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Abstract: Bicycle sharing systems are becoming increasingly popular in cities around the world
as they are an inexpensive and sustainable means of transportation. Promoting the use of these
systems substantially improves the quality of life in cities by reducing pollutant emissions and traffic
congestion. In these systems, bikes are made available for shared use to individuals on a short-term
basis. They allow people to borrow a bike in one dock and return it to any other station with free
docks belonging to the same system. The occupancy level of the stations can be constantly monitored.
However, to achieve a satisfactory user experience, all the stations in the system must be neither
overloaded nor empty when the user needs to access the station . The aim of this paper is to analyze
occupancy level data acquired from real systems to determine situations of dock overload in multiple
stations which could lead to service disruption. The proposed methodology relies on a pattern
mining approach. A new pattern type called Occupancy Monitoring Pattern is proposed here to
detect situations of dock overload in multiple stations. Since stations are geo-referenced and their
occupancy levels are periodically monitored, occupancy patterns can be filtered and evaluated by
taking into consideration both the spatial and temporal correlation of the acquired measurements.
The results achieved on real data highlight the potential of the proposed methodology in supporting
domain experts in their maintenance activities, such as periodic re-balancing of the occupancy levels
of the stations, as well as in improving user experience by suggesting alternative stations in the
nearby area.

Keywords: bicycle sharing systems; machine learning; association rule mining

1. Introduction

In recent years, municipalities have fostered alternative ways of public transportation in order to
reduce pollution and traffic congestion [1–5] . Bicycle sharing systems [6,7] are a notable example of
eco-friendly transportation systems, where citizens can rent bicycles on a short-term basis. Bikes are
retrieved from stations spread throughout the city and each station has a maximum capacity as it is
equipped with a fixed number of docks. Citizens can rent a bicycle parked at any station and return
it to any other station with free docks. However, to achieve a satisfactory user experience, system
managers should carefully monitor the level of occupancy of the stations. For example, if a station
is frequently overloaded at peak hours, then a re-balancing action should be scheduled in order to
move some of the parked bicycles to any station located in the neighborhood. In case the problem is
more severe, managers may decide to expand the station to fit the increasing demand. Stations are
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geo-referenced and equipped with sensors to constantly monitor their level of occupancy. Each station
tracks the occupancy levels of its docks, thus providing geo-referenced time series data. These data
acquired from stations can be collected and stored in a unique repository and analyzed by means of
machine learning and data analytics techniques. Automating the process of analysis of the acquired
occupancy level data is particularly appealing to computerize the planning of maintenance activities
as well as giving targeted recommendations to the system users [8].

This work presents a novel exploratory data-driven methodology, named Bike Station OvErLoad
AnaLyzer (BELL), which analyzes the occupancy levels of the stations of a bicycle sharing system.
The aim is to identify situations of dock overload in multiple stations which could lead to either
service disruption or low customer satisfaction. For example, when all the docks in a station are
occupied, users have to move to a nearby station to park their bike. By gathering insightful information
regarding occupancy levels of multiple stations, domain experts can effectively apply targeted actions
in order to avoid and/or limit the unpleasant situations described above. For instance, the mobile
application of the system may recommend alternative nearby stations with free docks. Furthermore,
the maintenance service may re-balance the number of bikes in each station thus avoiding overloaded
conditions. For this reason, the proposed methodology would allow us to improve user experience in
using the service.

In the BELL methodology occupancy level data acquired from the geo-referenced stations are
analyzed to discover a new type of pattern, called Occupancy Monitoring Pattern (OMP). OMPs
describe in a concise way situations of imbalance in the occupancy levels of spatially correlated
stations. Specifically, OMPs model two complementary dock overload situations: (i) Situations in
which a set of stations are overloaded in an alternate fashion (hereafter denoted as intermittent
situations); and (ii) Situations in which the docks of a set of stations are frequently overloaded at the
same time (hereafter denoted as critical situations). To consider the spatial correlation between the
occupancy level of different stations, spatial constraints can be enforced to represent groups of nearby
stations in OMPs (i.e., stations within a limited geographical distance).

Intermittent and critical situations are treated separately because they cause disservices with
varying degrees of severity for end users. Specifically, intermittent situations indicate an imbalance in
station usage which could be addressed by proposing alternative nearby stations to end users or by
periodically repositioning the bicycles in the neighborhood. Conversely, critical situations indicate that
a given area is temporarily inaccessible for parking bikes because all the stations in the area are in a
dock overload situation. The latter (more severe) situation can be addressed, for example, by increasing
the number of available docks in the stations, or by moving bikes to the not fully occupied stations
located in other city areas.

The generated OMPs are explored to discover significant intermittent and critical situations.
The exploration is driven by two ad hoc quality indices introduced in this study, namely the
intermittence and the criticality indices, which allow domain experts to focus on the most
severe warnings.

