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The scattering of electromagnetic waves by two opposite
staggered perfectly electrically conducting half-planes

V.G. Daniele, G. Lombardi*, R.S. Zich

Politecnico di Torino-ISMB, Torino, Italy

Abstract

In this paper we examine the scattering of a plane electromagnetic wave by

two opposite staggered perfectly electrically conducting (PEC) half-planes im-

mersed in free space by using the Wiener-Hopf technique in the spectral do-

main. The procedure to obtain the solution is based on the reduction of the

factorization problem of matrix Wiener-Hopf equations to Fredholm integral

equations of second kind (Fredholm factorization). The structure is of inter-

est in antenna technologies, electromagnetic compatibility and electromagnetic

shielding in particular for the computation of the transmitted field.

Keywords: Electromagnetic scattering, Diffraction, Wiener-Hopf method,

Integral equations, Network modelling, Stratified regions, Half-planes,

Analytical-numerical methods, Antenna technologies, Electromagnetic

compatibility, Electromagnetic shielding

1. Introduction

In this paper we consider the classical canonical scattering problem consti-

tuted of two opposed staggered Perfectly Electrically Conducting (PEC) half

planes immersed in free-space. Cartesian coordinates as well as polar coordi-

nates will be used to describe the problem. Two origins are considered, see5

Fig. 1: the edge of the upper half-plane is chosen as origin O for coordinates
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(x, y, z) and (ρ, ϕ, z), while the edge of the lower half-plane is chosen as ori-

gin O′ for coordinates (x2, y2, z2) and (ρ2, ϕ2, z). The two reference systems

are related through the following relations: x2 = x − s, y2 = y + d. Fig.1

shows the two PEC half planes with zero thickness respectively defined by10

x < 0, y = 0,−∞ < z < +∞ and x > s, y = −d,−∞ < z < +∞; thus

the problem is with translational symmetry along the z axis. In the following

we will consider s as the staggered parameter along x and d as the distance

along y between the two half-planes. While d can assume only positive values,

s can be either positive as in Fig. 1 or negative. In the last case, the two half-15

planes partially overlap and generate a section of parallel PEC plane waveguide

of length |s|. Three regions are identified: region 1 is the half space region de-

limited by y > 0, region 2 is the rectangular finite region with −d < y < 0 and

region 3 is the half space region delimited by y < −d. For the sake of simplicity,

the structure is illuminated by an Ez-polarized plane wave from region 1 with20

azimuthal direction ϕ = ϕo and with propagation constant k:

Eiz = Eoe
jk ρ cos(ϕ−ϕo) (1)

The literature shows several works that are related to this problem. In par-

ticular we took inspiration by the works of Abrahams on water waves [1]-[3]

that study the problem via matrix Wiener-Hopf equations. These formulations

highlight the presence of problematic exponential behavior of the spectral un-25

knowns depending on the staggered parameter s. Another attempt to deal

with exponential factors is reported in [4]. Classical related problems are the

diffraction by three semi-infinite planes by Jones [5] or the problems described

in [6]-[11]. The matrix Wiener-Hopf equations of staggered problems show the

presence of exponential phase factors that needs special attention to obtain an30

effective solutions. Solutions are proposed in [12]-[14] and [1]-[4] where special-

ized techniques are proposed according to the sign of the staggered parameters

s (i.e. s < 0 overlapping half-planes, s > 0 non overlapping half planes). In

fact discrete spectrum (poles) together with continuous spectrum is present for

s < 0 since a parallel PEC plane waveguide of length |s| is generated. On the35
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Figure 1: Scattering of an electromagnetic wave by two opposite staggered PEC half-planes.

Two cartesian reference systems are reported in the figure with coordinates (x, y, z) and

(x2, y2, z) and centered respectively in O and O′. They are related through the following

relations: x2 = x−s, y2 = y+d. Cylindrical coordinates (ρ, ϕ, z) centered in O and (ρ2, ϕ2, z)

centered O′ are used too. The figure represent the non-overlapped case with positive s, al-

though the proposed method is valid for any s and positive d.

contrary for s > 0 only continuous spectrum is present.

With reference to the structure under investigation (Fig. 1), in this work

we provide a general effective procedure for the solution of the problem for

any s and any positive d, i.e. the overlapped and non-overlapped cases. As

in most of papers devoted to this problem, we start assuming the formulation40

in terms of matrix Wiener-Hopf equations in spectral domain for an arbitrary

value of s [1]-[4], [10], [12]. However, the procedure to obtain the solution of the

WH equations is different from that of the other authors (weak factorization)

because it is based on the reduction of the factorization problem to Fredholm

integral equations of second kind. We call this factorization technique Fredholm45

factorization. This technique has been studied in [15]-[16] and effectively applied

in several scattering problems [19]-[21],[25]-[28]. The spectral formulation of

the problem reported in the following sections will take into consideration the

interaction at near field of the edges of the two edges located at (x, y) = (0, 0)

and (x, y) = (s,−d) by using a comprehensive mathematical model, i.e. a model50

that considers all the physical interactions of the problem together.
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Focusing the attention on separated half-planes, the literature presents also

alternative solutions based on multiple diffractions starting from the standard

Geometrical Theory of Diffraction (GTD) scattering model of the single diffrac-

tive structure [29]-[31].55

The solution steps of the method proposed in this paper are: 1) formula-

tion via the Wiener-Hopf (WH) technique with the help of network modelling

[16]-[20], 2) the Fredholm factorization [15]-[16] and 3) asymptotic estimations

of electromagnetic field [22]. The complementary use of network modeling (al-

though not essential) mathematically rephrases the spectral representations and60

it yields the advantage of a direct and quick pictorial interpretation of the in-

teraction among structures that constitute the original problem. Moreover, in

general, network modelling orders and systematizes the steps necessary to ob-

tain the spectral equations of complex scattering problems avoiding redundancy

in different applications [16]-[20].65

The paper is divided into seven Sections including the introduction. Sec-

tion 2 presents the mathematical definitions and background preparatory to the

Wiener-Hopf equations of the three regions reported in Section 3. The same

Section also shows the reduction of the equations to integral representations.

Both Wiener-Hopf equations and the integral representations derived during the70

Fredholm factorization can be easily interpreted as network relations. In Section

4 the integral representations allow to obtain the factorization of the problem

and the solution via Fredholm factorization in terms of spectra. In particular

Fredholm integral equations of second kind are derived. Section 5 focuses the

attention on how to estimate physical/engineering quantities. Finally Section75

6 provides validation and convergence of the proposed method and it compares

our results with the ones obtained by a full numerical technique demonstrating

the superiority of the proposed semi-analytical technique for infinite canonical

problems. The same section discusses the properties of the solution in prac-

tical cases and it presents physical and engineering insights for applications in80

the field of antenna technologies, electromagnetic compatibility and electromag-

netic shielding: GTD/UTD diffraction coefficients (UTD=Uniform Theory of
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Diffraction), total far fields, transmitted scattered energy flux. Conclusions are

reported in Section 7.

2. Mathematical Definitions and Background85

For the sake of simplicity, the structure is illuminated by an Ez-polarized

plane wave from region 1. The general skew incidence case does not introduce

conceptual difficulties but doubles the number of equations to be solved.

Taking into account the geometry and the sources, the total field is indepen-

dent of z and we have non null field components Ez(x, y), Hx(x, y), Hy(x, y). In90

this case the wave equation governs the field components, in particular for the

electric field we have

∂2Ez/∂x
2 + ∂2Ez/∂y

2 + k2Ez = 0 (2)

where k is the free-space propagation constant. To meet mathematical require-

ments of the WH technique small vanishing losses are assumed in the medium,

i.e. k = k′ − jk′′ where k′, k′′ > 0 and k′′/k′ << 1 (negligible losses).95

The boundary conditions of the problem are: 1) zero Ez on the perfect

conductors, i.e. Ez(x, y = 0−) = 0 for x < 0, Ez(x,−d+) = 0 for x > s; and 2)

continuity of both Ez and Hx on the interfaces y = 0, x > 0 and y = −d, x <

s, i.e. Ez(x, 0−) = Ez(x, 0+) for x > 0, Hx(x, 0−) = Hx(x, 0+) for x > 0,

Ez(x,−d−) = Ez(x,−d+) for x < s, Hx(x,−d−) = Hx(x,−d+) for x < s. To100

clarify the notation we consider y = 0± = ±δ and y = −d± = −d ± δ with

positive vanishing δ.

