
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SyRA: Early System Reliability Analysis for Cross-layer Soft Errors Resilience in Memory Arrays of Microprocessor
Systems / Vallero, Alessandro; Savino, Alessandro; Chatzidimitriou, Athanasios; Kaliorakis, Manolis; Kooli, Maha; Riera
Villanueva, Marc; Anglada, Marti; Di Natale, Giorgio; Bosio, Alberto; Canal, Ramon; Gizopoulos, Dimitris; Mariani,
Riccardo; Di Carlo, Stefano. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - STAMPA. -
68:5(2019), pp. 765-783. [10.1109/TC.2018.2887225]

Original

SyRA: Early System Reliability Analysis for Cross-layer Soft Errors Resilience in Memory Arrays of
Microprocessor Systems

Publisher:

Published
DOI:10.1109/TC.2018.2887225

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2721429 since: 2020-12-13T15:06:01Z

IEEE

 1

SyRA: Early System Reliability Analysis for
Cross-layer Soft Errors Resilience in Memory

Arrays of Microprocessor Systems
A. Vallero, A. Savino, A. Chatzidimitriou, M. Kaliorakis, M. Kooli, M. Riera, M. Anglada, G. Di Natale, A.

Bosio, R. Canal, A. Gonzalez, D. Gizopoulos, R. Mariani and S. Di Carlo

Abstract— Cross-layer reliability is becoming the preferred solution when reliability is a concern in the design of a microprocessor-based
system. Nevertheless, deciding how to distribute the error management across the different layers of the system is a very complex task that
requires the support of dedicated frameworks for cross-layer reliability analysis. This paper proposes SyRA, a system-level cross-layer early
reliability analysis framework for radiation induced soft errors in memory arrays of microprocessor-based systems. The framework exploits a
multi-level hybrid Bayesian model to describe the target system and takes advantage of Bayesian inference to estimate different reliability
metrics. SyRA implements several mechanisms and features to deal with the complexity of realistic models and implements a complete tool-
chain that scales efficiently with the complexity of the system. The simulation time is significantly lower than micro-architecture level or RTL
fault-injection experiments with an accuracy high enough to take effective design decisions. To demonstrate the capability of SyRA, we
analyzed the reliability of a set of microprocessor-based systems characterized by different microprocessor architectures (i.e., Intel x86, ARM
Cortex-A15, ARM Cortex-A9) running both the Linux operating system or bare metal in the presence of single bit upsets caused by radiation
induced soft errors. Each system under analysis executes different software workloads both from benchmark suites and from real applications.

Index Terms— Reliability, Cross-layer, Microprocessors, Soft Errors, Failures-in-Time.

—————————— u ——————————

1 INTRODUCTION
N the last decade, microprocessor performance has continu-
ously increased, leveraging the benefits introduced by the re-

lentless technology scaling. This trend is expected to continue
providing an integration capacity of billions of transistors. How-
ever, several design constraints such as reliability, power, energy
and performance, are barriers to future scaling. In this context,
cross-layer reliability (or cross-layer resilience) is gaining in-
creasing relevance [1][2][3]. In a cross-layer resilient system,
physical and circuit level techniques can mitigate low-level
faults. Hardware redundancy can be used to manage errors at
the hardware architecture layer. Eventually, software imple-
mented error detection and correction mechanisms can manage
those errors that escaped the lower layers of the stack [3][4].

The decision of how to distribute the error management
across the different layers has the goal to meet the system relia-
bility requirements of a specific application, considering its sen-
sitivity to hardware faults. Overall, by considering multiple lay-
ers, one can exploit a wider range of information when handling
errors. This leads to globally optimized error management strat-
egies dedicated not only to reliability, but also to other design
constraints [5].

Several error resilience techniques spanning multiple system
layers have been presented. A survey of single and cross-layer
dependability approaches can be found in [3]. However, at the
industrial level, cross-layer resilience is still mainly guided by
the experience of the designers [2]. A cross-layer holistic design
approach has several advantages compared to traditional single
layer techniques, but it increases the complexity of the design
process since a larger design space must be explored. This trans-
lates into an increasing demand for system-level reliability anal-
ysis frameworks able to evaluate different combinations of
cross-layer error protection techniques early in the design cycle
[6][7]. Unfortunately, such tools still lack maturity, especially
compared to those available to optimize other design parame-
ters such as power and performance.

Creating frameworks for cross-layer reliability analysis is dif-
ficult. They have to integrate data generated by different design
teams (see Section 5 for a review of relevant publications in the
field). Register Transfer Level (RTL) or gate level fault injection
campaigns are among the most accurate approaches to precisely
analyze the resilience of a circuit to different types of hardware
faults [8]. RTL models enable to precisely simulate all hardware
structures of a microprocessor, including memory arrays and
control/functional units. Nevertheless, even using statistical
fault injection [9], the complexity of RTL and gate level simula-
tions (especially when considering large memory arrays) makes
the characterization of several combinations of error mitigation
mechanisms in a cross-layer approach difficult to afford. This is
a critical issue in the early design phases when fast evaluations
are required to take informed design decisions. Moreover, when
considering cross-layer resiliency from a system perspective, ap-
plications include operating systems, drivers and filesystems.

I

————————————————
• S. Di Carlo, A. Savino and A. Vallero are with the Department of Control and

Computer Engineering of Politecnico di Torino in Italy.  
• M. Kooli and G. Di Natale are with the Montpellier Laboratory of Informatics,

Robotics and Microelectronics (LIRMM) in France.  
• A. Bosio is with University of Lyon - Lyon Institute of Nanotechnology (UMR

CNRS 5270), France
• A. Chatzidimitriou, D. Gizopoulos and M. Kaliorakis are with the Department of

Informatics and Telecommunications of the University of Athens in Greece.  
• M. Anglada, R. Canal, A. Gonzalez and M. Riera are with the Computer Archi-

tecture Departament Universitat Politecnica de Catalunya in Barcelona, Spain.
• R. Mariani is with is with Intel, Italy.  
Contact email: stefano.dicarlo@polito.it.

2

Most of these elements are hard to model in an RTL simulation
environment. This is due either to limitations of the available
simulators or due to the fact that evaluating their contribution
to the reliability would require simulating several millions of
clock cycles running again into performance issues.

This paper tries to overcome some of these limitations pre-
senting SyRA, a system-level cross-layer reliability analysis
framework for radiation induced soft errors in the memory ar-
rays of a microprocessor. SyRA has been created to support de-
signers in the early phases of the design, considering all layers
of a system from the hardware up to the application software
(including the operating system). SyRA exploits a multi-level
hybrid Bayesian model to describe the target system and to esti-
mate different reliability metrics. The construction of the system
is based on simulations at the different abstraction levels. This
allows us to speed up the analysis and therefore to cope with the
complexity of the simulation of the full software stack. SyRA ex-
tends a preliminary attempt to use Bayesian networks for cross-
layer reliability analysis [53]. Compared to [53], SyRA proposes
a revised model that changes the way technological parameters
are modeled in order to support the estimation of different reli-
ability metrics including: Architecture Vulnerability Factor
(AVF), Failures In Time (FIT) rate, and Executions Per Failure
(EPF). In particular, the last metric enables the designer to trade-
off reliability and performance in a single measure providing a
valuable tool to optimize a computing system. Moreover, SyRA
optimizes the model of the interface between components at dif-
ferent layers in order to cope with the complexity of the analysis
in case of very complex applications, thus overcoming the scala-
bility issues of [53] when considering large realistic software ap-
plications.

The complete tool-chain developed to build the model is de-
scribed in detail to show the steps required to implement the
proposed approach and to evaluate the computational cost to
analyze a system. This is a key factor in the early design phases
when several design options need to be evaluated. The proposed
framework scales efficiently with the complexity of the system.
On average it is 68% faster than full micro-architecture level
fault injection and two orders of magnitude faster than RTL fault
injection while maintaining a comparable accuracy.

Through the use of Bayesian inference, SyRA supports root
cause and diagnostic analysis. This can drive the effort of the re-
liability engineers toward the weak portions of the system, thus
reducing the need for over designing. Moreover, Bayesian infer-
ence supports speculation on the effects that different protection
mechanisms have on the system. This feature could be a useful
building block to support algorithms for automatic design space
exploration, which are however out of the scope of this paper.

To demonstrate the capability of SyRA, we analyzed the reli-
ability of a set of microprocessor-based systems characterized by
different commercial microprocessor architectures (i.e., Intel
x86, ARM Cortex-A15, ARM Cortex-A9) running both the Linux
operating system or bare metal in the presence of single bit up-
sets caused by radiation induced soft errors. Each system under
analysis executes different software workloads both from bench-
mark suites (MiBench [10]) and from real applications. Results
demonstrate the accuracy of the reliability estimations provided
by the framework when compared to estimations obtained by
statistical RTL and micro-architectural level fault injection cam-
paigns and show the capabilities offered by the framework.

Fig. 1 System reliability model. The model is organized into different layers connected through a set of special macro nodes called interfaces. The core of
the model is a Bayesian network that represents how soft errors propagate through the layers of the system. The figure shows a set of examples of the
conditional probability tables of the nodes composing the different layers and interfaces. The output of the model is a set of reliability metrics for the system.

 SAL

Temp.
Location
Voltage

fd

L1I
L1D

RFSQ

L2

F1

F2

F3F5

F4

OP1 OP2
SYS

TCL6T SRAM
22 nm

SOI Planar

�c

...

�c

HAL

AVF FIT EPF

Ba
ye

sia
n

po
rti

on
 o

f t
he

 m
od

el

sfm
disp.
L1I

sfm
disp.
L1D

sfm
disp.

L2

sfm
disp.
RF

sfm
disp.
SQ

f1 sfm1
SQ

…

 P()
 %L1D

L1I
L2
RF
SQ

 %
 %
 %
 %

f1 sfmk
SQ

fn sfm1
SQ

… fn sfmk
SQ

… f1 sfm1
L1I

f1 sfmk
 L1I

fn sfm1
L1I

fn sfmk
L1I

… … … …

f1
sfm1

f1
sfmk

fn
sfm1

fn
sfmk

f1
sfm

fn
sfm

Fn

… …

f2
sfm

f3
sfm

f4
sfm

f5
sfm

… … …

0

1
0

L2

0

…L1D
to-l1i

%
%

L2

%

%…
…

…

…
…

to-l1d
L1DL2

0

0
0

1
…

…
…

…
…

L1D
hvul

1

0
0

L2

0
1
…

0
0
0

 hvul
 %

 to-sq

L1D
 noerr

%

noerr

 to-rf
%

 L2 state
 fd state

%

 CR

sfm1

 SDC

 fnsfm state

 f4 state

 noerr

1
CR

0
0

%
SDC

%
%

%
noerr

%
%

sfm2noerr

1
CR

0
0

%
SDC

%
%

0
noerr

0
1

…

% %% noerr

 fm2

CR
%

%

%
 fm1

%

SDC
%

 …
 fmn

 %
%%

%

mask

D-FF
22 nm

SOI Planar

�c

SFM

 OP

LAYER

LAYER

LAYER

Interface

Interface

Interface

 L
1D

 s
ta

te
 F

n
st

at
e

 O
P2

 s
ta

te

 f4 state

 fd
 s

ta
te

AUTHOR ET AL.: TITLE 3

2 SYSTEM RELIABILITY MODEL
This paper focuses on building a framework for early system re-
liability assessment in presence of radiation induced soft errors
in the memory arrays of a microprocessor. To achieve this goal,
we first propose a system-level model whose main characteris-
tics are:

• component-based: in component-based reliability model-
ing, system reliability is estimated through reliability
parameters of individual system components and the
way they interact in the system. Component-based reli-
ability modeling can be easily integrated with typical
component-based system design work-flows [11];

• cross-layer: the system is described with a clear separa-
tion of its composing layers [49]. The concept of layer
here is used to identify a well-defined portion of the ar-
chitecture of the modelled system (e.g., the hardware or
the software architecture). This manages the complex-
ity of a cross-layer analysis by splitting the system into
sub-models. Each sub-model can be analyzed using
dedicated techniques aiming at optimizing the simula-
tion and analysis time, later recombining the results of
the local analysis at the system level;

• high parametrization and extension: the model can fit a
high number of heterogeneous parameters and is easy
to extend.