The use of the BELL methodology allows the municipality to improve dwellers’ experience.
OMPs permit a spatio-temporal exploration of critical and intermittent situations. Since stations are
geo-referenced, OMPs display the city areas where disservices are likely to occur. Moreover, since
OMPs can be related to specific time periods, they allow experts to identify when these disservices are
likely to occur.

The proposed BELL methodology generates OMPs by means of a two-step itemset-based process,
which is driven by the two quality indices proposed in this study. BELL has been thoroughly evaluated
using real datasets acquired from the bicycle sharing systems of two important cities, i.e., Barcelona
(Spain) and New York (USA). The experimental results demonstrated the effectiveness of BELL in
identifying useful knowledge regarding the spatio-temporal distribution of possible service disruptions
for end users of bicycle sharing systems. We envisioned possible scenarios of usage of the extracted
patterns aimed at supporting maintenance activities and improving user experience.
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This paper is organized as follows. Section 2 overviews the literature. Section 3 presents and
thoroughly describes the proposed approach. Section 4 experimentally evaluates the performance of
our implementation of the BELL methodology on data acquired in real urban environments. Section 5
discusses the policy implications of the presented results and presents future developments of this
work. Section 6 draws conclusions.

2. Literature Review

The analysis of urban data related to bicycle sharing systems has already been addressed in
previous studies. Specifically, in this field, the main branches of research can be categorized as follows:
(i) Grouping stations based on their usage profile [9–12], (ii) Predicting future station occupancy
levels [13–17], and (iii) Repositioning bicycles between the stations [18–23].

Branch (i) focuses on identifying groups of stations with different usage profiles by applying
unsupervised machine learning techniques (e.g., clustering [9]). To characterize station usage, temporal
features [9], spatial features [10], or a mix of the above [11] are considered. Instead of partitioning
the set of stations into disjointed groups according to their common usage pattern, the methodology
proposed in this study focuses on locating sets of nearby stations showing a critical or alternate usage
profile (e.g., a station is overloaded, whereas the nearby station is almost empty). To the best of our
knowledge, the information provided by OMPs, which is the core of the BELL methodology, cannot be
obtained by any of the existing approaches.

Branch (ii) aims at forecasting the occupancy level of a station in the near future (i.e., with a
time horizon between 30 min and 2 h ahead) by applying supervised machine learning techniques
(e.g., regression [13–15,24], classification [16,17]). Based on these predictions, a recommender system
can be integrated into the mobile application of the provider to suggest the stations close to the
user-specified point of interest with a sufficient number of free docks/available bicycles. Predictions
are based not only on past occupancy levels but also on contextual information (e.g., meteorological
data [24]). The main differences between the aforesaid works and the proposed approach are
enumerated below: (i) Unlike the aforesaid approaches, this work does not address the problem
of forecasting the station occupancy levels using supervised techniques. Conversely, it presents a
methodology based on an unsupervised technique. (ii) In the prediction task, the aim is to forecast
short-term variations in occupancy level (typically, between 30 min and 2 h ahead). Our work aims at
identifying recurrent situations of imbalance in dock occupancy, which policymakers may consider for
scheduling medium- and long-term maintenance actions (e.g., re-balance the number of bicycles in the
stations, resize the existing stations, place new stations).

Branch (iii) focuses on planning the re-balance of the bicycles in stations according to actual user
demands (e.g., more bicycles close to parking areas and business centers or more free docks close to
restaurants at lunchtime). The aim is to support providers in improving user experience. For example,
in [12], the authors performed a stochastic characterization of demand to design fleet-management
strategies dealing with flow asymmetries. The problem is complementary to the one addressed in
this paper because detecting dock overload situations could trigger re-balance actions driven by
optimization-based strategies such as [18,22,23].

3. Methodology

BELL is a new data mining methodology aimed at monitoring the occupancy levels of the
stations in a bicycle sharing system. The main architecture blocks, depicted in Figure 1, are (i) Data
collection, modeling and enrichment (ii) Mining Occupancy Monitoring Patterns (OMP), which entails
discovering OMP patterns from the prepared data, and (iii) Knowledge exploration, which consists of
exploring the extracted OMPs to discover actionable knowledge. A more thorough description of each
step is given in the following sections. Table A1 summarizes the notation used throughout the sections.
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Figure 1. The Bike Station OvErLoad AnaLyzer (BELL) architecture.

3.1. Data Collection, Modeling and Enrichment

To monitor the usage of the bicycle sharing system, the occupancy levels of all the stations are
acquired at different points of time and stored into an Occupancy level dataset. Collected data are then
enriched with additional spatial and temporal information needed to support the subsequent data
analysis phase.