On the upper half plane as ρ → 0, Ez(ρ, ϕ) remains finite (Meixner’s edge

condition [23]): Ez(ρ, ϕ) = M0 +O(ρm) with constant M0 and m > 0. We have

same behavior for the lower half-plane.105

In region 1 the following radiation condition holds:
∣∣Ez(ρ, ϕ)− EGOz (ρ, ϕ)

∣∣ ≤
e−a1ρ with a1 > 0 and where EGOz is the Geometrical Optics component of Ez.

We have same behavior in region 3 without the presence of GO field.

According to the uniqueness theorem, the solution fulfills the edge and the

radiation conditions.110
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The starting point to deduce the matrix Wiener-Hopf equations of the prob-

lem is to subdivide the entire geometry into three planar regions bounded by

the two half plane interfaces, see Fig. 1. As reported in the figure, we consider

two reference systems for cartesian coordinates (and polar coordinates) and we

define the electromagnetic quantities using the following notation115

Ė(x2, y) = E(x, y), Ḣ(x2, y) = H(x, y) (3)

To derive the formulation of the problem in the spectral domain we define

the following Laplace transforms at y = 0±,−d±:
V1+(η) =

∞∫
0

Ez(x, 0±)ejη xdx

I1+(η) =
∞∫
0

Hx(x, 0±)ejη xdx
(4)


V2π+(η) =

0∫
−∞

Ėz(x2,−d±)e−jη x2dx2 = ejη s
s∫
−∞

Ez(x,−d±)e−jη xdx

I2π+(η) = −
0∫
−∞

Ḣx(x2,−d±)e−jη x2dx2 = −ejη s
s∫
−∞

Hx(x,−d±)e−jη xdx

(5)



V1π+(η) =
0∫
−∞

Ez(x, 0−)e−jη xdx = 0

Va−(η) =
0∫
−∞

Ez(x, 0+)ejη xdx = 0

I1π+(η) = −
0∫
−∞

Hx(x, 0−)e−jη xdx

Ia−(η) =
0∫
−∞

Hx(x, 0+)ejη xdx

(6)

120 

V2+(η) =
∞∫
0

Ėz(x2,−d+)ejη x2dx2 = e−jη s
∞∫
s

Ez(x,−d+)ejη xdx = 0

Vd+(η) =
∞∫
0

Ėz(x2,−d−)ejη x2dx2 = e−jη s
∞∫
s

Ez(x,−d−)ejη xdx = 0

I2+(η) =
∞∫
0

Ḣx(x2,−d+)ejη x2dx2 = e−jη s
∞∫
s

Hx(x,−d+)ejη xdx

Id+(η) =
∞∫
0

Ḣx(x2,−d−)ejη x2dx2 = e−jη s
∞∫
s

Hx(x,−d−)ejη xdx

(7)

In order to quickly understand the support of the Laplace transforms Fig. 2

shows a pictorial representation of the Laplace transforms of Hx (the currents).

In particular we note that the support of Ia−, I1π+, I2+ and Id+ is on one face
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Figure 2: Pictorial interpretation of the support of Laplace transforms of Hx as defined in

(4)-(7).

of the half planes (either upper or lower face), on the contrary I1+ and I2π+ are

defined on the interface between regions. The boundary conditions of the PEC125

half planes are enforced by nullifying the quantities related to the electric field

on the PEC faces, i.e. V1π+, Va−, V2+, Vd+ are zero.

These quantities are labeled with ± subscripts: + indicates plus functions

in the complex plane η, i.e. functions that converge in an upper half-plane

(Im[η] > Im[ηup]); conversely − indicates minus functions that converge in a130

lower half-plane (Im[η] < Im[ηlo]). The + (−) functions are considered non-

conventional (non-standard) if Im[ηup] > 0 (Im[ηlo] < 0). The non-standard

singularities are those located in Im[η] > 0 for plus functions and in Im[η] < 0

for minus functions. Assuming propagation constants with negative (vanishing)

parts avoids the presence of singularities on the real axis of the η plane.135

In particular we note that the Laplace transform of Eiz (1) at y = 0 is

V i1+(η) =

∞∫
0

Eiz(x, 0)e
jη xdx =

jEo
η − ηo

(8)

with a pole singularity ηo = −k cos(ϕo) whose location in η complex plane

depends on the incident angle ϕo (i.e. ηo is in the 2nd or 4th quadrant along

the segment that connects k to −k).

7



In order to model layered regions we also define the Fourier transforms140 
v(η, y) =

∞∫
−∞

Ez(x, y)ejη xdx

i(η, y) =
∞∫
−∞

Hx(x, y)ejη xdx
(9)

that are related to the Laplace transforms at the interfaces y = 0, x > 0 and

y = −d, x < s respectively via
v(η, y = 0−) = v(η, y = 0+) = V1+(η) + V1π+(−η) = V1+(η)

i(η, y = 0−) = I1+(η)− I1π+(−η)

i(η, y = 0+) = I1+(η) + Ia−(η)

(10)

and
v(η, y = −d+) = v(η, y = −d−) = ejηsV2+(η) + ejηsV2π+(−η) = ejηsV2π+(−η)

i(η, y = −d+) = ejηsI2+(η)− ejηsI2π+(−η)

i(η, y = −d−) = ejηsId+(η)− ejηsI2π+(−η)

(11)

Note that the PEC boundary conditions enforce V1π+(−η) = Va−(η) = 0 and

V2+(η) = Vd+(η) = 0 because Ez = 0 on the two sides of PEC half-planes. In145

the following to determine the matrix Wiener-Hopf equations we make extensive

reference to the quantities (4)-(7) labeled axial spectral unknowns: the voltages

V are related to Ez and the currents I are related to Hx.

From Maxwell’s equations, the use of transverse field equations [16],[17] for

planar stratified regions at Ez polarization in spectral domain allows to model150

the three regions using transmission line modelling in terms of Fourier trans-

forms (9): 
−dv(η,y)

dx = jξ(η)Z∞(η)i(η, y)

−di(η,y)
dx = jξ(η)Y∞(η)v(η, y)

(12)

where ξ(η) =
√
k2 − η2 is the spectral propagation constant and Z∞(η) =

1/Y∞(η) = kZo/ξ(η) is the spectral characteristic impedance of the transmission

line along y for TEy (Hy) modes (Zo = 1/Yo is the free space impendence).155
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The properties of the transmission line modelling for the three regions allows

to obtain the matrix Wiener-Hopf equations by reframing the Fourier transforms

unknowns into Laplace transforms unknowns.

Thus, the application of Fredholm factorization [15]-[16] allows to obtain in-

tegral representations that relates current and voltage unknowns by eliminating160

some of the unknowns and it allows to obtain Fredholm integral equations of

second kind for the solution of the problem.

In the following section we examine each regions starting from the Wiener-

Hopf equations to obtain the relevant integral representations by contour inte-

gration. In particular we will use the contours γ1η and γ2η that are respectively165

the smile and the frown integration line in η-plane [15]-[16], i.e. the real axis of

the η′-plane indented at η′ = η with a small semi-circumference respectively in

the lower half plane and in the upper half plane.

The application of Fredholm factorization is based on integral decomposition

of the Wiener-Hopf unknowns. The classical decomposition equations (see Ch. 3170

of [16]) apply to conventional (or standard) plus functions. Non-standard func-

tions present poles located in the standard conventional regular half-plane that

is Im[η] ≥ 0 for the plus functions F+(η) and Im[η] ≤ 0 for the minus functions

F−(η). The presence of not standard poles modifies the Cauchy decompositions

formula as following:175

1
2πj

∫
γ1η

F+(η′)
η′−η dη

′ = F+(η)− Fn.s.+ (η), 1
2πj

∫
γ2η

F+(η′)
η′−η dη

′ = −Fn.s.+ (η)

1
2πj

∫
γ2η

F−(η′)
η′−η dη

′ = −F−(η) + Fn.s.− (η), 1
2πj

∫
γ1η

F−(η′)
η′−η dη

′ = Fn.s.− (η)
(13)

for η ∈ R and where Fn.s.+ (η) and Fn.s.− (η) are the not standard part of F+(η) and

F−(η). To demonstrate this result, we recall that
∫

Γ1η

F+(η′)
η′−η dη

′ → 0 (
∫

Γ2η

F−(η′)
η′−η dη

′ →

0) where Γ1η (Γ2η) is the half-circle with radius |η| → ∞ in the upper (lower) η

half-plane.