To accommodate these characteristics, this paper proposes
the multi-level and hybrid Bayesian model whose high-level
structure is reported in Fig. 1. The concept of level does not have
to be confused with the previously introduced concept of layer.
The level is a characteristic of the modelling approach. It repre-
sents the system by means of a graph organized in two nested
levels: the system-level, in which nodes represent layers and in-
terfaces between layers, and the component-level that splits the
system-level nodes into their components. At the system-level,
the system denoted with S is modeled by means of a bipartite
acyclic directed graph defined as:

𝑆 = (𝐿 ∪ 𝐼, 𝐸) (1)
where:

• 𝐿 = {𝑇𝐶𝐿,𝐻𝐴𝐿, 𝑆𝐴𝐿} is the set of layers composing the
system (Fig. 1). Currently, three layers have been de-
fined: the technology and circuit layer (TCL), the hard-
ware architecture layer (HAL) and the soft-ware archi-
tecture layer (SAL). At the component-level, each layer
is a graph itself. Its nodes represent the components of
the layer and its arcs the interactions among them;

• I is the set of interfaces: special macro nodes that model
how errors propagate across layers. As for the layers,
the interfaces can also be split at the component-level
into graphs of nodes;

• E is the set of edges connecting layers with interfaces
and vice versa. They are depicted with dashed red lines
in Fig. 1 to distinguish them from the arcs connecting
nodes at the component-level that have different mean-
ings depending on the context;

The bipartite property of the model in (1) satisfies the cross-
layer property required by our framework and the isolation be-
tween different layers through a set of interfaces. The infor-
mation that is transferred between the layers through the inter-
faces that will be discussed in the following sections can be sum-
marized as follows:

• the interface between the TCL and the HAL, starting

from the raw soft error rate of single cells, enables to
compute the conditional probability of soft errors into
the hardware structures;

• the interface between the HAL and the SAL transfers
the information of those soft errors that managed to cor-
rupt the execution of one instruction from the hardware
to the software layer.

The proposed model is hybrid since different portions of the
model integrate different types of information. In particular,
part of the model is a Bayesian model representing how faults
propagate through the system in a probabilistic way, whereas
the other parts of the model are deterministic and are more re-
lated to the physical characteristics of the system. The main char-
acteristics that lead us toward the application of Bayesian mod-
els for early reliability analysis is their capability of representing
a complex system split into its components and their intercon-
nections (i.e., to represent the architecture of the system). This
differs from simulation approaches that consider the system as
a whole. This is an important feature in the early design stages,
when the system is built and a full picture of the system is still
not available. Bayesian models are a compact representation of
multivariate statistical distributions. They are a powerful for-
malism expressing how the state of different components (e.g.,
faulty or healthy) is affected by their interaction, and how events
propagate through components. Bayesian models can be effi-
ciently fit on simulation data on a component base. This enables
us to devise dedicated fitting approaches for different compo-
nents of the system at different layers, thus optimizing the crea-
tion of the model as will be discussed in the next subsections.

Finally, Bayesian models are well known to be a powerful tool
for decision support, which is a key element in the early design
stages when decisions must be taken. Interested readers may re-
fer to [32] for additional information on Bayesian models.

2.1 Technology and circuit layer
The technology and circuit layer (TCL) is the lowest layer of the
system stack. It models the physical and electrical phenomena
leading to different classes of faults in an electronic circuit. These
faults, when propagated up to the system layer, are potential
root causes of system failures.

Circuit and electrical level fault modeling is a mature research
field. This paper focuses on Radiation Induced Failures (RIF)
leading to soft errors in memory structures. RIF can be caused
by alpha particles from packaging materials and neutrons from
the atmosphere. While alpha particles induced RIF can be miti-
gated selecting appropriate packaging materials, neutron in-
duced RIF are difficult to prevent and their impact on the relia-
bility of a system must be carefully assessed [12]. Therefore, we
focus on this type of RIF.

At first, the impact of neutrons on a device depends on the
circuit layout and on the fabrication technology. Since digital cir-
cuits are commonly designed based on standard cells, at the ar-
chitecture-layer, the TCL can be constructed as a set of nodes
each modeling a specific basic cell, with its reference technology
and circuit structure (e.g., 6T/8T/10T SRAM cell, D-FF, latch,
etc.). Each node is associated to the soft error rate of the related
cell (𝑆𝐸𝑅2) expressed in Failures in Time (FIT): the number of
failures in one billion (104) device-hours of operation.

Apart from the technology and layout, several global and lo-
cal parameters influence 𝑆𝐸𝑅2 including [13]: supply voltage,
operating temperature, operational location and altitude. SyRA
implements the 𝑆𝐸𝑅2 estimation workflow reported in Fig. 2.

4

𝑆𝐸𝑅2 estimation starts from the calculation of the critical
charge of the cell (𝑄2678): the minimum charge produced by a
neutron strike leading to a circuit malfunction. 𝑄2678 is estimated
by simulating a neutron strike modeled as a double exponential
current pulse into the circuit [14].

Fig. 2. 𝑆𝐸𝑅2	estimation workflow. Colors indicate: inputs (blue), outputs
(green), internal computational tasks (gray) and external tools (red).

The cell is modeled as a SPICE circuit while the target tech-
nology is fed as a technology compact model. Both (cells and
compact model) are inputs of the estimation process. Cell archi-
tectures can be analyzed as far as a SPICE model is available. In
the experimental campaign of this work the SRAM cell struc-
tures reported in [15] have been used; as well as, bulk planar and
bulk FinFET ASU-PTM models. HSPICE, a commercial SPICE
simulator from Synopsys, is used to carry out the simulations
according to Alg. 1, but any SPICE simulator that can run ASU-
PTM models can be employed for this purpose.

Alg. 1 	𝑄2678 simulation algorithm

Since 𝑄2678 is influenced by the input values (i.e., the signal
applied at the input of the cell during the simulation), the stored
values (i.e., the value stored in a cell at the beginning of the sim-
ulation), and each cell may have more than one sensitive node,
simulations are carried out for all combinations of these param-
eters (foreach loops at lines 1 and 2 of Alg. 1). In case of CMOS
circuits (which are the ones considered in this publication), the
area sensitive to neutron strikes is the drain area of the transis-
tors [14]. Thus, “nodes” are transistors. Sensitive nodes are the
transistors where the particle strike can cause a bitflip in the
stored value. For each combination of stored value and sensitive

node, current pulses with increasing amplitude are simulated
(while loop at lines 5-14 of Alg. 1) until a fault (e.g., a flip of a
memory cell) is detected. The SPICE simulation is performed
considering the cell operating voltage and temperature. These
parameters can be set cell by cell or globally for the full TCL,
depending on the design. Since the shape of the pulse influences
𝑄2678, different rise times from the literature (2ps, 16ps, 33ps and
90ps) have been tested. The falling time is set to 200ps [14]. Fi-
nally, the width of the pulse is set as the interval between the
start of the pulse and the instant when it decreases by 80% with
respect to its maximum [14].

When a fault is detected in a simulation, the related 𝑄2678 is
computed by integrating the current pulse (line 12 of Alg. 1).
When all simulations are carried out, the final average or worst
case 𝑄2678 can be returned. In the current implementation, the
proposed procedure simulates the effect of a strike on a single
transistor. Extending it to multiple transistors, therefore consid-
ering multiple bit flips, is part of our future work and will not
affect the structure of the model but only the tool- chain used for
the characterization of the technology.

Once 𝑄2678 has been computed, 𝑆𝐸𝑅2	can be calculated
through the Hazucha and Svensson model [13]:

𝑆𝐸𝑅2 = 𝐶 × 𝐹 × 𝐴 × 𝑒=
>?@AB
>C (2)

 where:
• 𝐶 = 2.2 × 10=F is a technology independent constant

computed by Hazucha and Svensson;  
• F is the flux of neutrons at the specific location;  
• A is the area of the circuit sensible to the neutron  flux;
• 𝑄G is the charge collection efficiency. If a charge col-

lected by a particle 𝑄2HII is greater than 𝑄2678 an RFI
arises. 𝑄G is the mean 𝑄2HII considering a range of en-
ergy particles. It is a technology dependent parameter
that scales approximatively linearly with the length of
the gate. It can be computed by linear regression from
experimental data for CMOS technologies [13].  

The neutron flux F commonly reported in literature for SER
computation is from New York City at sea level. However, F is a
function of the location in which the system operates and is
mainly affected by two parameters [16]:

1. altitude: the flux increases exponentially with the al-
titude,

2. vertical cutoff: a parameter of the Earth’s magnetic
field depending on the geolocalization.

To account for these parameters, the proposed framework
computes F exploiting the online calculator from Seutest.com
[17], which is based on the empirical model proposed by Gordon
et al. [18]. Resorting to the proposed TCL, designers can model
several technology and circuit level design alternatives, obtain-
ing raw SER estimations, thus enabling a fair comparison of dif-
ferent implementations or operational conditions of a system.

2.2 Fault Dispatcher
The fault dispatcher (fd) is the first interface node connecting the
TCL with the hardware architecture layer (HAL). It is also the root
node of the Bayesian portion of the proposed model. In a Bayes-
ian model, each node can assume a set of states. Root nodes are
described by computing the marginal probability of the node to
be in each state.

The fd models how soft errors affecting the system are dis-
tributed among the hardware components. Since we target neu-

Cell circuit

SPICE

Tech.
Compact

Model

temperature
voltage

pulse
sensitive nodes

input/stored values

Parameters

Algorithm 1

Qcrit comp.

HSPICEQcrit

SERc

Hazuca and
Svensson model

Altitude,
Location

Flux calculator
(Seutest.com)F

1

Data: circuit, technology, pulse, temperature, voltage,

input/stored values, sensitive nodes

Result: Qcrit

1 foreach combination of input/stored values do
2 foreach sensitive node do
3 current = 0;

4 fault = 0;

5 while fault == 0 do
6 current = current + �;

7 setup SPICE simulation (circuit, technology,

temperature, voltage, input/stored value,

sensitive node);

8 run HSPICE simulation;

9 analyze HSPICE simulation;

10 if fault detected then
11 fault = 1;

12 Compute Qcrit as current pulse integral;

13 end if
14 end while
15 end foreach
16 end foreach
17 return Worst case or average Qcrit

AUTHOR ET AL.: TITLE 5

tron induced RFI, it is very unlikely that multiple high-level ar-
chitectural components (e.g., L1 data cache, register file, etc.) can
be concurrently affected by a soft error caused by a single neu-
tron strike. Working with this assumption that is different from
the case of multiple bit upsets from a single strike in a compo-
nent, the fd can assume as many states as the list of nodes of the
HAL (V (HAL)). These nodes correspond to the components that
define the hardware architecture of the system (see Section 2.3).
Each state in fd models the event that a soft error affecting the
system targets the corresponding component. The fd is therefore
described as:

𝒇𝒅: 𝑐𝑜𝑚𝑝 ∈ 𝑉(𝐻𝐴𝐿) → 𝑃(𝑐𝑜𝑚𝑝) (3)
where 𝑃(𝑐𝑜𝑚𝑝) is the probability that a soft error affecting the
system is located in a specific component (comp). It is computed
resorting to the SER of the basic hardware cells computed in the
TCL as:

𝑃(𝑐𝑜𝑚𝑝) =
𝑆𝐸𝑅2HVW

∑ 𝑆𝐸𝑅22∀22∈Z([\])
(4)	

𝑆𝐸𝑅2HVW denotes the soft error rate of a full hardware com-
ponent, which is the sum of the error rates of the cells used
to build the component. It is important to stress here that the
fd formulation provided here, is a specific case considered in
this paper to model single neutron induced soft errors. Dif-
ferent fault distributions or fault types can be described in a
similar way, given that they can be properly simulated when
analyzing the hardware architecture layer.

2.3 Hardware Architecture Layer
The hardware architecture layer (HAL) models the hardware archi-
tecture of the system. As reported in Fig. 1, the hardware archi-
tecture is represented as a Bayesian network whose nodes model
the hardware components of the system. A complex hardware
component such as a microprocessor can be either modeled as a
single node or split into different nodes modeling its relevant
micro-architectural subcomponents. This granularity depends
on several factors:

• the granularity of the results required by the designer
during the reliability analysis;  

• the possibility of modifying selected portions of the ar-
chitecture;  

• the availability of tools able to characterize the compo-
nent in order to generate and populate the Bayesian
model.  