Data collection and modeling. Given a time window TW and a set TS = {t1, . . ., tn} of points of time
in TW, for each station si in the system, the number of free parkings at each time ti ∈ TW is acquired
and collected in a unique repository named Occupancy level dataset (D). D is modeled as a relational
dataset [25]. A more formal definition follows.

Definition 1 (Occupancy level dataset). Let TW be an arbitrary time window and let TS be a set of sampling
time points in TW. Let S be a set of attributes, where each attribute sj ∈ S represents a different station in

the bicycle sharing system. Let (sj, oj
i) be an arbitrary pair denoting the occupancy level oj

i of station sj ∈ S
at a given timestamp ti ∈ TS. The record Ri indicates the occupancy levels of all the stations in S at time ti,
i.e., it is a set of pairs {(sj, oj

i)}, ∀ j | sj ∈ S . Each record is logically identified by a Record IDentifier (RID).
An occupancy level dataset D associated with time period TW is defined as ∪i | ti∈TSRi.

Station occupancy values are categorized into two different classes to indicate the occupancy
level of the station. Specifically, the measurements indicating the number of free parkings at a station
are labeled as follows: (i) Overloaded, if the number of freely available parkings is below a given
occupancy threshold full-th, or (ii) Normal, if the number of freely available parkings is equal to or
above full-th. The occupancy level threshold full-th is an absolute value specified by the domain expert.
Label Overloaded is used to denote stations with a critical occupancy level, such that end users may
not find free docks for parking. Instead, label Normal is used to denote station conditions that should
not cause a disservice to end users.

Table 1 shows an example of an occupancy level dataset. The dataset stores the occupancy levels
of three arbitrary stations (s1, s2, s3) at seven points of time (t1–t7). The dataset contains seven records
logically identified with a RID (RID1-RID7). Each record includes the occupancy levels of the three
stations at a given point of time.



Appl. Sci. 2018, 8, 2521 5 of 27

Notice that this study will not address the complementary problem of detecting sets of
underutilized stations. However, since our proposed methodology is general, it can be straightforwardly
adapted to deal with this complementary problem.

Table 1. Example of Occupancy level dataset

Record IDentifier (RID) Stations Time

s1 s2 s3 Timestamp Time Period

RID1 Overloaded Overloaded Overloaded t1 TP1
RID2 Overloaded Normal Overloaded t2 TP1
RID3 Overloaded Overloaded Normal t3 TP1
RID4 Overloaded Normal Normal t4 TP1
RID5 Normal Overloaded Normal t5 TP2
RID6 Normal Overloaded Normal t6 TP2
RID7 Normal Normal Normal t7 TP3

Data enrichment with temporal information. The analysis of station occupancy levels at different
time granularities allows system managers to investigate how overload conditions evolve over time,
and to identify overload conditions that frequently happen in specific time periods. To support
this analysis, the occupancy level data have been enriched with a temporal information with a
coarser granularity.

In dataset D, each record includes the occupancy levels of all the stations acquired at a different
point of time ti ∈ TS. Each record is enriched with an additional attribute specifying the corresponding
time period TP for the point of time ti. In the example dataset in Table 1, records are associated with
three different time periods denoted as TP1, TP2, and TP3. The granularity of the time period can
be defined based on the target analysis. For example, hourly or daily time slots can be selected as
reference time periods to monitor dock overload situations during the day.

Data enrichment with spatial information. To detect dock overload situations restricted to a given
area, we enrich occupancy level data with spatial information. Since all the stations in the system
are geo-referenced, the geographical coordinates of all the stations in the system is collected. This
information is used in our approach to compute the pairwise distances between stations.

3.2. Mining Occupancy Monitoring Patterns

To automatically detect recurrent dock overload conditions in multiple stations, we propose a
new type of pattern, anmed Occupancy Monitoring Pattern (OMP). OMPs represent sets of stations
showing a dock overload condition which may cause a disservice to the end users of the bicycle sharing
system. An algorithm is proposed in this study to efficiently extract all the OMPs of nearby stations
and to compute their quality measures from a given occupancy level dataset.

The following sections are organized as follows. The main properties of OMPs are presented in
Section 3.2.1. In Section 3.2.2, the OMP mining problem has been addressed as an itemset mining
problem, while the proposed algorithm for OMP extraction is described in Section 3.2.3.

3.2.1. OMP Characterization

OMPs allow to detect dock overload conditions in multiple stations. More specifically, OMPs
represent the following situations:

• Critical situation. The occupancy levels of a group of stations are frequently overloaded at the
same time. In this case, simultaneously, all the stations in the group are fully occupied.