We recall that (13) hold for η ∈ R. From here on this assumption is valid un-180

less otherwise specified. Another important assumption is that, while computing

ξ(η), we consider branch cuts compatible with the mathematical procedure that
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will be proposed in next sections, since it is based on contour warping of the

integration line: for instance we can assume as branch line of ξ the classical line

Im[ξ(η)] = 0 or the vertical line (Re[η] = Re[k], Im[η] < Im[k]).185

3. Wiener-Hopf and Integral Representations of the Problem

In this section we examine each regions deriving the relevant Wiener-Hopf

equations from the transmission line equations (12). For each region we also

obtain the integral representations by contour integration, that are amenable of

network interpretation in terms of spectral unknowns.190

3.1. Region 1: the upper half-space

Region 1 (y > 0) is modelled with an indefinite transmission line along

positive y with a port at y = 0 labeled port 1, thus from (12) we obtain

i(η, 0+) = Y∞(η)v(η, 0+) (14)

i.e. in terms of Laplace transforms

Ia−(η) + I1+(η) = Y∞(η)V1+(η) (15)

that is the scalar Wiener-Hopf equation that relates current and voltage un-195

knowns in region 1.

Applying the smile γ1η integration to the first member of (15) and closing

the contour with Γ1η we obtain

1

2πj

∫
γ1η

Ia−(η) + I1+(η)

η′ − η
dη′ = I1+(η)− In.s.1+ (η) + In.sa− (η) (16)

The application of the top right formula of (13) to the second member of

(15) it yields200

1
2πj

∫
γ1η

Y∞(η′)V1+(η′)
η′−η dη′ =

= 1
2πj

∫
γ1η

Y∞(η′)V1+(η′)
η′−η dη′ − 1

2πj

∫
γ2η

Y∞(η)V1+(η′)
η′−η dη′ − Y∞(η)V n.s.1+ (η)

(17)
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Note that in (17)

1
2πj

∫
γ1η

Y∞(η′)V1+(η′)
η′−η dη′ − 1

2πj

∫
γ2η

Y∞(η)V1+(η′)
η′−η dη′ =

= Y∞(η)V1+(η) + 1
2πj

−∞∫
+∞

(Y∞(η′)−Y∞(η))V1+(η′)
η′−η dη′

(18)

therefore because of (15) we equate (16) to (17) with the help of (18) obtaining

I1+(η) = Y∞(η)V1+(η) +
1

2πj

∞∫
−∞

(Y∞(η′)− Y∞(η))V1+(η′)

η′ − η
dη′ − Isca(η) (19)

where Isca(η) = Y∞(η)V n.s.1+ (η) − In.s.1+ (η) + In.sa− (η). We note that Isca(η) is

defined in terms of the non standard singularities of the spectral unknowns that

are related to the physical source of the problem. In case of source constituted205

of an incident plane wave, the singularities of the spectra are poles associated

to the GO component of the fields. In this case, the non-standard components

of the unknowns can be obtained from GO consideration and using the Laplace

transform:

V n.s.1+ (η) = jEo(1−e−j2dk sin(ϕo))
η−ηo u(π/2− ϕo)

In.s.1+ (η) = −jYoEo sin(ϕo)(1−e−j2dk sin(ϕo))
η−ηo u(π/2− ϕo)

In.sa− (η) = 2jYoEo sin(ϕo)
η−ηo u(ϕo − π/2)

(20)

where u(t) is unit-step function. We observe that non-standard plus (minus)210

components are generated for 0 < ϕo < π/2 (π/2 < ϕo < π).

Note that (19) can be interpreted as the constitutive equation of Norton

type of an equivalent electric network. The equation relates the current I1+(η)

to the voltage V1+(η) through the algebraic-integral admittance operator Ya[·]

and the short circuit (known) current Isca(η):215

I1+(η) = Ya[V1+(η)]− Isca(η) (21)

for real η and where

Ya[V1+(η)] = Y∞(η)V1+(η) +
1

2πj

∞∫
−∞

ya(η, η′)V1+(η′)dη′ (22)

11



Figure 3: Norton equivalent circuit of region 1 corresponding to (21).

with

ya(η, η′) =
Y∞(η′)− Y∞(η)

η′ − η
(23)

The final representation of region 1 is therefore the Norton equation (21),

see Fig.3, where the input port is port 1 located at y = 0 and the box represents

the indefinite half-space region effect (y > d).220

3.2. Region 2: the intermediate layer

Region 2 (−d < y < 0) is modelled with a section of transmission line along

positive y of length d with two port located at y = 0 and y = −d and respectively

labeled port 1 and 2. Starting again from (12), by applying the transmission

line theory, we obtain the two port representation225  i(η, 0−) = −Y11(η)v(η, 0)− Y12(η)v(η,−d)

i(η,−d+) = Y21(η)v(η, 0) + Y22(η)v(η,−d)
(24)

where

Y11(η) = Y22(η) = Yl(η) = −jY∞(η) cot[ξ(η)d]

Y12(η) = Y21(η) = Ym(η) = j Y∞(η)
sin[ξ(η)d]

(25)

In terms of Laplace transforms by using (10) and (11) the equations (24) become{
−I1+(η) + I1π+(−η) = Y11(η)[V1+(η) + V1π+(−η)] + Y12(η)e

jηs[V2+(η) + V2π+(−η)]

I2+(η)− I2π+(−η) = Y21(η)e
−jηs[V1+(η) + V1π+(−η)] + Y22(η)[V2+(η) + V2π+(−η)]

(26)

These are two Wiener-Hopf equations that relates current and voltage unknowns

of the two ports. Because of the regularity properties of WH unknowns we

12



double the equations (26) by interchanging η with −η:230 {
−I1+(−η) + I1π+(η) = Y11(η)[V1+(−η) + V1π+(η)] + Y12(η)e

−jηs[V2+(−η) + V2π+(η)]

I2+(−η)− I2π+(η) = Y21(η)e
jηs[V1+(−η) + V1π+(η)] + Y22(η)[V2+(−η) + V2π+(η)]

(27)

Taking into account the 1st equation of (26) and the 2nd equation of (27)

we eliminate respectively the unknowns I1π+(−η) and I2+(−η) by contour in-

tegration and using (13).

By applying the smile γ1η integration to the left-hand side (LHS) of the 1st

eq in (26) and closing the contour with Γ1η we obtain235

1

2πj

∫
γ1η

−I1+(η′) + I1π+(−η′)
η′ − η

dη′ = −I1+(η) + In.s.1+ (η) + In.s1π+(−η) (28)

where In.s.1π+(−η) = 0 since it is the Laplace transform of a GO component with

finite support (i.e. entire function). Repeating the γ1η integration on the right-

hand side (RHS) of the 1st eq in (26), it yields

1
2πj

∫
γ1η

Y11(η′)V1+(η′)+Y12(η′)ejη
′sV2π+(−η′)

η′−η dη′ =

= 1
2πj

∫
γ1η

Y11(η′)V1+(η′)
η′−η dη′ − 1

2πj

∫
γ2η

Y11(η)V1+(η′)
η′−η dη′ − Y11(η)V n.s.1+ (η)+

+ 1
2πj

∫
γ1η

Y12(η′)ejη
′sV2π+(−η′)
η′−η dη′ − 1

2πj

∫
γ1η

Y12(η)ejηsV2π+(−η′)
η′−η dη′

(29)

where we have used the following properties

1
2πj

∫
γ2η

Y11(η)V1+(η′)
η′−η dη′ = −Y11(η)V n.s.1+ (η)

1
2πj

∫
γ1η

Y12(η)ejηsV2π+(−η′)
η′−η dη′ = 0

(30)

derived directly from (13) and the regularity properties of the unknowns, and240

where V n.s.2π+(−η) = 0 since it is the Laplace transform of a GO component with

finite support (i.e. entire function).

By noting inside (29) that

1
2πj

∫
γ1η

Y11(η′)V1+(η′)
η′−η dη′ − 1

2πj

∫
γ2η

Y11(η)V1+(η′)
η′−η dη′ =

= Y11(η)V1+(η) + 1
2πj

∞∫
−∞

(Y11(η′)−Y11(η))V1+(η′)
η′−η

(31)
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and

1
2πj

∫
γ1η

Y12(η′)ejη
′sV2π+(−η′)
η′−η dη′ − 1

2πj

∫
γ1η

Y12(η)ejηsV2π+(−η′)
η′−η dη′ =

= 1
2πj

∞∫
−∞

(Y12(η)ejηs−Y12(η′)e−jη
′s)V2π+(η′)

η′+η dη′
(32)

we obtain a regularized version of (29)245

1
2πj

∫
γ1η

Y11(η′)V1+(η′)+Y12(η′)ejη
′sV2π+(−η′)

η′−η dη′ =

= Y11(η)V1+(η′) + 1
2πj

∞∫
−∞

(Y11(η′)−Y11(η))V1+(η′)
η′−η − Y11(η)V n.s.1+ (η)+

+ 1
2πj

∞∫
−∞

(Y12(η)ejηs−Y12(η′)e−jη
′s)V2π+(η′)

η′+η dη′

(33)

Equating the RHS of (28) to the RHS of (33) we obtain

−I1+(η) = +Y11(η)V1+(η) + 1
2πj

∞∫
−∞

(Y11(η′)−Y11(η))V1+(η′)
η′−η +

+ 1
2πj

∞∫
−∞

(Y12(η)ejηs−Y12(η′)e−jη
′s)V2π+(η′)

η′+η dη′ − Iscb1(η)
(34)

where Iscb1(η) = In.s.1+ (η) + Y11(η)V n.s.1+ (η). We note that Iscb1(η) is defined in

terms of non standard singularities of the spectral unknowns that are related

to the physical source of the problem, for instance an incident plane wave, see

(20). In this case the non-standard plus components are generated only for250

0 < ϕo < π/2.

