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Abstract—In stateful Software Defined Network (SDN) data
planes, network switches hold some local flow-related states
thanks to which they are able to perform decisions by locally
executing simple algorithms. While stateful data planes provide
better reactiveness in respect to vanilla SDN, states are still
bounded to single switches which represents a significant restraint
for network-wide applications.

To deal with the current limitations of stateful data planes
we introduce and provide design guidelines for LODGE, a
model according to which distributed network applications are
able to make local decisions at each switche based on some
global variables shared across other switches. We describe the
implementation of LODGE with a basic application providing
support for the detection of Distributed Denial of Service (DDoS)
attack in a scenario of stateful data planes involving P4 and Open
Packet Processor (OPP) enabled switches. We validate the two
implementations in a small emulated testbed and we show the
beneficial effects on the reduction of the total network traffic.

I. INTRODUCTION

Programmable stateful data planes offer an additional level
of programmability with respect to the traditional Software
Defined Networking (SDN) paradigm. Indeed, OpenFlow, the
most widely known protocol for SDN, is stateless at switch
level and keeps all the network states in the controller.

Stateful SDN enables the possibility of embedding network
applications in the form of elementary states directly inside the
forwarding devices, thus allowing them to take local decisions.
This approach greatly improves the reactivity for the vast
majority of network applications by removing latency over-
head previously caused by the interaction with the controller.
Recent proposals for stateful SDN have been assuming unique
states’ location in the network which inevitably leads to:
(1) scalability restraints in case of network applications with
a global scope; (2) risk of failures that can jeopardize the
integrity of the state variable.

With LODGE, LOcal Decisions on Global statEs, we grant
the possibility of defining multiple replicas of the same state
across different switches, thus providing support for network-
wide applications without incurring into drawbacks of classical
approaches. Indeed, LODGE prevents losses of state variables
in case of isolated faults and at the same time provides
better resource utilization by allowing load balancing among
different replicas of the same state. Coherently with classical
approaches, in LODGE decisions are still local to each switch
but they are based on a global information which is evaluated

by combining the state values of all replicas. In order to
provide line-rate reaction times, we define and implement a
replication scheme that maintains continuous synchronization
of all replicas, allowing to evaluate the global information
locally at each switch at any given time.

In our work we consider two different architectures for
stateful switches, namely P4 [1] and Open Packet Processor
(OPP) [2]. In this context, we provide the following main
contributions:
• we propose the state replication in stateful SDN and discuss

the main design issues;
• we describe the implementation of an application targeting

the detection of a Distributed Denial of Service (DDoSD)
attack, through P4 and OPP, leveraging LODGE;

• we experimentally show the beneficial effect of adopting
multiple replicas of the states on reducing the total network
traffic.
The paper is organized as follows. Sec. II contains an

overview of the stateful approaches and introduces P4 and
OPP. In Sec. III we discuss the related works. Sec. IV contains
the design challenges related to state replication, which are
then experimentally validated in Sec. V through a DDoSD
application. Finally, we draw our conclusions in Sec. VI.

II. STATEFUL APPROACHES FOR SDN
In stateful data planes switches are provided with the possi-

bility of taking local decisions based on internal states without
any interaction with the SDN controller. This enhancement
enables a wider level of programmability of the network with
respect to standard SDN paradigms such as the ones based
on OpenFlow. For the purpose of this work we consider two
recent proposals for stateful SDN: P4 and OPP.

P4 [1] is a novel data plane programming language which
aims to achieve both target and protocol independence, in-field
reprogrammability while providing also stateful operations
thanks to the presence of persistent memories. Similarly to
OpenFlow, P4 exploits a match-action pipeline, thus allowing
to define multiple packet processing stages. Consequently the
language specifications are designed to allow fast and efficient
translation of the programmer-defined features in match-action
rules, in order to guarantee low computational overhead and
line-rate processing speed. P4 is protocol independent thanks
to the presence of a programmable parser and deparser placed
at the two extremes of the packet processing pipeline. Due
to the parser programmability, it is possible to define custom978-1-5386-4633-5/18/$31.00 c©2018 IEEE
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Fig. 1: Example of Open Packet Processor (OPP) pipeline

protocol headers or even extend the parsing/deparsing actions
to the packets’ payload.