The memory arrays of a microprocessors are the main focus of
this paper. This is motivated by the fact that microprocessors are
among the most complex and important blocks of a computing
system and memory arrays are highly sensible to soft erros.
Therefore, the tool-chain implemented in this paper to populate
the model is optimized for the memory arrays of a microproces-
sor. At the system-level, each node of the HAL is connected to
the fault dispatcher (dashed red arcs in Fig. 1). This is used to
model the event of a soft error affecting the component. At the
component-level, components are connected in a hierarchy to
model faults that propagate from one component to another one
(solid black arcs in Fig. 1).	Each node 𝑐 ∈ 𝐻𝐴𝐿 is associated to a
conditional probability table (cpt) defining the probability of the
node to be in a given state conditioned on the states of its parent
nodes.  

𝒄𝒑𝒕(𝒄) = P(c|parents(c)) (5)
Fig. 1 reports an example of cpt for the level-1 data cache block
(L1D). The rows identify the possible states of the node:  

• noerr: a fault in the component has been masked and is
not propagated to the software layer;  

• hvul: a fault in the component is hardware vulnerable, i.e.,
it has an impact on the execution of at least a software
instruction. These faults are the ones propagated to the
software layer;  

• to-<comp>: the fault does not have a direct impact on the
computation, but a corrupted entry has been propa-
gated to another component. In this case, the cpt con-
tains a state for each child node of the component.  

Even if the cpt can grow in size (see Section 2.7), not all cases
are realistic. Therefore, the cpt does not need to be populated in
all its parts. Gray elements represent impossible cases deriving
from the fact that our model assumes that a fault affects a single
architectural block at a time (see Section 2.2). Green elements are
deterministic cases that do not require any computation to be
characterized. Empty cells are instead the cases in which a tool-
chain is required to properly compute the related conditional
probabilities.

To compute these values, the implemented tool-chain resorts
to microarchitecture-level fault injection. For each node, a fault
injection campaign is set up to understand the behavior of the
related hardware component. This approach allows us to accu-
rately simulate, with an affordable simulation time, the behavior
of array-based hardware structures such as memories that are
accurately represented by different microarchitecture-level
models. These structures are among the most sensitive to soft
errors [19][20]. Other hardware structures (e.g., combinational
circuits) are functionally approximated to speed up the simula-
tion and cannot be considered in our framework. This approxi-
mation, from the one hand limits the amount of hardware struc-
tures that can be analyzed by our framework but from the other
hand it is a key choice to spee-up the analysis in order to
properly model and consider the full software stack.

The proposed tool-chain is built on top of GeFIN, a microar-
chitecture-level fault injection tool based on Gem5 [21]. Gem5 is
a cycle-accurate full-system simulator that models two of the
major Instruction Set Architectures (ISA) available on the mar-
ket: (i) ARM and (ii) x86 [22].

Fig. 3. Hardware soft error injection timeline.

Fig. 3 sketches the implemented simulation timeline. At this
level, we simulate the program with a relevant workload, i.e., a
set of input data stimulating the execution paths of the applica-
tion and representative of its execution time. The fault-free sim-
ulation period represents the interval from the beginning of the
application to the injection of the fault. After the fault is injected,
the simulation continues until the fault propagates to another
component or it becomes visible in the software execution. This
last case corresponds to the clock cycle in which the first instruc-
tion affected by the fault commits to the architectural state. After
that moment, the fault can be considered as propagated to the
higher layer. To speed-up the analysis, several techniques have

Start EndFault
propagates or
moves to SAL

Fault
injection

fault-free simulation

Stop Simulation

software
propagation

hardware
propagation

6

been implemented to avoid wasting simulation time in the ab-
sence of faults, both in pre and post injection periods. More pre-
cisely, checkpointing was used to skip pre-injection period,
which in average consumes up to 50% of the total simulation
time, and early-stopping of the simulation was invoked in cases
of fault discarding, either due to overwriting or injection on in-
valid entries.

To implement this simulation workflow, a trace mechanism is
used to monitor the back-end of the processor pipeline (Fig. 4).
The trace includes all information required to analyze the com-
mitted instructions: the decoded instruction and its operands,
the data transactions in both registers and memory, the program
instruction order, the processor execution mode (i.e., kernel
mode vs. user mode) and the execution time of each instruction
(to monitor performance deviations).

The tool-chain initially records a fault-free trace and then
compares it against a faulty simulation in real-time while the
simulation progresses. If the faulty entry is propagated to an-
other component or upon a mismatch detection, the simulation
immediately stops. In the latter case, the fault is marked as hard-
ware vulnerable. All hardware vulnerable faults are analyzed
and classified as will be described in Section 2.4. All memory
array structures of the CPU, which occupy the vast portion of
the chip’s area and significantly influence the reliability of the
entire chip, can be studied through the implemented tool-chain
[23]. For the purposes of this study, we will present results tar-
geting five important hardware components: Integer physical
register file (RF), Store Queue (SQ), level-1 instruction cache
(L1I), level-1 data cache (L1D) and level-2 cache (L2). By means
of this characterization, the usage profile of the hardware struc-
tures is analyzed considering that different applications may use
different portions of the structure in a different way, thus modi-
fying the likelihood of an error to strike an active resource.

Since the characterization of each node of HAL requires the
setup of a fault injection campaign, to generate the fault list for
each node we use statistical fault sampling as described in [9].
Details about the parameters of the fault sampling will be pro-
vided in Section 4.

2.4 Software Fault Models
The software fault models (sfm) are the second interface node

of the proposed model. They model how hardware vulnerable
faults identified in the HAL can be modeled in the software archi-
tecture layer (SAL). This isolates the SAL from the knowledge of
the underling hardware architecture.

Previous attempts to analyze software resiliency to hard-
ware faults mainly tried to fully simulate the fault propagation
from the hardware architecture up to software routines. This
analysis assesses if they impact the correctness of the computa-
tion [24][25][26]. Differently, this paper focuses on modeling
how the software computation perceives a hardware vulnerable
fault at its abstraction layer. This allows us to decouple the HAL
from the SAL.

We previously attempted to define software fault models at
the level of the ISA of the microprocessor in [7]. Faults are de-
scribed at this level as alterations that have an impact on the ISA
of the microprocessor. The fact that these faults are defined at
the ISA level, allows us to directly map them on the hardware
vulnerable faults identified in the HAL. Indeed, they are faults
in which a faulty instruction commits to the architectural state.
Among the different sfm introduced in [7], SyRA’s tool-chain
currently implements the models described in Table 1.

TABLE 1
Software Fault Models (SFM)

Acro-
nym

Software Fault Model Description

WDO Wrong Data in an Operand An operand of the in-
struction is corrupted

DWI Wrong Data in immediate An immediate operand of
the instruction is cor-

rupted
OFS Operand Forced Switched An operand is used in

place of another
IR Instruction Replacement An instruction is used in

place of another

As reported in Fig. 1, the sfm interface node is a macro node

upward connected to each hardware component of the HAL and
downward connected to each node of the SAL. As described in
Section 2.5, the nodes of the SAL model the set of functions of
the target software. To handle the complexity of the models (see
Section 2.7), the sfm node is organized at the component level

Fig. 4. Microprocessor microarchitecture simulation model.

Fe
tc

h

D
ec

od
e

R
en

am
e

W
rit

eb
ac

k

Issue

Issue

Issue

Issue

Issue

Issue

Issue

Issue

D
is

pa
tc

h

L1DL1I

Out-of-orderIn-order Front-end
Int

Int
Complex

FP

FP

Addr

Load

Store

RegFile

LSQ

Execute

C
om

m
it

/ R
et

ire

1: 0x800ae614 : mov r4, r1 : D=0x9fb7a5c0
2: 0x800ae618 : dmb #0 :
3: 0x800ae61c : ldr r2, [r1, #8] : D=0x00000002 A=0x9fb7a5c8
4: 0x800ae620 : ldr r3, [r1, #4] : D=0x00000002 A=0x9fb7a5c4
5: 0x800ae624 : cmps r2, r3 : D=0x00000001
6: 0x800ae628 : bge :
7: 0x800ae654 : mov r0, r5 : D=0x9fa10d80
8: 0x800ae658 : ldr r3, [r4, #24]: D=0x800ae150 A=0x9fb7a5d8
9: 0x800ae65c : ldr r1, [r4, #16]: D=0x9f801e80 A=0x9fb7a5d0

R
un

ni
ng

 T
ra

ce

1: 0x800ae614 : mov r4, r1 : D=0x9fb7a5c0
2: 0x800ae618 : dmb #0 :
3: 0x800ae61c : ldr r2, [r1, #8] : D=0x00000002 A=0x9fb7a5c8
4: 0x800ae620 : ldr r3, [r1, #4] : D=0x00100002 A=0x9fb7a5c4

Fault-free trace
Ok
Ok
Ok

Mismatch!

Time PC Instr Data

Stop simulation

Host system
Simulated system

AUTHOR ET AL.: TITLE 7

into a tree of nodes. The root nodes of this tree are a set of sfm
dispatchers, one node for each component defined in the HAL.
An example of the cpt of the sfm dispatcher associated to L2 is
described in Fig. 5-A.

Fig. 5. Software fault models cpt organization.

The number of states of the node (i.e., the number of rows) is
equal to the number of nodes of the SAL (𝑉(𝑆𝐴𝐿)) multiplied by
the number of considered sfm. A state of the cpt models the
event of the considered sfm happening in the considered func-
tion. The columns of the cpt are the possible states of the related
hardware component. As in the previous examples, several col-
umns of the cpt represent impossible cases (gray cells) or deter-
ministic cases (green cells). The white column can be instead
filled by analyzing each hardware vulnerable fault detected dur-
ing the HAL characterization. These faults can be mapped to
their target function by looking at the address of the corrupted
instruction. Then, by looking at the type of corruption that has
been detected (e.g., data corruption, instruction corruption, etc.),
they can be classified into a target sfm.

2.5 Software architecture layer
The software architecture layer (SAL) models the architecture of
the software executed in the system. As for the HAL, this layer
is modeled at the component-level as a Bayesian network. This
network represents the function call graph of the software appli-
cation. In the function call graph, nodes of the graph represent
software functions. At the system-level, each node is connected
to the related sfm node in order to model the event of a sfm af-
fecting the function (dashed red arcs in Fig. 1). At the compo-
nent-level, functions are connected to model the function call hi-
erarchy (solid black arcs in Fig. 1).

Fig. 1 shows an example of cpt associated to function 𝑓n. The
rows of the cpt model the impact of a sfm on the execution of the
function. Based on the classification provided in [24] our tool-
chain considers the following software faulty behaviors (sfb):

• noerr (masked): the function produces correct results; 
• silent data corruption (SDC): the output of the function

is different from the fault free output;
• crash (CR): the function generates an unrecoverable ex-

ception or enters an infinite loop becoming unrespon-
sive.

As for the HAL, to populate the cpt of the SAL nodes, SyRA
implements a dedicated tool-chain whose basic workflow is de-
picted in Fig. 6.

Fig. 6. SAL characterization workflow. Colors indicate: inputs (blue), outputs
(green), computational tasks (gray).

One of the main goals of SyRA is to decouple the analysis of
the different layers of the system as much as possible. To achieve
this goal, it is necessary to analyze the software layer decoupling
it from the specific execution platform and its ISA. We propose
to use a virtual instruction set based on LLVM (Low Level Vir-
tual Machine). LLVM defines an Intermediate Representation
(IR) that describes the code in a form that is independent from
the target machine.

According to the workflow of Fig. 6, the LLVM IR code is first
executed and profiled in order to generate the function call
graph required to build the SAL. A statistical software-level
fault-injection campaign is then executed to characterize each
function. The peculiar characteristic of the LLVM fault-injector
developed in this work is that it operates by injecting the high-
level sfm introduced in Section 2.4. This differentiates it from
other LLVM based fault injectors such as LLFI [28] and KULFI
[29] that are limited to low-level faults such as bit-flips in pro-
gram data.