Eq. (34) is one of the two equations of region 2 that relates the spectral

unknown I1+(η) to V1+(η) and V2π+(η).

To obtain a 2nd equation for region 2 that relates the unknown I2π+(η) to

V1+(η) and V2π+(η), we start by considering the 2nd eq. of (27). Similar to the255

1st equation, we apply the smile γ1η integration to the LHS of the 2nd eq in

(27) and closing the contour with Γ1η we obtain

1

2πj

∫
γ1η

I2+(−η′)− I2π+(η′)

η′ − η
dη′ = In.s2+ (−η)− I2π+(η) + In.s2π+(η) (35)

where In.s.2π+(η) = 0.

Repeating the γ1η integration on the right-hand side (RHS) of the 1st eq in

14



(27), it yields260

1
2πj

∫
γ1η

Y21(η′)ejη
′sV1+(−η′)+Y22(η′)V2π+(η′)

η′−η dη′ =

= 1
2πj

∫
γ1η

Y22(η′)V2π+(η′)
η′−η dη′ − 1

2πj

∫
γ2η

Y22(η)V2π+(η)
η′−η dη′+

+ 1
2πj

∫
γ1η

Y21(η′)ejη
′sV1+(−η′)

η′−η dη′ − 1
2πj

∫
γ1η

Y21(η)ejηsV1+(−η′)
η′−η dη′+

+Y21(η)ejηsV n.s.1+ (−η)

(36)

where we have used the following properties

1
2πj

∫
γ2η

Y22(η)V2π+(η′)
η′−η dη′ = 0

1
2πj

∫
γ1η

Y21(η)ejηsV1+(−η′)
η′−η dη′ = Y21(η)ejηsV n.s.1+ (−η)

(37)

where V n.s.2π+(−η) = 0.

By noting inside (36) that

1
2πj

∫
γ1η

Y22(η′)V2π+(η′)
η′−η dη′ − 1

2πj

∫
γ2η

Y22(η)V2π+(η′)
η′−η dη′ =

= Y22(η)V2π+(η) + 1
2πj

∞∫
−∞

(Y22(η′)−Y22(η))V2π+(η′)
η′−η

(38)

and
1

2πj

∫
γ1η

Y21(η′)ejη
′sV1+(−η′)

η′−η dη′ − 1
2πj

∫
γ1η

Y21(η)ejηsV1+(−η′)
η′−η dη′ =

= 1
2πj

∞∫
−∞

(Y21(η)ejηs−Y21(η′)e−jη
′s)V1+(η′)

η′+η dη′
(39)

we obtain a regularized version of (36)265

1
2πj

∫
γ1η

Y21(η′)ejη
′sV1+(−η′)+Y22(η′)V2π+(η′)

η′−η dη′ =

= Y22(η)V2π+(η′) + 1
2πj

∞∫
−∞

(Y22(η′)−Y22(η))V2π+(η′)
η′−η +

1
2πj

∞∫
−∞

(Y21(η)ejηs−Y21(η′)e−jη
′s)V1+(η′)

η′+η dη′+

+Y21(η)ejηsV n.s.1+ (−η)

(40)

Equating the RHS of (35) to the RHS of (40) we obtain

−I2π+(η) = Y22(η)V2π+(η) + 1
2πj

∞∫
−∞

(Y22(η′)−Y22(η))V2π+(η′)
η′−η +

1
2πj

∞∫
−∞

(Y21(η)ejηs−Y21(η′)e−jη
′s)V1+(η′)

η′+η dη′ − Iscb2(η)
(41)
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where Iscb2(η) = In.s2+ (−η) − Y21(η)ejηsV n.s.1+ (−η). We note that Iscb2(η) is de-

fined in terms of non standard plus singularities that are related to the physical

source of the problem. For a plane wave source (see (20)) we have

In.s.2+ (η) =
−2jYoEo sin(ϕo)(e

−jk(−s cos(ϕo)+d sin(ϕo)))

η − ηo
u(π/2− ϕo) (42)

thus Iscb2(η) is non null only for 0 < ϕo < π/2.270

Eq. (41) is the second equation of region 2. in particular it relates the

spectral unknown I2π+(η) to V1+(η) and V2π+(η).

Eqs. (34) and (41) can be interpreted as the constitutive equations of Norton

type of an equivalent electric two-port network, where the input ports are port

1 located at y = 0 and port 2 located at y = −d. In particular they relates the275

currents of the two ports I1+(η) and I2π+(η) to the voltages V1+(η) and V2π+(η)

through a matrix algebraic-integral admittance operator Yb[·] and short circuit

(known) vector currents Iscb(η): −I1+(η)

−I2π+(η)

 =

 Yb11[V1+(η)] Yb12[V2π+(η)]

Yb21[V1+(η)] Yb22[V2π+(η)]

−
 Iscb1(η)

Iscb2(η)

 (43)

for real η and where

Yb11[V1+(η)] = Y11(η)V1+(η) +
1

2πj

∞∫
−∞
yb11(η, η

′)V1+(η
′)dη′

Yb12[V2π+(η)] =
1

2πj

∞∫
−∞
yb12(η, η

′)V2π+(η
′)dη′

Yb21[V1+(η)] =
1

2πj

∞∫
−∞
yb21(η, η

′)V1+(η
′)dη′

Yb22[V2π+(η)] = Y22(η)V2π+(η) +
1

2πj

∞∫
−∞
yb22(η, η

′)V2π+(η
′)dη′

(44)

with280

yb11(η, η′) = Y11(η′)−Y11(η)
η′−η yb12(η, η′) = (Y12(η)ejηs−Y12(η′)e−jη

′s)
η′+η

yb21(η, η′) = (Y21(η)ejηs−Y21(η′)e−jη
′s)

η′+η yb22(η, η′) = Y22(η′)−Y22(η)
η′−η

(45)

The final representation of region 2 is therefore the two-port Norton model

(43) amenable of network representation, see Fig.4, where the input ports are

port 1 located at y = 0 and port 2 located at y = −d and the box represents

the finite region effect (−d < y < 0).
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Figure 4: Norton equivalent model of region 2 corresponding to (43).

3.3. Region 3: the lower half-space285

Similar to Region 1, region 3 (y > −d) is modelled by an indefinite trans-

mission line along y with a port at y = −d labeled port 2, thus from (12) we

obtain

i(η,−d−) = −Y∞(η)v(η,−d−) (46)

i.e. in terms of Laplace transforms defined in Section 2

ejηsI2−(η) + ejηsId+(η) = −ejηsY∞(η)V2−(η) (47)

that is the scalar Wiener-Hopf equation that relates current and voltage un-290

knowns. Taking into account that

I2−(η) = −I2π+(−η), V2−(η) = V2π+(−η) (48)

and interchanging η with −η we obtain

−Id+(−η) + I2π+(η) = Y∞(η)V2π+(η) (49)

Applying the smile γ1η integration to the first member of (49) and closing

the contour with Γ1η we obtain

1

2πj

∫
γ1η

−Id+(−η) + I2π+(η)

η′ − η
dη′ = I2π+(η) (50)

We apply the γ1η contour integration to the second member of (49) and due295

to the regularity of V2π+(η) (which is an entire function thus V n.s.2π+(η) = 0) we
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obtain

1
2πj

∫
γ1η

Y∞(η′)V2π+(η′)
η′−η dη′ = 1

2πj

∫
γ1η

Y∞(η′)V2π+(η′)
η′−η dη′ − 1

2πj

∫
γ2η

Y∞(η)V2π+(η′)
η′−η dη′ =

= Y∞(η)V2π+(η) + 1
2πj

∞∫
−∞

(Y∞(η′)−Y∞(η))V2π+(η′)
η′−η dη′

(51)