Open Packet Processor (OPP) [2] is a stateful data plane
abstraction that allows the definition of per-flow eXtended
Finite State Machine (XFSM) directly in the data plane. An
OPP pipeline consists of a configurable set of stateful and
stateless stages, as shown in the example of Fig. 1. A stateless
stage can be seen as a standard OpenFlow/P4 match/action
table. A stateful stage instead provides the ability to associate
a state shared among all the packets of the same flow, which
can be dynamically modified by the data plane itself.

An OPP stage processes each received packet by performing
the following operations. First, the packet is associated to a
flow key by combining an arbitrary and user configurable set
of header fields. The flow key is then used to query a state
table and retrieve the so called flow context, which consists
of a state label and a set of data variables. Second, a set of
user-defined algebraical conditions combing the values in the
flow context and in the global context is evaluated and an
array of the results of such conditions is stored in the packet
metadata. The packet header along with the flow context and
the condition array is processed by a match/action table that,
in addition to a set of packet actions, associates to the packet a
new label state and a set of flow context update functions, and
thus implements an Extended Finite Set Machine (EFSM).

III. RELATED WORK

SNAP [3] is a novel network programming abstraction,
which allows to define quite complex network applications for
stateful SDN and solves the problem of how to optimally place
the states across the network switches, taking into account the
dependency between states and the traffic flows. By design,
SNAP is limited to just one replica of each state within the
network. LODGE, instead, enables multiple replicas of the
state, extending the single replica approach in SNAP.

The most relevant work to the state replication in stateful
data planes is Swing State [4], which introduces a mechanism
providing state migrations entirely in the data plane but,
similarly to SNAP, assumes only one state that is on demand
migrated across the network.

Regarding the implementation of stateful SDN, Open-
State [5] proposed a minimal architectural extension to the
Openflow data plane and control plane to identify the flow to
which a packet belongs to and to retrieve/update the associated
state. Open Packet Processor (OPP) [2] extended OpenState
by adding additional features that allow the executions of
Extended Finite State Machines (EFSM) directly in the data
plane. FAST [1] proposes a switch chip implementation based

on the Reconfigurable Match Tables (RMT) model that per-
mits, even if with some limitations indicated by the same
authors, to manipulate some state within its pipeline. Finally,
Domino/Banzai [6] proposes both a domain specific language
and a data plane architecture for designing and implementing
line-rate stateful processing. To read/write states, a set of
specialized stateful processing instructions are executed within
the switch pipeline.

NetPaxos [7] provides application layer acceleration for
Paxos protocol by offloading parts of it to the network.
Differently from NetPaxos, our work focuses on providing a
mean for line-rate state replication directly in the dataplane.

IV. LODGE DESIGN AND CHALLENGES

Assume that S is the number of states replicated in C copies
in each of N switches in a network. The overhead of LODGE
in terms of per-switch memory occupancy grows as O(SC).
The actual amount of memory depends on the adopted data
structure.

The implementation of the state replication system needed
for LODGE presents numerous design challenges that depend
on the employed hardware architecture and on the considered
programming model.

A. Consistency requirements

Consistency among replicas belonging to the same global
state is required in order to guarantee correct functionality
of the network application. The CAP theorem [8] states that
for a replication scheme out of Consistency, Availability and
Partition tolerance only two properties can be picked at the
same time. Considering that network failures may occur,
partition tolerance cannot be left out of the design of our
replication algorithm, leaving us with two main reference
models:
• Strong Consistency. This model privileges consistency over

availability, meaning that a read operation on any non-
faulty replica will return the most recent committed value
(same for all replicas) or an error. This property is achieved
at the cost of reduced availability due to the requirement
of multiple interactions between replicas and is based on
complex consensus algorithms [9], [10].

• Eventual Consistency. This model privileges availability
and results in instantaneous operations on all replicas with
a considerably reduced protocol complexity. Although it
introduces transient inconsistencies this inconsistency can
be seen as an error in the value of a local replica.
The choice among the two models depends on the level

of tolerance of the considered application in the presence of
inconsistencies, when evaluated and updated in a distributed
fashion. Many distributed applications, as the one considered
in the following, require small packet processing latencies,
thus high availability when state changes occur. Furthermore,
they remain robust even in the presence of a (bounded) error
for the current value of a local state. Due to the necessity of
having latency guarantees, in the following we will consider



specifically the implementation of an eventual consistency
model for the design of a state replication scheme.