Software fault models are injected in the code by resorting to
the concept of software mutants [30]. For each injected fault, the
LLVM IR code is modified to generate a mutated version able to
emulate the injection of the sfm during the execution. Every mu-
tant is finally executed, and the result of the function is com-
pared with a golden execution to identify one of the sfb previ-
ously defined.

The developed tool-chain enables a very high injection
throughput since the software is executed at full speed on the
hosting workstation. It is worth to highlight here that, while
software layer fault injection alone should not be used to pre-
cisely evaluate the resiliency of a full system to soft errors [31],
it is effective in our case. In fact, we only aim at analyzing how
an error that already affected the execution of an instruction is
propagated or masked by the software.

2.6 Observation points
The observation points (op) are the final interface of the proposed
model. They allow us to map the information coming from the
lower layers of the model to a set of system-level failure modes
(fm). These failure modes can be exploited to compute a set of

%1noerr
fn sfmk %0

… %0
fn sfm1 0 %

%0…
0 %f1 sfmk

%0…
f1 sfm1 0 %

to-l1ito-l1dhvulnoerr
sfm disp. L2

0
1

noerr

1
0

fn sfmk
0
…

1
0

fn sfm1

10

f1 sfm1
0 0

… f1 sfmk
1

1
0

1na

…
a

1

f1 sfm1 L2

na

1
0

na
na

na
na

0
1

a

0

na

1

a

f1 sfm1 RF

na
1

na

 a

f1 sfm1 L1D

0

 a

f1 sfm1 SQ

af1 sfm1 L1I

0
a 1

a

f1 sfm1 L2
f1 sfm1

na

…
…
…
…
…
…
…

a
a
a

a

na
ana

f1 sfmn

…
0

a

 na

f1 sfm2

0

f1 sfm1

na…

0
sfm1 1

na

f1 sfm

a

…
…
…
…
…

sfmk 00 …
noerr 01 …

…

A

C

B

D

LLVM IR
Code

Foreach
function

Foreach
mutant

Mutant
execution

Generate
function
mutants

Software Behavior
Classification

SAL
cpts

Software
Source

LLVM
Compiler

all functions
analyzed

all mutants
simulated

Function
Call

Graph

Profiling

8

reliability metrics that are the actual output of the reliability
analysis implemented in SyRA.

Differently from the previous parts of the model, this inter-
face macro node is strictly related to the mission of the applica-
tion. Therefore, its design cannot be fully automated. Neverthe-
less, this task is limited to the identification of the outcomes of
the system and on the analysis of their importance to accomplish
the mission. In the worst case, all outcomes can be considered
equally important and the status of the system can be defined as
correct or safe only if all the outcomes are correct.

The first role of the op is to define the software functions
where the outcome of the computation can be monitored. Fig. 1
reports an example of observation points. In this case, two func-
tions (𝑓o and 𝑓F) define the outcome of the computation. They are
therefore connected to two op nodes in the model (dashed red
lines). The cpt of these special nodes (see Fig. 1) maps the state
of the parent node to a set of user defined system-level failure
modes (e.g., unresponsive system, hazard in computation, etc.).
Whenever specific system-level failure modes are not defined,
the same software faulty behaviors defined in Section 2.5 can be
used to define the failure modes making these cpt deterministic.

All observation points can be then aggregated into a single
node to describe the final behavior of the system as a whole.
Whenever a single function defines the output of the computa-
tion (e.g., the main of a program) a single level of nodes is
enough to define the observation points.

2.7 Model complexity
The size of the cpt of the different nodes is the key factor that

influences the complexity of the model and therefore the scala-
bility of the tool-chain. The cpt of the fault dispatcher has a sin-
gle columne and a number of rows equal to the number of hard-
ware blocks of the system (see Fig. 1). It is therefore not critical.

Also, the nodes in the HAL are note critical (see Fig. 1). The
total number of rows of the cpt of these nodes is equal to the
number of children of the component plus 2. The number of col-
umns is instead equal to the product of the number of states of
its parent nodes and this number is usually low.

The fault dispatcher and the nodes of the SAL are the critical
part of the model. The fault dispatcher could be, in principle,
directly connected to the nodes of the SAL. Nevertheless, given
the amount of states of this node, this would lead to an explosion
of the size of the cpt of nodes at SAL layer whose number of
columns would be equal to:

𝑛𝑐𝑜𝑙 = |𝑠𝑓𝑏|Wt × (|𝑠𝑓𝑚| × |𝑉(𝑆𝐴𝐿)|)|Z([\])| (6)
This is clearly not manageable. The information of the sfm

dispatchers is therefore reorganized through the following lev-
els of the tree modeling the sfm interface node (see Section 2.4).
At the second level, each state of the dispatcher is represented
as a single node (see Fig. 5-B where a indicates that the corre-
sponding state is active, whereas na indicates that the state is not
active). At the third level, sfm information from different hard-
ware components is aggregated together obtaining nodes that
are associated to each function and each sfm (Fig. 5-C). Finally,
for each function, information for different sfm are aggregated
into a single node that can then be connected to the related func-
tion node in the SAL. An example of cpt for these nodes is re-
ported in Fig. 5-D.

Even if this tree organization increases the number of nodes
of the model, all cpt, apart for those of the sfm dispatchers, are
deterministic cpt. This means that they do not require effort to
be computed and can be efficiently dealt when solving the

Bayesian model to perform reasoning. By applying this network
organization, each node in the SAL is connected to a sfm node
whose number of states is limited to the number of sfm and the
number of nodes of its cpt can be computed as:

𝑛𝑐𝑜𝑙 = |𝑠𝑓𝑏|Wt × |𝑠𝑓𝑚| (7)
where:

• |∙|denotes the count operator;  
• pf denotes the number of parent functions of the node. 

The first term of (7) is the contribution of the nodes represent-
ing the parent functions. The second term is the contribution of
the sfm node of the function.

Nevertheless, even with this optimization, the size of the cpt
increases exponentially with the number of parent functions. In
realistic software applications, this number can be high for some
of the nodes (e.g., the main function of the program). This cre-
ates problems both when populating the cpt and when using the
model to perform reasoning and estimations. To cope with this
problem, we resort to the Noisy-MAX approach [27]. The Noisy-
MAX is a generalization of the interaction of a child node with
its parents that allows us to reduce the size of the computed cpt
considering each parent in isolation. By means of this approach,
the cpt grows linearly with the number of parents. This intro-
duces a certain approximation that however will not signifi-
cantly impact the accuracy of the model as discussed in [27] and
demonstrated by the results provided in Section 4.

3 RELIABILITY ANALISYS
Once built, the Bayesian reliability model presented in Section 2
is a powerful tool to analyze different reliability related aspects
of a system. This section overviews the different features that
have been implemented in SyRA.

3.1 Computation of reliability metrics
SyRA exploits predictive Bayesian reasoning [32] to compute a
set of well-established system level reliability metrics. In predic-
tive reasoning, starting from the fault dispatcher, i.e., the root
node providing information about the fault causes, the designer
is able to update its belief about the state of each component of
the system. This provides information on how faults propagate
across layers and between components of a layer.

The first reliability metric that can be computed using the
proposed model is the Architectural Vulnerability Factor (AVF)
of the system [33]. The AVF quantifies the probability of a soft
error in a hardware component to manifest as a failure of the
system. It jointly considers masking properties of the hardware
architecture as well as of the executed software.
By looking at the state of the sys node in Fig. 1, the AVF of the
system can be computed resorting to predictive Bayesian rea-
soning as:
𝐴𝑉𝐹x = 1 − 𝑃(𝑠𝑦𝑠 = 𝑛𝑜𝑒𝑟𝑟) = 1 −| 𝑃(𝑠𝑦𝑠 = 𝑛𝑜𝑒𝑟𝑟|𝒖)

𝒖∈𝑼
(8)

where U denotes the set of all possible instantiations u, i.e., com-
bination of states of the parent nodes of the sys node. Equation
(8) is a recursive equation. It considers the noerr probability of
all components from the bottom up to the top.

It is well known that solving (8) is a NP-hard problem [55].
SyRA exploits the Bayesian solvers implemented into Smile, an
open library for Bayesian network analysis [34]. Two solvers can
be used: (1) the exact solver proposed by Lauritzen in [35] that
can be used with medium size models (i.e., tens of nodes), and

AUTHOR ET AL.: TITLE 9

(2) the Estimated Posterior Importance Sampling (EPIS) approx-
imate stochastic solver proposed in [36] that can be used with
very large models (i.e., thousands of nodes). Both solvers con-
sider acyclic Bayesian networks, therefore loops cannot be rep-
resented in the model (e.g., faults that are propagated both from
L2 to L1D and vice versa or recursive functions in the software
applications). This represents an approximation of the real sys-
tem. Bayesian networks can be extended to accommodate cycles.
However, solvers for these networks such as the loopy belief
propagation algorithm are more complex and may have conver-
gence issues [37].
SyRA also offers the possibility to compute the contribution of
each hardware component to the AVF of the system. This is pos-
sible by setting into the model the evidence that a soft error is
affecting that component. This in turns means to condition the
state of the sys node to a state of the fault dispatcher:

𝐴𝑉𝐹2HVW = 1 − 𝑃(𝑠𝑦𝑠 = 𝑛𝑜𝑒𝑟𝑟|𝑓𝑑 = 𝑐𝑜𝑚𝑝) (9)
The AVF of each component can then be used in conjunction

with the soft error rate of the component defined in (4) to com-
pute the FIT rate of the system:

𝜆x =| 𝑆𝐸𝑅2HVW ∙ 𝐴𝑉𝐹2HVW
∀2HVW∈Z([\])

(10)

SyRA can be easily extended to compute other reliability met-
rics that are related to 𝐴𝑉𝐹x	and 𝜆x as the Mean Time To Failure
(MTTF). Additional work would be instead required to compute
the Mean Time Between Failure (MTBF) that also accounts for
the repair time in reparable systems.

Both the AVF and the 𝜆x are pure reliability metrics. However,
as discussed in Section 1, designers must be able to trade-off re-
liability with other design parameters such as the performance
of the system. To enable a joint analysis of reliability and perfor-
mance, SyRA enables to compute the executions per failure (EPF)
of the system [34]. EPF is the number of times an application
must be executed before observing a system failure. It is com-
puted as:

𝐸𝑃𝐹 =
𝐸𝐼𝑇
𝜆x

(11)

where EIT (Executions in Time) is the number of executions of
an application in 104 hours of device operation. This can be es-
timated by looking at the duration of a golden execution trace of
the application. This implies to simulate the execution of the ap-
plication by applying a representative workload for the mission
of the application. When a single workload cannot be identified,
multiple execution times can be averaged, or worst-case execu-
tion times can be considered. This is however a parameter that
is demanded to the reliability engineer that has a deep
knowledge of the target application.

As for pure reliability metrics, the EPF is not the only possible
measure. Another option that could be considered is the failures
per executions. It is a function of 𝜆x and of the application exe-
cution time, which are both available in the framework. In SyRA
we decided to work with the EPF since, instead of providing a
failure rate, it looks at the length of time a system is expected to
last in operation before observing a failure. In our opinion this
provides a different and interesting point of view compared to
the failure rates.

3.2 Design exploration and diagnostic analysis
The capability of updating the belief of the state of each node
based on the evidence of the state of selected nodes, opens sev-
eral opportunities to analyze the system.

This mechanism can be used to quickly perform a simplified
early design exploration to understand the impact on the AVF of
the system of different combinations of cross-layer error protec-
tion techniques and their insertion points. Let us consider the
example provided in Fig. 1. What is the benefit (i.e., 𝐴𝑉𝐹x reduc-
tion) of a single-Error Correcting Code (ECC) in L2? To answer
this question, it is enough to set the evidence that L2 = noerr then
updating the beliefs of all other nodes:

𝐴𝑉𝐹x = 1 − 𝑃(𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑛𝑜𝑒𝑟𝑟|𝐿2 = 𝑒𝑟𝑟) (12)
Whenever the effect of a protection mechanism can be quan-

tified in terms of its masking probability on the related compo-
nent, its effect in the system can be analyzed quickly without
any new simulation. Of course, this is not a full design space ex-
ploration framework in which complete implementations are in-
stantiated and simulated and an algorithm to efficiently explore
the space is provided. As for the other parts of SyRA it is in-
tended to give quick feedbacks to the designers in the early de-
sign phases.