By equating (50) to (51) because of (49) it yields

I2π+(η) = Y∞(η)V2π+(η) +
1

2πj

∫ ∞
−∞

(Y∞(η′)− Y∞(η))V2π+(η′)

η′ − η
dη′ (52)

which is an homogenous equations with respect to the results obtained for region

1 and 2.300

Note that also (52) can be interpreted as the constitutive equation of Norton

type of an equivalent electric network without short circuit currents therefore

in this case we have a one-port admittance representation. The equation re-

lates the current I2π+(η) to the voltage V2π+(η) through the algebraic-integral

admittance operator Yc[·] :305

I2π+(η) = Yc[V2π+(η)] (53)

for real η and where

Yc[V2π+(η)] = Y∞(η)V2π+(η) +
1

2πj

∞∫
−∞

yc(η, η
′)V2π+(η′)dη′ (54)

with

yc(η, η
′) =

Y∞(η′)− Y∞(η)

η′ − η
(55)

The final representation of region 3 is therefore the Norton model (53), see

Fig.5, where the input port is port 2 located at y = −d and the box represents

the indefinite half-space region effect (y < −d).310

4. Fredholm factorization and Solution

By considering the integral representations (21), (43), (53) related to the

three regions respectively region 1, 2 and 3 and/or by connecting the three
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Figure 5: Norton equivalent circuit of region 3 corresponding to (53).

networks representing the regions (Figs. 3-5) we obtain a comprehensive math-

ematical model of the problem, i.e. a model that considers all the physical315

interactions of the problem together. By substitution (i.e. by circuital analysis)

we eliminate the current unknowns and we obtain a system of two Fredholm

integral equations of second kind (FIEs) in normal form with voltage unknowns,

i.e. V1+(η) and V2π+(η):

V1+(η)+
1

2πj

∞∫
−∞

(Zt(η)Yt(η
′)−1)V1+(η′)
η′−η dη′+ 1

2πj

∞∫
−∞

Zt(η)(Y12(η)e
jηs−Y12(η

′)e−jη
′s)V2π+(η′)

η′+η dη′=N1(η)

V2π+(η)+
1

2πj

∞∫
−∞

(Zt(η)Yt(η
′)−1)V2π+(η′)
η′−η dη′+ 1

2πj

∞∫
−∞

Zt(η)(Y21(η)e
jηs−Y21(η

′)e−jη
′s)V1+(η′)

η′+η dη′=N2(η)

(56)

with real η and where320

Yt(η) = Yl(η) + Y∞(η) = −j ξ(η)e+jξ(η)d

kZo sin(ξ(η)d)
=

1

Zt(η)
(57)

and

N1(η) = Zt(η)(Iscb1(η) + Isca(η))

N2(η) = Zt(η)Iscb2(η)
(58)

and by recalling the definitions reported in (12), (25), (19), (34), (41). Note that

(56) show symmetrical algebraic-integral operators 1 + P [·] and Q[·] applied to

V1+(η) and V2π+(η), i.e. we can rewrite the equations as

(1 + P [·])V1+(η) +Q[V2π+(η)] = N1(η)

Q[V1+(η)] + (1 + P [·])V2π+(η) = N2(η)
(59)

We observe that (56) constitute a non-singular integral representation with325

compact kernels [19], in particular it is regular at η = η′. The same equation
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holds for a different integration line when the observation points (η) lie on

the integration line (η′). In particular we consider to warp the the original

integration line of (56) (the real axis of η plane) into the line Bθ = {η(u) =

uejθ, −∞ < u < ∞} with 0 ≤ θ ≤ π/2 that does not capture singularities of330

the integrand and allows fast convergence because it leaves far away the branch

points ±k of ξ(η) because both the singularities and ±k are located in the 2nd

and 4th quadrant of η plane. Consequently we rewrite the equation (56) as

V1+(η)+
ejθ

2πj

∫
Bθ

(Zt(η)Yt(η
′)−1)V1+(uejθ)

uejθ−η du+ ejθ

2πj

∫
Bθ

Zt(η)(Y12(η)e
jηs−Y12(ue

jθ)e−jue
jθs)V2π+(uejθ)

uejθ+η
du=N1(η)

V2π+(η)+
ejθ

2πj

∫
Bθ

(Zt(η)Yt(ue
jθ)−1)V2π+(uejθ)

uejθ−η du+ ejθ

2πj

∫
Bθ

Zt(η)(Y21(η)e
jηs−Y21(ue

jθ)e−jue
jθs)V1+(uejθ)

uejθ+η
du=N2(η)

(60)

with η ∈ Bθ.

However, due to the asymptotic properties of kernels in (60) (in particular see335

Q[·] in (59)) we need to impose the following constraint related to the geometry

of the problem

θ < θc = arctan(d/|s|) (61)

Fast convergence of kernels is quickly obtained for any θ such that 0 << θ . θc.

Fredholm theory guarantees the convergence via numerical procedure of in-

tegral equations of second kind [24]. Since the kernels in (60) presents well340

suited behavior, we use a simple sample and hold quadrature scheme to obtain

accurate and stable numerical solutions. We apply uniform sampling f(h i)

with i = −Ah ..
A
h and modified left-rectangle numerical integration formula

∞∫
−∞

f(u)du ≈ h
A/h∑

i=−A/h
f(h i) where A and h are respectively the truncation param-

eter and the step parameter for the integrals in u. The total number of samples345

is N = 2A/h + 1. This rule has been successfully applied in wedge problems

[25]-[27], [19]-[20]. We observe that as A → +∞ and h → 0, the numerical

solution of the FIEs converges to the exact solution [24]; consequently h has to

be chosen as small as possible and A has to be chosen as large as possible. In

practical numerical implementations A and h are finite and they are selected350

according to the kernel behavior (spectral bandwidth and shape).

In our computational tests we have considered integration contours Bθ with
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a maximum θ equal to π/4. This selection allows to get a good convergence

rate in the numerical discretization of (60). We also note that the constraint

(61) can be relaxed while truncating the original infinite interval of integration355

since the truncated interval make the kernels automatically compact.

The discretization procedure yields a linear systems whose unknown vector

is constituted of samples of V1+(η) and V2π+(η) along Bθ in the interval u ∈

[−A,A] with step h. Finally we reconstruct V1+(η) by using the discretized

version of (60). In order to obtain the currents I1+(η) and I2π+(η) we resorts to360

the discretized version of integral representations (21), (53) or (43) that produce

same results.

5. Estimation of Physical/Engineering Quantities

In this section, with reference to Fig. 1, we illustrate how to compute the

GTD/UTD diffraction coefficients and the total far fields in region 1 and 3, and365

the transmitted scattered energy flux from region 1 to region 3, while the source

is constituted of an Ez polarized plane wave.

5.1. Total far-field in region 1

According to the transmission line theory (12) for indefinite transmission line

and the equivalence theorem, see [16] in particular Ch. 7, the Fourier transform370

of the total field Ez(x, y) in region 1 (y > 0) is given by

v(η, y) = vp(η, y) + vm(η, y) = vp(η, y) + vm(η, 0)e−jξy (62)

In (62) vp(η, y) is the Fourier transform of the GO primary field

Epz (x, y) = Eiz(x, y) + Epr1z (x, y) (63)

that is the superposition of the incident wave Eiz(x, y) and the reflected wave

Epr1z (x, y) in presence of a PEC plane at y = 0. In the following we will use also

the reflected wave Epr2z (x, y) in presence of just a PEC plane at y = −d. Note375

that similarly to (8) vp(η, 0) is a function with a pole at ηo. In the same equation
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vm(η, y) is the contribution of equivalent magnetic current on the support of

the aperture (x > 0, y = 0) necessary to fulfill the equivalence theorem in region

1 for the original problem, where

vm(η, 0) = v(η, 0) = V1+(η) (64)

since vp(η, 0) = 0 because of the PEC boundary condition in the equivalent380

problem.

The application of inverse Fourier transform to (62) allows to evaluate the

total field in any point of region 1

Ez(x, y) = Epz (x, y) + Emz (x, y) (65)

with the generalized inverse Fourier transform

Emz (x, y) =
1

2π

∫
B+

V1+(η)e−jξ(η)ye−jη xdη (66)

where B+ is a horizontal line located above the pole singularity of V1+(η), i.e.385

ηo = −k cosϕo.

We note that Emz (x, y) includes the diffracted field and the portion of GO

field that corrects the primary field Epz (x, y) into the correct GO field Egoz (x, y)

in region 1 of the original problem. Note that Egoz (x, y) is constituted of: 1) the

incident wave Eiz(x, y), 2) the reflected wave from the upper half-plane Er1z (x, y)390

and the reflected wave from the lower half-plane Er2z (x, y).