B. Synchronization traffic generation

In order to provide state synchronization, the switch must
generate ex-novo update packets and this is currently not
supported in available hardware architectures. Depending on
the actual architecture we foresee three different scenarios in
order to achieve this goal:

1) Self-triggered updates: The generation of an update
packet is triggered periodically by the internal clock of the
switch. This capability is typically not available in high-
performance switches, since a new packet should be inserted
in the internal hardware pipeline, introducing a performance
degradation. Indeed, this approach is not available neither in
P4 or OPP.

2) Controller-triggered updates: The generation is trig-
gered by the controller. In the case of periodic updates, the
controller sends periodic trigger messages that are processed
at the switch, and modified to generate the update packets.
However the required control bandwidth from the controller
to each switch can grow large for small update periods and at
the same time the controller is loaded with an additional task,
impairing its scalability. Moreover the actual trigger arrival
time highly depends on the instantaneous latency from the
controller to the switch and thus this approach allows to
control only the average trigger arrival time, whenever the
network conditions are stationary.

3) Traffic-triggered updates: The update packet generation
is triggered directly by the data packet reception at the switch.
This allows to self-adapt the amount of generated synchroniza-
tion traffic based on a temporal window comparable with the
states’ evolution rate which in turn is proportional to the rate of
new incoming packets. We consider two possible approaches
to tune the synchronization rate, both based on simple internal
states available in the stateful SDN switches:
• packet period p. By keeping a packet counter, a new update

packet is generated every p received packets. Thus the
update rate is proportional to the traffic. We opt for this
approach for P4, as discussed in Sec. V-A, for our DDoSD
application.

• time period δ. An update packet is generated at the first
packet arrival after δ seconds. This results in a fixed syn-
chronization rate independent from the traffic. It is obtained
as follows. After generating an update packet, the switch
schedules a change of a binary state at δ seconds in
the future. Consequently, the first packet arriving after δ
seconds will trigger the generation of the update packet. This
solution is adopted in our OPP implementation, as discussed
in Sec. V-B.

C. Format for state updates.

The update packet carries the state identifier, the state value
and the identifier of the switch originating the update. We
assume that all identifiers are pre-established by the controller

during network instantiation. This mechanism allows to pro-
vide guarantees on the state uniqueness, it provides flexibility
in term of coding the state format, and provides support
for different switching architectures by imposing a common
format. Since the definition of the optimal format is outside
the scope of our work, we consider a naı̈ve format with a
integer value to identify the state.

D. Routing for update packets

Multiple mechanisms to propagate state updates in networks
have been proposed (a comprehensive survey is available
in [11]) although they all assume a distributed system without
a centralized knowledge of the network and its condition. In
the considered SDN scenario, we can exploit the controller’s
knowledge to install updates’ forwarding rules through a
multicast distribution tree, either shared across all the states or
one specific for each state. Our implementations are adopting
this approach.

The overhead in terms of bandwidth needed for state repli-
cation grows as O(SCN), which corresponds to O(SC) per
node bandwidth. The exact evaluation of the bandwidth highly
depends on the network topology, the states’ placement and
the topology adopted for the replication.

V. DDOSD IN P4 AND OPP

We validate the effectiveness of the proposed state replica-
tion approach in a DDoSD use case. As shown in Fig. 2, we
assume that a large network (e.g., an Autonomous System -
AS) is connected to other networks (e.g., other ASs) through
different edge routers and the attack is targetting a set of
internal servers. The main idea of DDoSD is to exploit the
typical temporal correlation between the variation of traffic
across all the edge routers, due to the distributed nature of
the attack. To solve this problem through stateful switches,
the total traffic load entering the whole network and directed
toward the targeted servers is defined as a single global state
variable within the AS. This state is distributed across a set
of stateful switches (SW1-SW4 in our reference topology)
and can be obtained by summing the traffic measurements
performed locally at each switch. Notably, DDoSD is robust to
possible transient inconsistencies between the values of total
traffic estimated at each switch, thus an eventual consistent
model is adopted for the state consistency.