In a similar way, SyRA allows to implement what we call di-
agnostic analysis. The diagnostic analysis evaluates the model in
the backward direction starting from the leaf (i.e., the sys node)
back to the root. This in turns means reasoning from symptoms
to cause. If we set the evidence that the system has failed (i.e.,
set the evidence that sys = fmi), we can update our belief about
the contribution of each node (hardware or software compo-
nent) to this failure. This enables us to isolate those nodes that
likely contribute to the failure. This has the potential to drive the
reliability design effort toward the most critical components,
thus optimizing the overall system at the lower cost. A similar
approach can be used to study the impact of a failure in a given
component on the status of the full system.

By resorting to design exploration and diagnostic analysis,
system designers are provided with a powerful tool that enables
early reliability analysis of the complete system.

3.3 Dealing with error margins of the layers
Conditional probabilities populating the reliability model pre-
sented in Fig. 1 are computed resorting to statistical fault-injec-
tion campaigns at different layers (see Section 2.3 and Section
2.4). Whenever statistical fault-injection is applied, estimated in-
formation is accompanied with an error margin that depends on
the amount of injections that have been performed [9]. This
means that each parameter of the different cpts is not an exact
value but is uniformly distributed within the related error inter-
val. These variations must be considered since their combined
effect can influence the system level reliability metrics computed
through the proposed model.

For this reason, SyRA exploits Monte Carlo simulation to
evaluate the impact of this uncertainty. The workflow of the sim-
ulation is summarized in Alg. 2.

Alg. 2. Monte Carlo simulation to account for error margins in the cpt.

1

1 n = 0;
2 while n < MAX SIM do
3 Sample all probabilities with error margin;
4 Create a model using the sampled values;
5 Perform the target analysis;
6 Save the computed metric;
7 n = n+1;
8 end while
9 return Distribution of the computed metric

10

It consists on a repeated execution of the target analysis (e.g.,
AVF computation) by randomly sampling at each iteration all
conditional probabilities within their error margins. The pro-
posed Monte Carlo analysis enables to understand how the reli-
ability metric is distributed based on the uncertainty of the pa-
rameters of model. The sampling process for each column of a
generic cpt with three possible states is reported in Fig. 7.

Fig. 7. Sampling process of one column of a cpt

The procedure starts from the measured probabilities for each
state (a). The probabilities are scaled to consider that there is a
certain uncertainty due to the error margin of each measure (b).
Several samples for the same column are then generated ran-
domly assigning portions of the error margin area to the possible
states (c). This procedure is repeated for each column of the cpt
and for all tables of the network.

4 EXPERIMENTAL RESULTS
This section describes a set of experiments to show how SyRA
can be used to analyze the resilience of complex microprocessor-
based systems to soft error.

4.1 Experimental design
Each use-case considered in this experimental setup is a micro-
processor-based system. The characteristics of the selected use-
cases are:

• Hardware architecture: three relevant out-of-order su-
perscalar microprocessor architectures are considered:
(i) ARM Cortex-A9 (A9), (ii) ARM Cortex-A15 (A15)
and (iii) Intel-like i7-skylake (x86). Table 2 reports their
relevant architectural parameters.

• Operating system: a mix of bare-metal and Linux appli-
cations.

• Application software: eight benchmarks from the
MiBench1 suite [10], two realistic industrial applications
and one open-source HPC application.

The first industrial application is a control application from
the avionic domain (rta). It is a real-time application with differ-
ent activation periods for different tasks running on the Linux

1 (1) string search (ss), (2) susan image smoothing (s_s), (3) susan image edge

detection (s_e), (4) susan image corner algorithm (s_c), (5) rijndael encoding per-
forming AES encryption (aes), (6) quick sort (qs), (7) Fast Fourier Transform (ff),

operating system. It comprises about 16K lines of C code includ-
ing 567 functions. The second industrial application (bm) is a
bare metal application for DC motor controllers. It comprises
about 3K lines of C code including 14 functions. Finally, the third
realistic application is an open source software to solve hyper-
bolic equations on dynamically changing fully-adaptive con-
forming 2D triangular grids (hpc2). It is used in applications
such as simulations of the propagation of a tsunami waves over
the sea. With about 300K lines of C code and 419 functions this
represents a very complex application able to stress the scalabil-
ity of SyRA.

TABLE 2
Single-core hardware architecture parameters

 A9 A15 X86
L1 I/D 32KB 32KB 32KB

L2 512KB 1MB 1MB
RF 56 32bit reg 128 32bit reg 168 64bit reg
SQ 8 32bit reg 16 32bit reg 72 64bit reg.

Tech. Node 65/45nm 32/28nm 14 nm FinFET
Clock 0.8-2GHz 1-2GHZ 4GHz

For all fault-injection campaigns, at all layers, we use statisti-

cal fault sampling as described in [9] in order to reach a 5% error
margin with 99% confidence level for all estimated parameters.
Finally, to account for the uncertainty of the model we per-
formed Monte Carlo simulation as described in Section 3.3 with
100,000 samples.

4.2 Reliability analysis
To show the capabilities of SyRA, we start by assessing the ac-
curacy of the estimated reliability metrics. Fig. 8 compares, for
each use-case, the 𝐴𝑉𝐹x computed with our model to the one
computed with a full micro-architectural statistical fault injec-
tion campaign. We selected 𝐴𝑉𝐹x for the comparison since it is
the main metric on which the other metrics are based. Micro-
architectural fault injections are performed using GeFIN [21].
GeFIN is a micro-architecture level fault injector used in previ-
ous studies for reliability assessment [21][38][39][40][42][53].
Microarchitecture-level injection (to which we compare SyRA in
terms of speed and accuracy) is a good reference for measuring
the AVF or FIT rate of the memory arrays considered in this
study since they are precisely modeled in the Gem5 simulator
on which GeFIN is based. Moreover, GeFIN allows us to run the
applications on top of a real operating system thus emulating a
complete and realistic execution environment.

In Fig. 8, all applications except hpc are analyzed on A9. Hpc
is analyzed on x86 since it cannot be executed on a low-end pro-

(8) Secure Hash Algorithm (sha).
2 https://www5.in.tum.de/sierpinski/index.php

Fig. 8. Comparison of 𝐴𝑉𝐹x	estimated with SyRA and GeFIN considering the joint contribution of RF, L1D, L1I, L2, SQ.

0

0.1

0.2

0.3

0.4

ss (A9) s_s (A9) s_e (A9) s_c (A9) aes (A9) qs (A9) ff (A9) sha (A9) rta (A9) bm (A9) hpc (x86)

AV
Fs

GeFIN
SyRA

AUTHOR ET AL.: TITLE 11

cessor such as the A9. As shown in the figure, estimations pro-
vided by SyRA are consistently contained within the error mar-
gin of the estimations computed using GeFIN, even when con-
sidering the most complex use-cases. The aes benchmark is the
only outlier reporting the highest deviation of 7 percent points
(pp), which is slightly higher than the 5% error margin of GeFIN.
We have identified the source of this deviation. Aes stores its key
as a constant array. GeFIN is able to inject faults in this data dur-
ing the fault injection campaign as it is loaded on the system
memory. However, our LLVM analysis workflow currently does
not support the corruption of constant structures. This is a limi-
tation of the available tool-chain that needs to be improved in
future releases.

To further strengthen the validation of the accuracy delivered
by SyRA, we exploited a commercial Cortex-A9 RTL model and
an RTL fault injection tool from Yogitech s.p.a. [56] to set up an
RTL fault injection campaign. As discussed in the introduction
of this paper RTL fault injection has important strengths in terms
of accuracy and number of modeled hardware structures but in-
troduces limiations in terms of simulation throughput. Instead,
being based on a micro-architecture level model of the hard-
ware, SyRA limits the type of hardware structures that can be
analyzed but better scales with the complexity of the software
stack. The goal of this comparison is not to decide which method
is better. Both can be applied in a complementary way. Instead,
we want to demonstrate that, for the common ground, estima-
tions provided by SyRA are in line with precise RTL simulations.

Due to the complexity of these simulations, not all hardware
components could be analyzed. Very large memory arrays re-
quire significant computational effort to be precisely simulated
during fault injection at the RTL level. For this reason, the RTL
campaign was limited to two components: RF and L1D. Not all
software applications were analyzed in this comparison. To
fairly compare results with the one delivered by SyRA applica-
tions need to be simulated for their full duration. Performing
this at the RTL level for complex benchmarks is excessively time
consuming. The application code was modified to work as bare
metal and I/O transactions were emulated by the simulator. We
performed about 1000 injections for evey hardware structure in
order to reach a 5% error margin with 99% confidence level for
all estimated parameters. The analysis with SyRA was executed
in order to resemble the characteristics of the new setup.

Fig. 9 reports the results of this analysis. As in the comparison
with GeFIN, estimations performed by SyRA are consistently
within the error margins of those obtained using RTL fault injec-
tion, further confirming the accuracy of the proposed model.

Once the accuracy of the model has been discussed, the capa-
bility of the framework can be further stressed. Fig. 10 shows the
use of SyRA to perform hardware design exploration. It com-
pares the 𝐴𝑉𝐹x of rta when executed on the A9 or A15 micropro-
cessor. The figure also reports the contribution of each hardware

structure to the 𝐴𝑉𝐹x. As expected the two architectures report
different 𝐴𝑉𝐹x and SyRA is able to quantify this difference (about
4pp). This difference can be further analyzed by looking at the
contribution of each hardware block. In details, it can be in good
part explained by the contribution of L2 and RF. Looking at Ta-
ble 2 we can see that A15 has a bigger L2 cache and a bigger
register file. These blocks are therefore less utilized and the prob-
ability that a fault will target a live entry is lower. However, the
bigger size increases the fault probability. This trade-off can be
analyzed looking at the FIT rate of the system (𝜆x).

Fig. 9. Comparison of 𝐴𝑉𝐹x	 estimated with SyRA and RTL fault injection
considering the joint contribution of RF and L1D with applications config-
ured to work as bare metal.

Fig. 10. Comparison of the rta AVF executed on A9 and A15.

To compute 𝜆x, Table 3 reports 𝑆𝐸𝑅� for a single 6T SRAM cell
for the different technologies considered in Table 2. These results
have been computed resorting to the cell characterization proce-
dure described in Section 2.1.

TABLE 3
Soft error rate for 1 6T SRAM cell computed with typical condi-

tions (1V, 50C, New York at sea level).
 14nm

FinFET
28nm
planar

32nm
planar

40nm
planar

65nm
planar

𝑆𝐸𝑅𝐶 8.55E-9 1.2E-3 1.19E-3 1.14E-3 1.09E-3

Fig. 11 reports 𝜆x for all use-cases executed on the A9. The

figure investigates the impact of the two production technolo-
gies commercially available for this microprocessor. As ex-
pected, since the raw error rate per bit of the two technologies is
similar, the impact of the technology on the failure rate of the
system (𝜆x) is marginal. Nevertheless, it is interesting to see the

0

0.05

0.1

0.15

0.2

0.25

ss s_s s_e s_c bm

AV
Fs

RTL SyRA

0

0.1

0.2

0.3

AVF-L1D AVF-L1I AVF-L2 AVF-RF AVF-SQ AVFs

AV
Fs

A9 A15

Fig. 11. 𝜆x for all benchmarks executed on different commercial technologies implementations of A9.

0

500

1000

1500

ss (A9) s_s (A9) s_e (A9) s_c (A9) aes (A9) qs (A9) ff (A9) sha (A9) rta (A9) bm (A9)

λs

40nm Bulk Planar 65nm Bulk Planar

12

significant variance of 𝜆x depending on the executed application
that follows the same trend as 𝐴𝑉𝐹x. It is especially interesting to
note that bm has by design a very low 𝜆x. This bare-metal appli-
cation is inherently highly resilient to soft errors. Therefore, it
would require low design effort to be used in mission-critical
applications. This type of analysis may help saving resources
while designing the system.

If we repeat the same analysis for hpc executed on x86, we
obtain 𝜆x = 8.632E − 3. This is significantly lower that the one of
all other systems. This is a use-case in which the benefit of the
technology that has a raw error-rate several orders of magnitude
lower than the others is able to compensate the higher AVF.