We recall that the spectral singularities of the integrand are: the pole ηo and

the branch points ±k.

The use of polar coordinates (ρ, ϕ) with origin (x, y) = (0, 0) and the appli-

cation of the steepest descent path (SDP) method [17] to (66) (we apply the395

Cauchy theorem by closing B+ with the SDP line) it yields

Emz (ρ, ϕ)=−ESPDz (ρ, ϕ) +
[
−Epr1z (ρ, ϕ) + Epr2z (ρ, ϕ)

]
u(cos(ϕ) + cos(ϕo)) (67)

In (67) ESPDz (ρ, ϕ) is the contribution of the line integral along the SDP

approximated as

−ESPDz (ρ, ϕ) = Edz (ρ, ϕ) = Eo
e−j(kρ+π/4)

√
2πkρ

D1(ϕ,ϕo) (68)
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given in terms of the GTD diffraction coefficient in region 1400

D1(ϕ,ϕo) =
kv(k cosϕ, 0) sinϕ

jEo
=
kV1+(k cosϕ) sinϕ

jEo
(69)

Furthermore the extra terms appearing in (67) are due to evaluation of

the residue at η = ηo that depends on the locations of: the SDP path, the

saddle point ηs = k cosϕ and the spectral singularities of V1+(η) (the pole ηo

and the branch point k). Since the SDP position depends on the observation

direction ϕ, while closing the contour integration, the pole ηo is captured only405

for particular directions. In fact varying ϕ the SDP can cross the pole ηo. This

property generates the step functions in (67). Finally, the residue of ηo gives

the reflected waves Epr1z (ρ, ϕ) and Epr2z (ρ, ϕ)).

In general, the GO components of the original problem Egoz (ρ, ϕ) and of

the equivalent problem Epz (ρ, ϕ) can be obtained via the residue theorem or via410

classical GO considerations. In the last case, in region 1 of the original problem,

we need to consider that the polar reference system is centered in (x, y) = (0, 0),

thus for each scattered GO ray (reflected from upper half-plane and reflected

from lower half-plane) we need to take into account the different propagation

paths with phase and attenuation corrections with respect to the incident field.415

Finally from (65) and (67) the total field in region 1 is:

Ez(x, y) = Eiz(ρ, ϕ) + Edz (ρ, ϕ)+

+Epr1z (ρ, ϕ)u(− cos(ϕ)− cos(ϕo)) + Epr2z (ρ, ϕ)u(cos(ϕ) + cos(ϕo))
(70)

where Edz (ρ, ϕ) (68) is the GTD cylindrical wave field, Egoz (ρ, ϕ) = Ez(ρ, ϕ) −

Edz (ρ, ϕ) is the GO field of the original problem and Ez(ρ, ϕ) − Eiz(ρ, ϕ) −

Edz (ρ, ϕ) = Er1z (ρ, ϕ) + Er2z (ρ, ϕ) is the combination of the reflected waves of

the original problem.420

Er1z (ρ, ϕ) = Epr1z (ρ, ϕ)u(− cos(ϕ)− cos(ϕo))

Er2z (ρ, ϕ) = Epr2z (ρ, ϕ)u(cos(ϕ) + cos(ϕo))
(71)

We recall that Epr1z (ρ, ϕ) and Epr2z (ρ, ϕ) are the reflected waves of Eiz(ρ, ϕ)

in presence respectively of a PEC plane at y = 0 and y = −d. Both reflected
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waves of the original problem (71) have same shadow boundary at π − ϕo but

supplementary angular support in region 1.

In general the GTD Edz (ρ, ϕ) is based on the ray concept and, therefore, fails425

at caustics of rays as at the GO shadow boundaries where GTD diffraction coef-

ficients (69) show infinity [32]. For practical engineering/physical applications,

uniform expressions are obtained through the Uniform Theory of Diffraction

(UTD) [22]:

Eutdz (ρ, ϕ) = E0
e
−j(kρ+π4 )
√

2πkρ
C1(ϕ,ϕ0) (72)

430

C1(ϕ,ϕ0) = D1(ϕ,ϕ0) +
∑
q

Γq
1− F

(
2kρ cos2 ϕ−ϕq−π

2

)
cos

ϕ−ϕq−π
2

(73)

where Γq are the coefficients of the GO components with outward direction ϕq

and the function F (z) is the Kouyoumjian-Pathak transition function defined

in [22] and its application in the framework of WH formulations is reported in

(63) of [25].

The uniform expression of the total far-field is given by435

Ez(x, y) = Eiz(ρ, ϕ) + Eutdz (ρ, ϕ) + Er1z (ρ, ϕ) + Er2z (ρ, ϕ) (74)

From a mathematical point of view, we observe that the UTD is necessary

when the SDP crosses the poles related to GO plane wave components (in our

problem the reflected waves from the two half-planes).

In particular we will see in the next section that the pole ηo generates shadow

boundaries for the reflected waves of the two half planes and UTD will be able440

to compensate effectively the jump of the GO field.

5.2. Total far-field in region 3

In order to compute the total field in region 3 we follow the steps reported

for region 1 by noting that in region 3 no primary field is present therefore the

Fourier transform of the total field Ez(x, y) in region 3 (y < −d) is given by445

v(η, y) = vm(η, y) = vm(η,−d)e+jξy (75)
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where vm(η, y) is the contribution of equivalent magnetic current on the support

of the aperture (x < s, y = −d) necessary to fulfill the equivalence theorem in

region 3 for the original problem, where

v(η,−d) = vm(η,−d) = V2π+(−η)ejηs (76)

In region 3 we note that the GO components are constituted of rays with

limited x-support at x < s, y = −d therefore their Laplace transforms do not450

present pole singularities.

With reference to Fig. 1, let us use also the coordinate systems centered on

O′, i.e. (x2, y2, z) and (ρ2, ϕ2, z), and the related Fourier transforms. We re-

define vm(η, y) = v(η, y) = ṽ(η, y2)ejηs = ṽm(η, y2)ejηs related to Ẽz(x2, y2) =

Ez(x, y) and therefore ṽ(η, y2 = 0) = V2π+(−η).455

The application of the generalized inverse Fourier transform to ṽ(η, y2) allows

to evaluate the total field in any point of region 3:

Ẽz(x2, y2) = Ẽmz (x2, y2) =
1

2π

∫
B̃

V2π+(−η)ejξ(η)ye−jη x2dη (77)

where B̃ is a horizontal line in the convergence region that in this case can

be selected as the real axis for the absence of pole singularities. Note that

Ẽz(x2, y2) is composed of only the diffracted field.460

The use of polar coordinates (ρ2, ϕ2) with origin O′ : (x2, y2) = (0, 0) and

the application of the steepest descent path (SDP) method [17] to (77) it yields

Ẽz(ρ2, ϕ2) = Ẽmz (ρ2, ϕ2) = ẼSPDz (ρ2, ϕ2) (78)

where ẼSPDz (ρ2, ϕ2) is the contribution of the line integral along the SDP ap-

proximated as

ẼSPDz (ρ2, ϕ2) = Ẽdz (ρ2, ϕ2) = Eo
e−j(kρ2+π/4)

√
2πkρ2

D3(ϕ2, ϕo) (79)

with465

D3(ϕ2, ϕo) =
kṽ(k cosϕ2, 0) sinϕ2

jEo
=
kV2π+(−k cosϕ2) sinϕ2

jEo
(80)
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D3(ϕ2, ϕo) is the GTD diffraction coefficient in region 3 and Ẽdz (ρ2, ϕ2) is a

cylindrical wave with origin O′.

Note that in the estimation of (78) we have considered the locations of: the

SDP path, the saddle point ηs = k cosϕ2 where ϕ2 is the observation direction.

In this case the total field is constituted of just the GTD component and470

since no GO component of infinite support is present, uniformization is not

required. In fact, from a mathematical point of view, we observe that the

spectrum ṽ(η, y2) in region 3 does not contain any GO pole.

5.3. Energy flux from region 1 to region 3

In order to compute the energy flux from region 1 toward region 3 with the475

assumption of vanishing losses we can proceed in two ways:

1. to compute in physical domain the Poynting vector and integrate it along

the aperture x < s, y = −d or by approximation at far field.

2. to compute energy flux via the Parseval theorem, by using directly the

spectra along the aperture x < s, y = −d.480

We observe that the propagation of errors can rise in the computation of

energy flux in physical domain. In fact, we need to perform either the compu-

tation of near field by inverse Fourier transform or the asymptotic evaluation

of the diffracted field at far field before integration of Poynting vector. At

near field the integration is performed on the aperture, while at far field on a485

semi-circumference with center O′.