Stateful switches are programmed to perform the following
tasks: (1) measure locally the data rate of TCP connections to-
ward the server clusters; (2) generate, forward and process the
synchronization traffic used to share the local measurement;
(3) enforce some mitigation countermeasures if a DDoS attack
is detected. Since the definition of a realistic DDoSD algorithm
is a well known problem in the literature and it is completely
out of the scope of this work, we employ a simple proof-of-
concept threshold-based detection scheme, which can be used
as a foundation for more sophisticated DDoSD mechanisms.
A DDoS attack is detected locally at each switch if sG > sthr
where sG is the global state with the total traffic traffic directed
to the server clusters in the whole network, and sthr is the traffic
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Fig. 2: Reference topology for DDoS Detection use case.

threshold above which the attack is considered as detected,
whose value is determined with standard test-based statistical
methods. Let C be the number of replicas of the global
state. sG is estimated at each switch by summing sL, i.e. the
corresponding local measured traffic, and all the C− 1 values
of s(i)R , i.e., the remotely measured traffic at the other switches,
whose values are obtained through the update packets:

sG = sL +

C−1∑
i=1

s
(i)
R (1)

Although the traffic is routed through one replica of the state, it
may occur for it to traverse multiple replicas of the same state.
In order to avoid double-counting in our DDoSD application,
we flag the data packets once they have been counted at one
of the stateful switch. In both implementations we exploit the
two unused bits in the IP DSCP header in order to perform
such tagging.

The considered DDoSD scheme has been implemented on
top of two different programmable data plane platforms: (1)
P4 version 1.0.4 (P414); (2) Open Packet Processor (OPP), as
described in the following.

A. P4 implementation

Our prototype is developed and tested in a virtual envi-
ronment using Mininet [12] and P4-enabled virtual switches
targeting the Simple Switch architecture1. Notably, the lan-
guage specifications do not provide any support for complex
operations such as multiplications and divisions.

We assume to know the rate with a sampling window equal
to δr s. Let rn be estimated rate in the time interval [nδr, (n+
1)δr). The average rate is estimated as

sL(t) =
1

w

w−1∑
i=0

rn−i, for t ∈ [nδr, (n+ 1)δr) (2)

where w is a power of 2 in order to be implemented with
a basic shift operation, supported by P4. The w most recent
samples of rn are stored in a circular buffer.

We define an ad-hoc layer-3 packet format to carry the
updates in a standalone Ethernet frame, to minimize the
synchronization traffic overhead. The Ethernet type field is
set to a currently unused one in order to allow unequivocal

1https://github.com/p4lang

identification of update packets. This layer-3 packet encloses
the identifier of the switch originating the update, the identifier
of the state (coded with an integer value) and a variable length
field containing the state updated value.

We implement traffic-triggered updates, with packet period
p computed by considering only the packets destined to the
target servers. This is achieved by defining an additional
counter storing the number of matched packets since the last
update. The pth packet is then exploited in order to trigger the
generation of a clone of the arrived packet. While the original
packet is moved to the egress stage, the clone is processed
through an additional stage that substitutes the layer-2 payload
with the previously defined layer-3 packet containing the most
recent value of the local replica sL(t).

The update distribution is performed through a spanning dis-
tribution tree, in a fashion similar to [13]. The distribution tree
is shared by all the replicas and programmed by the controller
during application instantiation. For each update a multicast is
performing on all ports belonging to the distribution tree and
the packet is dropped before being emitted if it is destined
to the original arrival port. This is made possible by passing
ingress port metadata to the output stage and by comparing it
with the egress port metadata.

B. Open Packet Processor (OPP) implementation

The DDoSD application implemented in OPP requires a
sequence of three stages: stage 0 extracts the state from
update messages and detects flagged packets (to avoid double
counting); stage 1 stores the state from the metadata notified
by the previous table, performs monitoring and detection
and generates update messages; stage 2 performs simple L3-
forwarding. Stage 0 represents the stateful processing core
of local and global states. The processed flows are identi-
fied by the IPv4 destination addresses of the target servers.
Stage 0 also considers C flow data variables containing the
switch’s own local state sL and the C − 1 remote states
to compute (1). Local state sL is computed by employing
of a hardware-implemented Exponential Weighted Moving
Average (EWMA) of the number of packets measured in a
given preconfigured time window. Whenever an update packet
is received carrying s(i)R , the global sG is computed by (1) and
compared with sthr.