Architectural and technological design exploration can be put
together to understand their joint benefit. Fig. 12 compares 𝜆x for
rta when executed on two different microprocessor architectures
featuring different technologies. It is interesting to note that, the
difference in the AVF of the two architectures reported in Fig. 10,
considering that the technologies have quite similar raw error
rates is compensated by the bigger size of the memory arrays of
the A15. This is an interesting example to show how, from the
one hand changing the architecture gives benefits in terms of
AVF but, at the same time it makes the system more susceptible
to raw errors. Thanks to the developed tool-chain we are able to
carefully analyze this trade-off and take the appropriate design
decisions.

Fig. 12. Comparison of 𝜆𝑆 for rta executed on different microprocessors char-
acterized by different architectures and fabrication technologies.

As discussed in Section 3.1, 𝜆x is a pure reliability metric that
does not fairly compare CPU architectures that have different
clock frequencies. To provide additional insides on the reliabil-
ity/performance trade-off SyRA offers the possibility to com-
pute the EPF. We exploit this metric to compare rta and bm un-
der two implementations: (1) A9 65nm Bulk Planar CMOS
clocked at 800-MHz and (2) A15 28nm Bulk Planar CMOS
clocked at 2.5GHz. Fig. 13 reports the computed EPF for the two
applications. The figure reports a very interesting result.

Fig. 13. Comparison of the EPF (logarithmic scale) of rta and bm executed
on two ARM microprocessors: A9 - 65nm clocked at 800-MHz and A15 -
28nm clocked at 2.5GHz.

While the EPF of bm increases of one order of magnitude, the
EPF of rta remains almost constant. This behavior is explained
by the behavior of the two applications. Rta is a real-time appli-
cation. Even by selecting a faster microprocessor its execution
time remains constant and therefore the EIT remains constant.
The only change obtained moving from the A9 to A15 is the

lower 𝜆x as reported in Fig. 12. Differently, the performance of
bm is affected by the higher performance of the A15, with a sig-
nificant impact on the EPF. These two very interesting examples
deriving from the analysis of two of the selected use-cases
clearly show the benefit of the EPF metric that can be computed
using SyRA. Using EPF the trade-off between performance and
reliability can be easily analyzed in a single measure providing
a significant support for the designers.

4.3 Diagnostic analysis
One of the main features offered by SyRA is the possibility of
supporting quick design exploration to optimize the target sys-
tem. For this purpose, we study the application of a cross-layer
combination of two relevant protection mechanisms to the most
complex of the available use-cases (hpc). The two protection
mechanisms are ECC [43] that works at the architecture layer,
and Fault Tolerance via control and data flow assertions [44] that
works at the software layer. The aim of the diagnostic analysis is
to identify the weak portions of the system and to understand
how the reliability changes when these portions are protected.
We want to remark that the aim of these experiments is not to
demonstrate which technique or which combination of tech-
niques is superior. Being SyRA a framework for early reliability
analysis, we are not interested in delivering a precise implemen-
tation of all protection mechanisms in the different simulation
environments, as this will be costly and time consuming. At this
stage, we are interested in estimating the impact of the applica-
tion of the protection mechanisms on the system to actually de-
cide whether it is worth or not their application. Therefore, Table
4 characterizes the two protection mechanisms with information
extracted from the literature. Of course, if an instrumented ver-
sion of the software is available, or a library of protection mech-
anisms is implemented in Gem5, precise results can be obtained.
However, this is out of the scope of the paper.

TABLE 4
Characterization of the selected hardware and software fault

tolerance techniques
Technique AVF reduction

ECC 100%
Fault Tolerance via control and

data flow assertions
85%

We exploited SyRA’s to analyze 600 variations of the original
system in which randomly selected groups of hardware/soft-
ware components have been protected using the two considered
protection techniques. Protecting a component means updating
its cpt according to the masking capability of the protection tech-
nique calculating a new value for 𝐴𝑉𝐹x. Fig. 14 shows the results
of this analysis.

The horizontal axis reports the number of protected compo-
nents. For instance, when the number of protected components
is equal to 5 it means that 5 nodes of the system have been ran-
domly selected to be protected using the two selected protection
mechanisms. Candidate nodes are the five memory arrays con-
sidered in the HAL and all functions of the software applica-
tions. The protection mechanisms described in Table 4 are ap-
plied to the full component (e.g., if RF is selected the ECC is ap-
plied to all its entries). We use a random selection of the compo-
nents to give an overview of the characteristics of the design
space that SyRA can explore. The vertical axis instead reports
𝐴𝑉𝐹x. Each gray point represents a considered system. At a first

0

100

200

300

A9 65nm A9 40nm A15 32nm A15 28nm

λs

1E+09

1E+11

1E+13

1E+15

rta bm

EP
F

A9 A15

AUTHOR ET AL.: TITLE 13

look this figure shows that, protecting a high number of compo-
nents does not always translates into benefits on the 𝐴𝑉𝐹x. Even
considering a fixed number of protected components, depend-
ing on the selected nodes the 𝐴𝑉𝐹x	changes. Interestingly, we
marked in red a set of systems in which the protected compo-
nents have been selected using SyRA’s diagnostic analysis as fol-
lows. The original system has been incrementally protected
through several iterations. At each iteration, the most critical
component of the system has been identified and protected (see
Section 3.2). The figure shows that, by protecting just 9 compo-
nents selected carefully, it is possible to reach a very low AVF
equal to 0.008 (green dot).

Fig. 14. SyRA diagnostic analysis for the hpc benchmark. Gray dots show the
𝐴𝑉𝐹x of 600 combinations of randomly protected components. Red dots
identify the 𝐴𝑉𝐹x	obtained by incrementally protecting the worst-case com-
ponent identified through SyRA diagnostic analysis. The green dot repre-
sents the best system.

The example provided in this section is a simple demonstration
of the potential that SyRA offers to the designers that want to
tune the system to the specific applications.

The capability of SyRA to preform sensitivity analysis and to
estimate quickly the effect of different protection mechanisms on
selected portions of a system suggests that it could be exploited
as a building block for the construction of automatic algorithms

to perform design space exploration to identify best combina-
tions of cross-layer protection mechanisms to apply. Neverthe-
less, this requires strategies to efficiently explore the space of so-
lutions which are out of the scope of this paper.

4.4 Performance
After showing the capability of SyRA, it is interesting to analyze
its performance. Fig. 15 reports this information expressed in
hours of simulation on a Xeon workstation running simulations
with 12 parallel threads. The figure shows the full time required
to perform simulations, build the model, and compute the met-
rics. The only time not considered here is the characterization of
the technology. The time to simulate a single cell (e.g., a SRAM
cell) with a specific technology, voltage and temperature ranges
between 10 to 20 minutes depending on the size of the cell. This
time is mainly occupied by SPICE simulations. The analysis of a
full technology for a single cell considering all different opera-
tional points reported in this paper can take from 1 to 3 hours. If
several technologies should be analyzed the cost of the analysis
can take some days. Even if this part of the analysis can be costly
when several alternatives must be evaluated (i.e., different tech-
nologies, cell architectures, operational points, etc.), it is worth
to remember that, once a single cell is characterized, the ob-
tained data can be stored and reused several times to analyze
different design.

Fig. 15 clearly shows that the simulation time for SyRA is sig-
nificantly reduced with respect to GeFIN even when considering
complex applications (on average 68% lower). This is a key re-
quirement during the design phase to explore different cross-
layer reliability techniques. It is important to remark that the
simulation time has been computed resorting to a single work-
station. Its absolute value can be reduced exploiting parallel ma-
chines or machines with higher parallelism. Since all applica-
tions run on the same hardware the difference between the con-
sidered benchmarks is mainly due to the complexity of the soft-
ware. Larger software applications require longer simulation
time during the HAL/SAL characterization. Finally, they gener-
ate larger models that require more time to be solved.

Fig. 16 shows the different contributions to the global analysis

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

AV
Fs

Protected Components

Fig. 15: Comparison of the simulation time (hours of simulation) required to compute 𝐴𝑉𝐹x using SyRA and GeFIN.

Fig. 16: Distribution of the simulation time between the HAL/SAL characterization and the model analysis (SyRA).

ss (A9) s_s (A9) s_e (A9) s_c (A9) aes (A9) qs (A9) ff (A9) sha (A9) rta (A9) bm (A9) hpc (x86)

GeFIN (hours) 5 42 9 7 87 70 119 25 101 8 585

SyRA (hours) 2 14 4 3 24 9 35 7 28 2 172

0
50

100
150
200
250
300
350
400
450
500

H
ou

rs
 o

f c
om

pu
ta

ti
on

s

0%
20%
40%
60%
80%

100%

ss	(A9) s_s	(A9) s_e	(A9) s_c	(A9) aes	(A9) qs	(A9) ff	(A9) sha	(A9) rta	(A9) bm	(A9) hpc	(x86)

HAL SAL SyRA

14

time. HAL and SAL indicate the percentage of time required to
perform simulations to compute the cpt of the two layers, while
SyRA indicates the time required to build and analyze the Bayes-
ian model and to compute the metrics.

The benefit of using SyRA is even more evident when com-
paring its performance with respect to RTL fault injection. In this
case, the analysis time for the benchmarks considered in Fig. 9
was 2 orders of magnitude higher.

5 RELATED WORK
The analysis of the reliability at the circuit and technology layer
is a very well-established research field. A comprehensive sur-
vey of different gate-level circuit reliability analysis techniques
can be found in [45].

The study of the contribution of the hardware architecture to
the resilience of a system to soft errors has received significant
attention by the research community. Several AVF estimation
methods are based on Architectural Correct Execution (ACE)
analysis using architecture level simulators [20][33][46]. These
approaches are complex. They require significant modifications
to the simulators to track resources during the execution of the
program. Therefore, they are limited to the analysis of small pro-
grams. Apart for the complexity, accuracy is a general limitation
of these approaches. A 7x AVF over-estimation is reported in
[19]. Even with refined approaches, which require additional
complexity in the simulation, ACE analysis still provides 3x
overestimation. This has a detrimental effect on the system lead-
ing to system over-design [20]. According to [20], the conserva-
tism of ACE analysis is due to two key sources: (1) lack of details
in the employed abstract performance models and (2) the pres-
ence of what we call Y-Bits that are a result of the single-pass
simulation methodology that is typical of ACE analysis. Some
transient faults dramatically alter the course of execution in a
processor, yet they do not affect the correct execution. These are
Y-Bits. SyRA simulates the full propagation of faults from hard-
ware up to software. At the hardware layer, it precisely models
the hardware structures in which soft errors are injected and the
propagation of each soft error is simulated until the end of the
application to evaluate its fate. Therefore, it does not suffer from
the same approximation of ACE analysis

The first attempt to model the contribution of the software to
the AVF of the system is provided in three seminal papers by
Sridharan and Kaeli [47][48][49]. They introduce the concept of
Program Vulnerability Factor (PVF) to quantify the portion of
the AVF that can be attributed to the executed software. This
concept has been further extended in [49] with the introduction
of the concept of the System Vulnerability Stack. The System
Vulnerability Stack is a significant advance towards the defini-
tion of a cross-layer system reliability model. However, its main
drawback is that it oversimplifies the definition of the layers. In
particular, the basic assumption is that the layers are statistically
independent from each other. This allows to compute the AVF
of the system simply as the product of the vulnerability factors
of each layer. Moreover, the layers are not further split into their
composing components, preventing a fine-grained analysis of
the architecture of the system.

Another interesting solution that considers the impact of the
application software running on embedded microprocessors
was discussed in [50]. As in the case of ACE analysis, it is based
on the use of program traces. Therefore, it suffers from inaccu-
racies due to the fact that it cannot capture important masking

effects introduced during dynamic execution of the software.
Moreover, it is limited to bare metal applications.

