technologies, electromagnetic compatibility, electro-
magnetic shielding, security scan and wireless communication.
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