As for the state synchronization, an update message is
triggered at every computation of the EWMA. This update
message is a simple packet with IP and MPLS header where
the label contains the state identifier, the state value, and the
sender switch, as in the P4 implementation.

C. Experimental evaluation and validation

We implement and evaluate both P4 and OPP solutions for
DDoSD. In more detail, we configure a Mininet-based emu-
lation environment deploying the topology shown in Fig. 2,
where, for the sake of simplicity, each cluster and each AS is
represented by a Mininet host. To simulate the DDoS attack,
we use hping3 tool to send TCP SYN requests from all
ASs to all internal servers. In each experiment, during the
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Fig. 3: Temporal evolution of the local, remote and global
states for the stateful switches in case of 2 replicas for the
global state in P4 implementation.

first 20 seconds, we send the request at a slow rate, and then
we increase the rate in a such a way that the global variable
sG exceeds the threshold. We set the replicas of the states:
(i) in SW1 for 1 replica (C = 1), (ii) in SW1 and SW3 for
2 replicas (C = 2), and (iii) SW1, SW2, SW3, SW4 for 4
replicas (C = 4).

Fig. 3 shows the evolution of sG, sL and sR for the case of
2 replicas, implemented in P4. Identical results are obtained
with OPP and thus are not reported for the sake of space. As
expected, the values of sG evaluated at SW1 and SW3 are
coherent, and allow a contemporary detection of the DDoS
attack in the two stateful switches, without any interaction with
the controller. This experimental result validates our proposed
implementation for both P4 and OPP.

In Figs. 4 and 5, instead, we show the utilization of the
links present in the ring topology connecting all the stateful
switches, for different values of C, under P4 and OPP im-
plementations. Clearly, for one replica the load on the link is
greatly unbalanced and in general higher for all the links. The
different behavior between P4 and OPP for some links (e.g.,
SW1-R2) are due to the different routing schemes adopted in
the topology. By increasing the number of replicas to 2, the
load of the data traffic decreases by a factor of 1.6 both in P4
and OPP and is much better balanced across the links. The
slightly different values depends on the different mechanisms
adopted for triggering the update event by the incoming traffic:
in P4 the update rate depends on the traffic, whereas in OPP
it is independent. Adding two other replicas reduces the data
traffic by around 20% in both implementations, but now the
update traffic becomes more relevant due to the higher number
of replicas to synchronize. Indeed, the fraction of update
packets increases from 14% (for 2 replicas) to 24% (for 4
replicas) in P4 and from 11% (for 2 replicas) to 23% (for 4
replicas) in OPP. Thus, the two implementations behave very
similarly and show the beneficial effect on the overall traffic
in the network due to multiple replicas.

VI. CONCLUSIONS

We investigated how to enable local decisions in stateful
switches based on some global state. Our proposal, named
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LODGE, provides support for distributed applications that
requires coordination among switches. In our work we discuss
the main practical design issues for state replication, whose
implementation was validated using P4 and OPP stateful data
planes. Our results show that state replication can be beneficial
for the network performance and can be efficiently imple-
mented in high-performance programmable stateful switches.

REFERENCES

[1] P. Bosshart and al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in ACM SIGCOMM
CCR, 2013.

[2] M. Bonola, R. Bifulco, L. Petrucci, S. Pontarelli, A. Tulumello, and
G. Bianchi, “Implementing advanced network functions for datacenters
with stateful programmable data planes,” in IEEE LANMAN, 2017.

[3] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,” in
ACM SIGCOMM, 2016.

[4] S. Luo, H. Yu, and L. Vanbever, “Swing State: Consistent updates for
stateful and programmable data planes,” in ACM SOSR, 2017.

[5] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: Pro-
gramming platform-independent stateful Openflow applications inside
the switch,” ACM SIGCOMM CCR, Apr. 2014.

[6] A. Sivaraman and al., “Packet transactions: High-level programming for
line-rate switches,” in ACM SIGCOMM, 2016, pp. 15–28.

[7] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “NetPaxos:
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