On the contrary, option 2 allows to directly evaluate the energy flux via the

integration of the spectra, therefore without any further approximations except

the one done for the solution of the WH problem reduced to Fredholm integral

equations. However, in the numerical examples of next Section, we show that490

option 1 at far-field and option 2 give very similar/almost coincident results.

Let us now show how to obtain the energy flux with the two options. The

energy flux P3 toward region 3 is given by the integration of the real part of the

Poynting vector S̃ = 1
2 Ẽ × H̃∗ along the aperture x2 < 0, y2 = 0 with normal
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−ŷ2:495

P3 =

0∫
−∞

Re[S̃y(x2, y2 = 0)]dx2 (81)

where S̃y is the y component of the Poynting vector

S̃y(x2, y2) =
1

2
Ẽz(x2, y2)H̃∗x(x2, y2) (82)

With the assumption of vanishing losses, by using polar coordinates, and con-

sidering that at far field Ẽz(ρ2, ϕ2) is given by (78)-(80) and H̃ϕ2
(ρ2, ϕ2) =

1
Zo
Ẽz(ρ2, ϕ2), we obtain.

P3 =

0∫
−π

Re[S̃y(ρ2, ϕ2)]ρ2dϕ2 =

0∫
−π

Re[
1

4πkZo
]|D3(ϕ2, ϕo)|2dϕ2 (83)

with D3(ϕ2, ϕo) reported in (80). Alternatively P3 can be computed via the500

spectra. In particular we write (81) with the help of Parseval theorem

P3 =
0∫
−∞

1
2Re[Ẽz(x2, y2 = 0)H̃∗x(x2, y2 = 0)]dx2 =

= 1
2π

+∞∫
−∞

1
2Re[ṽ(η, y2 = 0)̃i∗(η, y2 = 0)]dη

(84)

We recall that (46) is valid also for tilde functions and by considering that

ṽ(η, y2 = 0) = V2π+(−η) we obtain

P3 =
1

2π

+∞∫
−∞

1

2
|V2π+(−η)|2Re[Y ∗∞(η)]dη (85)

6. Validation and Numerical Examples

With reference to the problem reported in Fig. 1, in this Section we provide505

validations and numerical examples of the proposed method in relation to the

geometrical and physical parameters: s, d and ϕo with Eo = 1V/m. We recall

that while s < 0 the two half-planes generate a section of parallel PEC plane

waveguide of length |s|.
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As stated in Section 1, to meet mathematical requirements of the WH tech-510

nique small vanishing losses are assumed in the medium, i.e. k = k′−jk′′ where

k′, k′′ > 0 and k′′/k′ << 1 (negligible losses, i.e. k′′/k′ = 10−8).

For computational purpose we have selected k′ = 1. The analysis of problem

for practical values of geometrical/electromagnetic parameters is obtainable by

scaling the quantities according to [28]. In particular a different value of k′ (for515

example k′ = p that it yields for example knew = p(1 − j10−8)) changes the

computed spectrum F+(η) to k
knew

F+( kη
knew

), and the distance d and s becomes

respectively kd/knew and ks/knew (since in our formulation the dependence on

d and s appears always as kd and ks thus all the quantities are invariant for

constant kd and ks).520

In the following we make self-convergence tests and validation thorough an

independent full numerical solution obtained by a in-house code based on the

Finite Element Method (FEM) [33] with the following setup: region truncated

at a distance of ρ = 20 ÷ 30λ from the origin O with perfectly matched layer

of cylindrical shape of depth λ/2 and discretization via triangles with max side525

length of λ/8. Although we have truncated the structure at a huge distance

from the origin, the truncation generates spurious diffraction/reflections of the

incident plane wave that compromise the precision of the FEM solution in region

3 in particular for overlapped half planes (s < 0). On the contrary our semi-

analytical method does not suffer of such limit and this phenomenon demon-530

strates its superiority for the analysis of infinite canonical problems. In the

following, we also illustrate the properties of the solution for practical cases

and we present physical and engineering insights for applications in the field of

antenna technologies, electromagnetic compatibility and electromagnetic shield-

ing by estimating the following parameters/quantities: GTD/UTD diffraction535

coefficients, total far fields, transmitted scattered energy flux.

6.1. Test case 1: experimental test on convergence

In order to focus the attention on the validation of our technique we illustrate

in depth in this subsection the convergence properties for the problem under
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examination with the following physical parameters: Eo = 1V/m, k = k′−jk′′ =540

1−j10−8m−1, ϕo = 0.25π, k′s = 1, k′d = 1. In particular to stress our numerical

solution we select a contour warping in (60) with a relaxed parameter θ = θc =

π/4 (61), as discussed at the end of previous section. We have also checked to

obtain almost coincident results by applying 0� θ . θc for instance θ = 0.23π.

To check convergence we modify the integration parameters A and h. In Fig.6545

we illustrate the convergence on the absolute value of the spectral components

for a fixed A = 60 and a variable h ∈ [0.1, 5]. For each spectral component

and selection of integration parameters we have estimated the relative error

in log10 scale with respect to the reference solution A = 100, h = 0.05. The

plotted numerical results demonstrate the convergence for h ≥ 0.2. In Fig.7 we550

illustrate the convergence on the absolute value of the spectral components for

a fixed h = 0.1 and a variable A ∈ [5, 60]. For each spectral component and

selection of integration parameters we have estimated the relative error in log10

scale with respect to the reference solution A = 100, h = 0.05. The Figure

demonstrates the convergence for A ≥ 50. Relative errors less of approx 10−3
555

have very low impact on the estimation of field components in the physical

domain as it will be demonstrated in next test cases.

6.2. Test case 2: variable k′s, fixed k′d = 1

In this test case we illustrate the solution of the problem under examination

(Fig. 1) in terms of physical engineering quantities/parameters for a fixed k′d =560

1, variable k′s and different incidence angles ϕo. In particular we show plots of

the total far-field in region 1 (74) and region 3 (78); we also show the energy

flux toward region 3 (83),(85).

Fig.8 shows on the left the total far field in region 1 at k′ρ = 10 with respect

to the origin O (Fig. 1) and its composition in terms of GO and UTD compo-565

nents for k′s = −3, 3, k′d = 1, ϕo = 0.25π,Eo = 1V/m with k = 1− j10−8m−1

obtained via discretization of (60) with an integration contour parameter θ . θc

(61) and integration parameters A = 60, h = 0.1 useful to obtain good conver-

gence (see test case 1). In the same figure on the right side we have reported the
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Figure 6: Test Case 1. Convergence of spectral components for A = 60 and h ∈ [0.1, 5]: plots

of absolute value and the relative error in log10 scale with respect to the reference solution

A = 100, h = 0.05 for real values of η. (a) V1+(η), (b) V2π+(η), (c) ZoI1+(η), (d) ZoI2π+(η).

comparison between the solution proposed in this paper and the FEM solution570

(see description at the beginning of this section for details) in terms of total

far-field at k′ρ = 10.

We note that in the case k′s = −3 we obtain a section of parallel PEC plate

waveguide of length |k′s| = 3 and distance between planes that is k′d = 1.
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Figure 7: Test Case 1. Convergence of spectral components for h = 0.1 and A ∈ [5, 60]: plots

of absolute value and the relative error in log10 scale with respect to the reference solution

A = 100, h = 0.05 for real values of η. (a) V1+(η), (b) V2π+(η), (c) ZoI1+(η), (d) ZoI2π+(η).

In this case the parallel PEC plate waveguide is in cutoff (no propagating TEz575

mode along x) since the x-propagation constant kxn =
√
k2 − k2

tn is with strong

imaginary part as ktn = nπ/d for any n ∈ N0. The cutoff condition for the TEz

n mode can be expressed as k′ < ktn = nπ/d, i.e. non-propagating TEz n

modes are with k′d < nπ.
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Figure 8: Test case 2. Left: total far field [V/m] in region 1 at k′ρ = 10 and its composition

in terms of GO and UTD components for k′s = −3(3) on top (bottom) and k′d = 1, ϕo =

0.25π,Eo = 1V/m with k = 1 − j10−8m−1 obtained via discretization of (60) with θ . θc,

A = 60, h = 0.1. Right: comparison of total far field [V/m] with FEM solution as described

in the main text.