Rehman et al. [51] introduce: the Instruction Vulnerability In-
dex (IVI) that calculates the vulnerability of an instruction dur-
ing its execution in the pipeline, the Function Vulnerability In-
dex (FVI) that joins the IVI of all instructions of a function into a
single index, and the Application Vulnerability Index (AVI) that
joins the FVI of the functions of an application into a single in-
dex. This is an interesting idea to provide indications on how to
optimize the software to improve reliability. The main limitation
of the proposed reliability analysis flow is that the contribution
of the hardware is not well defined. Instructions are labeled into
critical and not-critical a priori and not on an application base.
Moreover, the computation of the failure probability and incor-
rect output probability of each instruction is demanded to fault-
injection experiments without detailing how this process should
be carried out. Eventually, the contribution of the program level
error masking is not considered. The same group in [52] shows
how the contribution of the program-level error masking can be
analyzed to generate reliability optimized programs, thus over-
coming some of the limitations of the previous publication.
Overall, SyRA makes a step forward. In a single framework, we
are able to model the technology, the hardware micro architec-
ture and the software architecture including the contribution of
the program level error masking.

A very comprehensive study aimed at understanding how
different cross-layer design options influence the reliability of a
system has been presented by Cheng et al. in [2]. They per-
formed an impressive and massive simulation campaigns iden-
tifying combinations of selected protection techniques that over-
all work very well together across different hardware designs
(two processors SPARC Leon3 and Alpha IVM), different soft-
ware benchmarks and 798 cross-layer combinations. In order to
do so the authors injected 9 million flip-flop soft errors into the
RTL of the processor designs using three BEE3 FPGA emulation
systems and also using mixed-mode simulations on the Stam-
pede supercomputer. This provides a clear picture of how cross-
layer reliability techniques can work but still every design has
its own peculiarity and, therefore, the same analysis should be
repeated every time a new design is constructed. The complexity
of the simulations presented in the paper guarantees high accu-
racy, but, in our opinion is not affordable in the early stages of
the design. In these stages, design decisions should be taken
based on reasonably accurate models but still consuming afford-
able computing resources as proposed in SyRA.

A first attempt of using a Bayesian cross-layer reliability
model to estimate the system level failure in time was presented
by the authors of this paper in [53]. Despite providing prelimi-
nary good results, the model proposed in the paper is simplified
especially when it comes to the way the different layers are in-
terfaced. The basic improvements of SyRA with respect to this
work have been already discussed in the introduction of this pa-
per. We would like to mention here that, without the improve-
ments provided in this paper, the analysis of complex applica-
tions such as rta and hpc would have created scalability issues.
Since the possibility of analyzing complex systems running
complex applications is a key characteristic of our framework,
working on its scalability in order to handle large applications
has been a significant step forward.

AUTHOR ET AL.: TITLE 15

7 CONCLUSIONS
In this paper we presented SyRA, a complete framework for

early system reliability analysis for cross-layer soft errors resili-
ence of microprocessor systems. The proposed framework pro-
vides a powerful tool to analyze the resilience of a system to neu-
tron induced soft errors, thus understanding its weak compo-
nents. These components can be good candidates to take focused
actions when implementing fault tolerance mechanisms.

The approach is defined to analyze the system in the early
stages of the design flow when the designer needs to take key
decisions about the implementation of the system. Therefore,
speed of the analysis has been one of the driving factors while
developing the approach. We demonstrated the capability of
SyRA through a very extensive set of experiments using realistic
microprocessor architectures, demonstrating the accuracy of the
tool. Besides its accuracy in reliability assessments, one of the
key capabilities of SyRA is the possibility to perform early diag-
nostic analysis to identify reliability-critical components of the
system and to support design exploration to quickly evaluate
the effect that different cross-layer protection mechanisms at the
technology, hardware and software layer will have on the sys-
tem’s reliability.

6 ACKNOWLEDGMENT
This paper has been fully supported by the 7th Framework Pro-
gram of the European Union through the CLERECO Project, un-
der Grant Agreement 611404. Interested researchers willing to
contribute to the extension to this framework can visit the pro-
ject’s website at http://www.clereco.eu. This paper is part of the
results of a three-year Ph.D. project on cross-layer reliability
analysis [54].

7 REFERENCES
[1] J. A. Abraham, "Cross-layer resilience: are high-level techniques always

better?" in 2016 IEEE International High Level Design Validation and
Test Workshop (HLDVT), Oct 2016, pp. 78-78.

[2] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Y. Cher, H. Cho, K. Skadron,
M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, and S. Mitra, "Clear: Cross-
layer exploration for architecting resilience: Combining hardware and
software techniques to tolerate soft errors in processor cores," in 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), June
2016, pp. 1-6.

[3] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, Tahoori,
and N. Wehn, "Reliable on-chip systems in the nano-era: Lessons learnt
and future trends," in Proceedings of the 50th Annual Design Automa-
tion Conference, ser. DAC '13. New York, NY, USA: ACM, 2013, pp.
99:1-99:10.

[4] N. P. Carter, H. Naeimi, and D. S. Gardner, "Design techniques for cross-
layer resilience," in Proceedings of the Conference on Design, Automa-
tion and Test in Europe, ser. DATE '10. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2010, pp. 1023-1028.

[5] A. DeHon, H. M. Quinn, and N. P. Carter, "Vision for cross-layer opti-
mization to address the dual challenges of energy and reliability," in
2010 Design, Automation Test in Europe Conference Exhibition (DATE
2010), March 2010, pp. 1017-1022.

[6] D. W. Coit, T. Jin, and N. Wattanapongsakorn, "System optimiza-tion
with component reliability estimation uncertainty: a multi-criteria ap-
proach," IEEE Transactions on Reliability, vol. 53, no. 3, 369-380, Sept
2004.

[7] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis, M. Kooli, A. Savino, G.

Politano, A. Bosio, G. D. Natale, D. Gizopoulos, and S. D. Carlo, "Cross-
layer reliability evaluation, moving from the hardware architecture to
the system level: A clereco eu project overview," Microprocessors and
Microsystems, vol. 39, no. 8, pp. 1204-1214, 2015.

[8] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lin-doso,
M. Portela, and C. Lopez-Ongil, "Soft error sensitivity evaluation of mi-
croprocessors by multilevel emulation-based fault injection," IEEE
Transactions on Computers, vol. 61, no. 3, pp. 313- 322, March 2012.

[9] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, "Statistical fault
injection: Quantified error and confidence," in 2009 Design, Automa-
tion Test in Europe Conference Exhibition, April 2009, pp. 502- 506.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, "MiBench: A free, commercially representative embedded
benchmark suite," in Proceedings of the Fourth Annual IEEE Interna-
tional Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3-14.

[11] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, Reliability Analy-sis
of Component-Based Systems with Multiple Failure Modes. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1-20.

[12] R. Baumann, "Soft errors in advanced computer systems," IEEE Design
Test of Computers, vol. 22, no. 3, pp. 258-266, May 2005.

[13] P. Hazucha and C. Svensson, "Impact of CMOS technology scaling on
the atmospheric neutron soft error rate," IEEE Transactions on Nuclear
Science, vol. 47, no. 6, pp. 2586-2594, Dec 2000.

[14] M. Riera, R. Canal, J. Abella, and A. Gonzalez, "A detailed methodology
to compute soft error rates in advanced technologies," in 2016 Design,
Automation Test in Europe Conference Exhibi-tion (DATE), March
2016, pp. 217-222.

[15] S. Ozdemir, N. Aymerich, M. Riera, R. Canal, A. Gonzaĺez, M. Kali-
orakis, S. Tselonis, N. Foutris, D. Gizopoulos, S. Di Carlo, P. Prinetto,
“D2.2.2 - Characterization of failure mechanisms for future systems,”
[online] http://www.clereco.eu/images/deliverables/D2.2.2_Charac-
terization-of-failure-mechanisms-for%20future-systemsv1.0.pdf

[16] J. F. Ziegler, "Terrestrial cosmic rays," IBM journal of research and de-
velopment, vol. 40, no. 1, pp. 19-39, 1996.

[17] J. Wilkinson, "Soft-error testing resources," [online]
http://ww.seutest.com.

[18] M. S. Gordon, P. Goldhagen, K. P. Rodbell, T. H. Zabel, H. H. K. Tang,
J. M. Clem, and P. Bailey, "Measurement of the flux and energy spec-
trum of cosmic-ray induced neutrons on the ground," IEEE Transac-
tions on Nuclear Science, vol. 51, no. 6, pp. 3427-3434, Dec 2004.

[19] N. J. George, C. R. Elks, B. W. Johnson, and J. Lach, "Transient fault
models and AVF estimation revisited," in 2010 IEEE/IFIP International
Conference on Dependable Systems Networks (DSN), June 2010, pp.
477-486.

[20] N. J. Wang, A. Mahesri, and S. J. Patel, "Examining ACE analysis relia-
bility estimates using fault-injection," in Proceedings of the 34th An-
nual International Symposium on Computer Architecture, ser. ISCA
'07. New York, NY, USA: ACM, 2007, pp. 460-469.

[21] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, and D.
Gizopoulos, "Differential fault injection on microarchitectural simula-
tors," in 2015 IEEE International Symposium on Workload Characteri-
zation, Oct 2015, pp. 172-182.

[22] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, "The Gem5 simulator,"
SIGARCH Comput. Archit. News, vol. 39, no. 2, 1-7, Aug. 2011.

[23] R. Baumann, "Soft errors in advanced computer systems," in IEEE De-
sign & Test of Computers, vol. 22, no. 3, pp. 258-266, May-June 2005.

[24] S. Mukherjee, Architecture design for soft errors. Morgan Kaufmann,
2011.

[25] N. J. Wang and S. J. Patel, "ReStore: Symptom-based soft error detection

16

in microprocessors," Dependable and Secure Computing, IEEE Trans-
actions on, vol. 3, no. 3, pp. 188-201, 2006.

[26] S. Mirkhani, M. Lavasani, and Z. Navabi, "Hierarchical fault simulation
using behavioral and gate level hardware models," in Test Symposium,
2002. (ATS'02). Proceedings of the 11th Asian. IEEE, 2002, pp. 374-379.

[27] A. Zagorecki and M. J. Druzdzel, "Knowledge engineering for bayesian
networks: How common are noisy-max distributions in practice?" IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, no. 1,
pp. 186-195, 2013.

[28] A. Thomas and K. Pattabiraman, "LLFI: An intermediate code level
fault injector for soft computing applications," in Workshop on Silicon
Errors in Logic System Effects (SELSE), 2013.

[29] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan, "To-
wards formal approaches to system resilience," in Dependable Compu-
ting (PRDC), 2013 IEEE 19th Pacific Rim International Sympo-sium on.
IEEE, 2013, pp. 41-50.

[30] D. Wu, M. A. Hennell, D. Hedley, and I. J. Riddell, "A practical method
for software quality control via program mutation," in [1988] Proceed-
ings. Second Workshop on Software Testing, Verification, and Analysis,
Jul 1988, pp. 159-170.

[31] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham and S. Mitra, "Quantita-
tive evaluation of soft error injection techniques for robust system de-
sign," 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, 2013, pp. 1-10.

[32] G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis. John
Wiley & Sons, 2011, vol. 40.

[33] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, "A
systematic methodology to compute the architectural vulnera-bility
factors for a high-performance microprocessor," in Microar-chitecture,
2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International
Symposium on. IEEE, 2003, pp. 29-40.

[34] M. J. Druzdzel, "SMILE: Structural modeling, inference, and learn-ing
engine and genie: a development environment for graphical decision-
theoretic models," in Aaai/Iaai, 1999, pp. 902-903.

[35] C. Huang and A. Darwiche, "Inference in belief networks: A procedural
guide," International journal of approximate reasoning, vol. 15, no. 3,
pp. 225-263, 1996.

[36] C. Yuan and M. J. Druzdzel, "An importance sampling algorithm based
on evidence pre-propagation," in Proceedings of the Nine-teenth con-
ference on Uncertainty in Artificial Intelligence. Morgan Kaufmann
Publishers Inc., 2002, pp. 624-631.

[37] Y. Weiss, "Correctness of Local Probability Propagation in Graphical
Models with Loops," in Neural Computation, vol. 12, no. 1, pp. 1-41,
Jan. 1 2000.

[38] M. Kaliorakis, D. Gizopoulos, R. Canal, and A. Gonzalez, “MeRLiN:
Exploiting Dynamic Instruction Behavior for Fast and Accurate Micro-
architecture Level Reliability Assessment,” 44th Annual International
Symposium on Computer Architecture (ISCA '17), pp. 241-254.

[39] A. Chatzidimitriou, M. Kaliorakis, S. Tselonis and D. Gizopoulos, "Per-
formance-aware reliability assessment of heterogeneous chips," 2017
IEEE 35th VLSI Test Symposium (VTS), Las Vegas, NV, 2017, pp. 1-6.