Fig.9 shows on the left the total far field in region 3 at k′ρ2 = 10 with respect580

to the origin O′ (Fig. 1) for the case k′s = −3, while on the right the same result

for k′s = 3 (see Sections 5.2, 5.3 and the Introduction for the quantities defined

with coordinates (x2, y2, z) or (ρ2, ϕ2, z) centered at O′).Both sub-figures also

report the FEM solution. In particular on the left for k′s = −3, we are in

presence of a section of parallel PEC plate waveguide at cutoff, therefore the585

field of region 3 is very weak. As anticipated at the beginning of the section, the

FEM solution is not able to model the field because the spurious field generated
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by the truncation of the geometry is stronger than the physical one. Moreover,

on the right side of the same figure we see similar strength of field in region 3

but loss in precision on FEM case due to the spurious field that slightly changes590

the direction of maximum and generates oscillations.
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Figure 9: Test case 2. Left: total far field [V/m] in region 3 at k′ρ2 = 10 for k′s = −3

with the proposed method and FEM solution. Right: total far field [V/m] at k′ρ2 = 10 for

k′s = 3 with the proposed method and FEM solution. k′d = 1, ϕo = 0.25π,Eo = 1V/m with

k = 1− j10−8m−1

Fig.10 presents the total far field in region 1 and 3 with same geometrical

and physical parameters except for the incident angle ϕo = 0.75π instead of

ϕo = 0.25π that yields different regularity properties of the spectral functions

due to the location of the pole ηo. Fig. 11 shows on the left side the energy flux595

toward region 3 (85) in dB (10 log10 P3) for different values of overlap parameter

k′s maintaining k′d = 1, ϕo = 0.25π,Eo = 1V/m with k = 1 − j10−8m−1. On

the right side the figure shows the relative error with respect to (83) in log10

scale.

6.3. Test case 3: variable k′s, fixed k′d = 5600

As discussed in test case 2, while s < 0 the two half-planes overlap and create

a section of parallel PEC plate waveguide whose TEz modes propagate along
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Figure 10: Test case 2. Left: total far field [V/m] in region 1 at k′ρ = 10 and its composition

in terms of GO and UTD components for k′s = −3(3) on top (bottom) and k′d = 1, ϕo =

0.75π,Eo = 1V/m with k = 1 − j10−8m−1 obtained via discretization of (60) with θ . θc,

A = 60, h = 0.1. Right: total far field [V/m] in region 3 at k′ρ2 = 10 for k′s = −3(3) on top

(bottom) and k′d = 1, ϕo = 0.75π,Eo = 1V/m with k = 1− j10−8m−1.

−x with x-propagation constant kxn =
√
k2 − k2

tn ‘ (k′ < ktn = nπ/d, n ∈ N0).

With the assumptions ϕo = 0.25π,Eo = 1V/m with k = 1 − j10−8m−1, the

cutoff condition for the TEz n mode can be expressed as k′ < ktn = nπ/d, i.e.605

non-propagating TEz n modes are with k′d < nπ. The propagation of modes

over cut-off yields a stronger energy flux toward region 3 (in comparison to test

case 2).

In this test case we have selected k′d = 5 and the numerical results are
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Figure 11: Test case 2. Left: energy flux toward region 3 (85) in dB (10 log10 P3) for different

values of overlap parameter −6 ≤ k′s ≤ 6 maintaining k′d = 1, ϕo = 0.25π,Eo = 1V/m with

k = 1− j10−8m−1. Right: relative error of (85) with respect to (83) in log10 scale.

obtained via discretization of (60) with θ . θc, A = 60, h = 0.1. Since π < k′d <610

2π, only the first (fundamental) TEz is above cutoff and it propagates along

−x where the propagation constant kx1 have a strong real part and vanishing

imaginary part due to k′′:

kx1 =
√
k2 − k2

t1 w 0.778k′ (86)

Fig. 12 shows on the left the total far field in region 1 at k′ρ = 10 with respect

to the origin O (Fig. 1) for the test case with k′s = −8,−3, 3, 8; while on the615

right the total far field in region 3 at k′ρ2 = 10 with respect to the origin O′ (Fig.

1) for the corresponding k′s. We note that in this case the overlap and non-

overlap cases yield similar energy fluxes because of the fundamental TEz1 mode

propagation. For the case k′s = −3, we have propagation of the TEz n = 1 mode

with axial oscillations in a number of kx1
|s|/(2π) = 3∗0.778/(2/pi) = 0.37cycles620

while for k′s = −8 we have kx1
|s|/(2π) = 8 ∗ 0.778/(2/pi) = 0.99cycles. For

k′s = 3, 8 we observe energy fluxes due to the aperture with radiation shape

depending on its size (see right side of Fig. 12). Fig. 13 shows on the left

side the energy flux toward region 3 (85) in linear scale for different values

of overlap parameter k′s maintaining k′d = 5, ϕo = 0.25π,Eo = 1V/m with625

k = 1 − j10−8m−1. On the right side the figure shows the relative error with

respect to (83) in log10 scale. With respect to test case 2, we observe that while

s < 0 the energy flux toward region 3 is substantial and independent from |s|
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Figure 12: Test case 3. Left: total far field [V/m] in region 1 at k′ρ = 10 for k′s = −8,−3, 3, 8,

ϕo = 0.25π,Eo = 1V/m with k = 1 − j10−8m−1. Right: total far field [V/m] in region 3 at

k′ρ2 = 10 for the corresponding cases.
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Figure 13: Test case 3. Left: energy flux toward region 3 (85) in linear scale (P3) for different

values of overlap parameter −6 ≤ k′s ≤ 6 maintaining k′d = 5, ϕo = 0.25π,Eo = 1V/m with

k = 1− j10−8m−1. Right: relative error of (85) with respect to (83) in log10 scale.

due to the guiding properties of the parallel PEC plate waveguide.

6.4. Test case 4: almost coplanar case k′d→ 0, k′s > 0630

In this test case we illustrate a further validation of our method. We stress

the proposed procedure with the limit k′d → 0. When k′d → 0, the two

half-planes are almost coplanar and therefore the fields Ez(x, y = 0) and the

field Ez(x, y = −d) are expected to exhibit similar behaviour in particular
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along the aperture 0 < x < s. To demonstrate this we evaluate and compare635

the spectrum of V1+(η) and V2π+(−η)ejηs that are respectively the x-Laplace

transform of the electric fields at y = 0 and y = −d, according to Section 2. Fig.

14 reports the comparison between the spectrum of V1+(η) and V2π+(−η)ejηs

in terms of absolute value, argument and relative error of V1+(η) with respect

to V2π+(−η)ejηs for the following physical and geometrical parameters: k′d =640

10−3, k′s = 1, ϕo = 0.25π,Eo = 1V/m with k = 1− j10−8m−1. Fig. 15 shows
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Figure 14: Test case 4. Top: absolute values of V1+(η) and V2π+(−η)ejηs. Center: Argument

of V1+(η) and V2π+(−η)ejηs. Bottom: V1+(η) with respect to V2π+(−η)ejηs in log10 scale.

the far field in region 1 and 3 for the test case. In region 1 the UTD component

is necessary to estimate the diffraction phenomenon but with respect to the

previous test cases the GO component does not exhibit jumps since the reflected
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Figure 15: Test case 4. Left: total far field [V/m] in region 1 at k′ρ = 10 and its composition

in terms of GO and UTD components for k′d = 10−3, k′s = 1 ϕo = 0.25π,Eo = 1V/m with

k = 1 − j10−8m−1 obtained via discretization of (60) with θ . θc, A = 60, h = 0.1; the

same subfigure reports the total far filed obtained via FEM solution as described on top of

the section. Right: total far field [V/m] in region 3 at k′ρ2 = 10 obtained with the proposed

method.

.

waves of the two half planes are almost completely in phase and coplanar. The645

solution is obtained via discretization of (60) with A = 60, h = 0.1 and θ . θc,

i.e. θc w d/s = 10−3. Although we are forced to select an integration contour

near the real axis of η plane, the spectral properties of the kernels improves by

yielding high precision results as demonstrated by comparison with the FEM

solution (see region 1 in Fig. 15 the TOT and FEM curves are coincident).650

7. Conclusion

In this work we have described the scattering of a plane electromagnetic wave

by two opposite staggered perfectly electrically conducting (PEC) half-planes

immersed in free space by using the Wiener-Hopf technique in the spectral

domain. We have proposed a novel effective semi-analytical method for the655

solution, that is based on the reduction of the factorization problem of matrix
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Wiener-Hopf equations to Fredholm integral equations of second kind. Several

numerical test cases validate the proposed method. The structure is of inter-

est in antenna technologies, electromagnetic compatibility and electromagnetic

shielding in particular for what concerns the computation of the transmitted660

field. From a mathematical point of view the paper presents a novel effective

technique to handle WH formulations with exponential behavior.
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