[40] A. Chatzidimitriou and D. Gizopoulos, "Anatomy of Microarchitec-
ture-Level Reliability Assessment: Throughput and Accuracy," in Per-
formance Analysis of Systems and Software (ISPASS), 2016 IEEE Inter-
national Symposium on. IEEE, 2016, pp. 69-78.

[41] A. Vallero, S. Di Carlo, S. Tselonis, and D. Gizopoulos, "Microar-chitec-
ture level reliability comparison of modern gpu designs: First findings,"
in Performance Analysis of Systems and Software (ISPASS), 2017 IEEE
International Symposium on. IEEE, 2017, pp. 129-130.

[42] A. Chatzidimitriou, M. Kaliorakis, D. Gizopoulos, M. Iacaruso, Pip-
ponzi, R. Mariani, and S. D. Carlo, "RT level vs. microarchitecture-level
reliability assessment: Case study on ARM(R) cortex(r)-a9 cpu," in 2017

47th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks Workshops (DSN-W), June 2017, pp. 117-120.

[43] H. Amrouch and J. Henkel, “Self-immunity technique to improve reg-
ister file integrity against soft errors,” in Proc. 24th Int. Conf. VLSI Des.,
2011, pp. 189–194.

[44] L. Xiong and Q. Tan, "A configurable approach to tolerate soft errors
via partial software protection," in Parallel and Distributed Processing
with Applications Workshops (ISPAW), 2011 Ninth IEEE International
Symposium on. IEEE, 2011, pp. 260-265.

[45] R. Xiao and C. Chen, "Gate-level circuit reliability analysis: A survey,"
VLSI Des., vol. 2014, pp. 4:4-4:4, Jan. 2014. [Online]. Available:
http://dx.doi.org/10.1155/2014/529392

[46] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, "SoftArch: an architecture-
level tool for modeling and analyzing soft errors," in 2005 International
Conference on Dependable Systems and Networks (DSN'05), June
2005, pp. 496-505.

[47] V. Sridharan and D. Kaeli, "Eliminating microarchitectural de-pen-
dency from architectural vulnerability," in High Performance Com-
puter Architecture, 2009. HPCA 2009. IEEE 15th International Sympo-
sium on, Feb 2009, pp. 117-128.

[48] V. Sridharan and D. R. Kaeli, "Using pvf traces to accelerate avf model-
ing," in Proceedings of the IEEE Workshop on Silicon Errors in Logic
System Effects, 2010.

[49] V. Sridharan and D. R. Kaeli, "Using hardware vulnerability factors to
enhance AVF analysis," in Proceedings of the 37th Annual International
Symposium on Computer Architecture, ser. ISCA '10. New York, NY,
USA: ACM, 2010, pp. 461-472. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1816023

[50] A. Savino, S. D. Carlo, G. Politano, A. Benso, A. Bosio, and G. D. Natale,
"Statistical reliability estimation of microprocessor-based systems,"
IEEE Transactions on Computers, vol. 61, no. 11, pp. 1521- 1534, Nov
2012.

[51] S. Rehman, M. Shafique, F. Kriebel and J. Henkel, "Reliable software for
unreliable hardware: Embedded code generation aiming at reliability,"
2011 Proceedings of the Ninth IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Taipei, 2011, pp. 237-246.

[52] M. Shafique, S. Rehman, P. V. Aceituno and J. Henkel, "Exploiting pro-
gram-level masking and error propagation for constrained reliability
optimization," 2013 50th ACM/EDAC/IEEE Design Automation Con-
ference (DAC), Austin, TX, 2013, pp. 1-9

[53] A. Vallero, A. Savino, G. Politano, S. D. Carlo, A. Chatzidimitriou, S.
Tselonis, M. Kaliorakis, D. Gizopoulos, M. Riera, R. Canal, A. Gonzalez,
M. Kooli, A. Bosio, and G. D. Natale, "Cross-layer system reliability as-
sessment framework for hardware faults," in 2016 IEEE International
Test Conference (ITC), Nov 2016, pp. 1-10.

[54] A. Vallero, "Cross layer reliability estimation for digital systems," Ph.D.
dissertation, Politecnico di Torino, 2017. [Online]. Available:
http://porto.polito.it/2673865/

[55] G. F. Cooper, “The Computational Complexity of Probabilistic Inference Us-
ing Bayesian Belief Networks (Research Note)”, Artif. Intell., vol. 42, no. 2-
3, Mar 1990, pp.393-405

[56] A. Benso, A. Bosio, S. D. Carlo and R. Mariani, "A Functional Verifica-
tion based Fault Injection Environment," 22nd IEEE International Sym-
posium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), Rome,
2007, pp. 114-122.

AUTHOR ET AL.: TITLE 17

Alessandro Vallero (S’15) received a Ph.D. in computer engineering from Politec-
nico di Torino in Italy and a M.Sc. degree in electronic engineering from the Uni-
versity of Illinois at Chicago, US, and Politecnico di Torino, Italy. Currently he is a
postdoc at the Department of Control and Computer Engineering of Politecnico di
Torino in Italy. His research interests focus on system level reliability and reliable
reconfigurable systems.

Alessandro Savino (M’14) received a Ph.D. in information technologies and a
M.Sc. degree in computer engineering from Politecnico di Torino, Italy, where he
is an assistant professor in the Department of Control and Computer Engineering.
His main research topics are microprocessor test and software-based self-test as
well as bioinformatics and image processing.

Athanasios Chatzidimitriou (S’16) received his B.Sc. degree on Informatics
engineering from Technological Educational Institute of Athens, Greece and his
M.Sc. degree on Embedded Computing Systems from University of Piraeus,
Greece. Currently, he is a Ph.D. student in the Department of Informatics and Tel-
ecommunications at University of Athens. His research interests focus on micro-
processor reliability.

Manolis Kaliorakis (S’14) received his B.Sc. degree in Electrical and Computer
Engineering from Democritus University of Thrace (DUTH), Greece and his M.Sc.
degree in Microelectronics and Integrated Circuits Design from Department of In-
formatics & Telecommunications, University of Athens, Greece. Currently, he is a
Ph.D. student in the Department of Informatics and Telecommunications at Uni-
versity of Athens. His research interests focus on computer architecture, micro-
processor reliability, testing and fault tolerance

Maha Kooli (M’14) Maha Kooli (S’14) received her Ph.D. in Computer Engineer-
ing and Microelectronics from the University of Montpellier, France in 2016, and
her engineer diploma in computer science and applied mathematics from the en-
gineering school ENSEEIHT-INP Toulouse, France in 2013. From December 2016
to March 2017, she was a postdoc at the LIRMM laboratory in Montpellier with the
National Scientific Research Center (CNRS) of France. Since April 2017, she has
been a post doc at CEA Leti in Grenoble. Her research interests are related to
reliability, software systems, in-memory computing and security. She participated
in CLERECO project (FP7).

Marc Riera Villanueva received his B.Sc. degree in Computer Engineering in
2013, and his M.Sc. degree in MIRI: High Performance Computing in 2015, both
from Universitat Politecnica de Catalunya (UPC - BarcelonaTech). He joined the
ARCO research group at UPC in July 2014 and he is currently pursuing a Ph.D. at
UPC. His research focuses on the area of Reliability and recently started working
on Resilient and Low Power Accelerators for Cognitive Computing.

Marti Anglada received his B.Sc. degree in Computer Engineering in 2013, and
his M.Sc. degree in MIRI: High Performance Computing in 2015, both from Uni-
versitat Politecnica de Catalunya (UPC - BarcelonaTech). He joined the ARCO
research group at UPC in July 2014 and he is currently pursuing a Ph.D. at UPC.
His research is focused on low-power, resilient architectures.

Giorgio Di Natale received the Ph.D. in Computer Engineering from the Politec-
nico di Torino in 2003 and the HDR (Habilitation a Diriger les Recherches) in 2014
from the University of Montpellier II (France). He is currently a researcher for the
National Research Center of France at the LIRMM laboratory in Montpellier. His
research interests include: hardware security and trust, reliability, fault tolerance,
test. He is the Action Chair of the COST Action IC1204 (TRUDEVICE) on Trust-
worthy Manufacturing and Utilization of Secure Devices. He is a Golden Core
member of the Computer Society.

Alberto Bosio Alberto Bosio got his PhD from the Politecnico di Torino (Italy) in
2006. From September 2018 he is a Full Professor at INL - Ecole Centrale de
Lyon, France. He is a co-author of 1 book, 35 international journal papers, 3 pa-
tents, 7 invited papers, 2 embedded tutorials and more than 100 papers in inter-
national conferences. He served as committee and organizing member in several
international conferences as well as reviewers for many international journals. He
is a member of the IEEE and the Chair of the European Test Technical Technology
Council (ETTTC).

Ramon Canal received the M.Sc. and Ph.D. degrees from the Universitat Politec-
nica de Catalunya, Barcelona, Spain, where he joined the Faculty of the Computer
Architecture Department in 2003. He was with Sun Microsystems in 2000, and was
a Fulbright Visiting Scholar with Harvard University, Cambridge, MA, USA, in 2006
and 2007. His research focuses on system reliability and the memory hierarchy.
He has an extensive list of publications and several invited talks. He has been a
Program Committee Member in several editions of HPCA, ISCA, MICRO, HiPC,
IPDPS, ICCD, ICPADS, and CF. He has been the Co-General Chair of IOLTS
2012 and HPCA 2016.

Antonio Gonzalez (Ph.D. 1989) is a Full Professor at the Computer Architecture
Department of the Universitat Politecnica de Catalunya, Barcelona (Spain), and
the director of the Microarchitecture and Compiler research group. He was the
founding director of the Intel Barcelona Research Center from 2002 to 2014. His
research has focused on computer architecture, compilers and parallel pro-
cessing, with a special emphasis on microarchitecture and code generation. He
has published over 350 papers and has served as associate editor of five IEEE
and ACM journals, program chair for ISCA, MICRO, HPCA, ICS and ISPASS, gen-
eral chair for MICRO and HPCA, and PC member for more than 100 symposia.
He is an IEEE Fellow.

Dimitris Gizopoulos (S’93-M’97-SM’03-F’13) is professor at the Department
of Informatics & Telecomm., University of Athens where he leads the Com-
puter Architecture Lab. His research focuses on the dependability, perfor-
mance and energy of computer architectures. Gizopoulos has published
more than 170 papers in peer reviewed IEEE and ACM journals and confer-
ences, is an inventor of US patents, author of a book and editor of two books
on dependability. He has served as associate editor and special issues guest
editor for several IEEE Transactions and Magazines and currently serves on
the Editorial Board of IEEE Transactions on Computers and IEEE Transac-
tions on Sustainable Computing. He is an IEEE Fellow, a Golden Core Mem-
ber of IEEE Computer Society and an ACM Senior Member.

Riccardo Mariani holds a Ph.D. in Microelectronics from the University of Pisa.
He is widely recognized as an expert in functional safety and integrated circuit
reliability. In his current role as chief functional safety technologist at Intel Corpo-
ration, he oversees strategies and technologies for IoT applications that require
functional safety, high reliability and performance, such as autonomous driving,
transportation and industrial systems. Mariani has contributed to multiple industry
standards efforts throughout his career, including leading the ISO 26262-11 part
specific to semiconductors. He has also won the SGS-Thomson Award and the
Enrico Denoth Award for his engineering achievements. He holds a bachelor’s
degree in electronic engineering and a Ph.D. in microelectronics from the Univer-
sity of Pisa in Italy.

Stefano Di Carlo (SM’00-M’03-SM’11) received a M.Sc. degree in computer en-
gineering and a Ph.D. degree in information technologies from Politecnico di To-
rino, Italy, where he is a tenured Associate professor. His research interests in-
clude DFT, BIST, and dependability. He has coordinated the EU-FP7 CLERECO
on Cross-Layer Early Reliability Estimation for the Com-puting cOntinuum. Di
Carlo has published more than 170 papers in peer reviewed IEEE and ACM jour-
nals and conferences. He regularly serves on the Organizing and Program Com-
mittees of major IEEE and ACM conferences. He is a golden core member of the
IEEE Computer Society and a senior member of the IEEE.