• Intermittent situation. The occupancy levels of a group of stations are frequently overloaded in an
alternate fashion. At a given point of time, some stations are fully occupied whereas the other
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ones are almost empty. At another point of time, the occupancy level of the same stations could
be the opposite.

To consider only sets of nearby stations, i.e., stations with a limited geographical distance in the
city area, a spatial constraint can be enforced. Enforcing such a constraint implies that the OMPs
consist of stations with maximal geographical distance below a given (analyst-provided) threshold.

Critical situations are potentially harmful because, when all the stations in the group are
overloaded, users cannot return the rented bicycles. In particular, the discovery of a group of
overloaded stations implies that a specific city area is temporarily unaccessible. To quantitatively
evaluate the severity of this issue, we introduced a measure denoted as criticality. This measure counts
the number of recorded timestamps (i.e., the number of dataset records) at which all the stations of the
considered OMP have a critical level of occupancy.

Intermittent situations are potentially harmful as well because the stations in the group are
overloaded in an alternate fashion. While considering nearby stations, some free docks are available
in the corresponding area, but a potential service disruption may occur when a user arrives at an
overloaded station. Still, the user could reach any of the close stations, since some of them are
underutilized. To quantitatively estimate the severity of an intermittent situation, we introduced
the intermittence measure. Intermittence counts the number of points of time at which at least one
station (but not all of them) of the considered OMP has an occupancy level above a given threshold.
The higher the intermittence, the more severe the imbalance situation.

More formal definitions of the OMP and its quality measures follow.

Definition 2 (Occupancy Monitoring Pattern). Let D be an occupancy level dataset and let S be its attribute
set. An Occupancy Monitoring Pattern (OMP) P in D is a set of k distinct stations in S , i.e., P = {s1, . . ., sk},
si ∈ S .

Definition 3 (Criticality measure). The criticality of an OMP P in dataset D indicates the number of records
Ri in D for which all the stations in P take value Overloaded. It is defined as the number of Ri in D such that
∀ (sj, oj

i) ∈ Ri the following conditions hold: (i) sj ∈ P; (ii) oj
i = Overloaded.

The criticality values of similar OMPs are correlated with each other. Specifically, if an OMP
P is a subset of another OMP P′ (i.e., P ⊂ P′), then the criticality of P is above or equal to those
of P′. Such a notable property, called anti-monotonicity, will be exploited to efficiently mine OMPs
(see Section 3.2.2).

Definition 4 (Intermittence measure). The intermittence of an OMP P in dataset D indicates the number of
records Ri in D for which at least one station, but not all of them at the same time, takes value Overloaded. It is
defined as the number of Ri in D for which the following conditions hold: (i) ∃(sj, oj

i) ∈ Ri such that sj ∈ P and

oj
i = Overloaded; (ii) ∃(sq, oq

i ) ∈ Ri such that sq ∈ P and oq
i = Normal.

Criticality and intermittence values can be normalized by the number of records in D. Their
normalized values are usually denoted as relative criticality/intermittence values.

Example 1. P={s2, s3} is an OMP consisting of a couple of stations (i.e., s2 and s3). In Table 1, to compute the
criticality and intermittence values of P in dataset D, we evaluated the occupancy levels of stations s2 and s3 at
different timestamps. Since they are overloaded at the same time only in one timestamp (see record with identified
RID1 associated with timestamp t1), the relative criticality value of P is 1

7 (14.28%). In four timestamps (i.e., t2,
t3, t5, t6 corresponding to records with RIDs equal to RID2, RID3, RID5, RID6), one station is overloaded,
whereas the other is normal. Therefore, the relative intermittence value of P is 4

7 (57.14%).
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To analyze how the occupancy level of stations evolves over time as well as detect dock overload
situations happening within limited time ranges, the criticality and intermittence measures of an OMP
can be reformulated by considering only the records related to a specific time period. This allows us
to discover interesting patterns at a finer granularity level. Based on the target application, the time
period with a suitable time granularity can be selected for monitoring the usage of stations. Given an
OMP P, its criticality and intermittence value in a time period TPk are computed considering only the
subset of records with time period equal to TPK.

Definition 5 (Criticality and Intermittence measures in time period TPk). Let TPk be an arbitrary time
period in dataset D. Let R(TPk) be the subset of records Ri in D that are associated with timestamps in TPk.
The criticality of an OMP P in TPk is defined as the number of Ri in R(TPk) such that ∀ (sj, oj

i) ∈ Ri the

following conditions hold: (i) sj ∈ P; (ii) oj
i = Overloaded. The intermittence of an OMP P in TPk is defined

as the number of Ri inR(TPk) for which the following conditions hold: (i) ∃(sj, oj
i) ∈ Ri such that sj ∈ P and

oj
i = Overloaded; (ii) ∃(sq, oq

i ) ∈ Ri such that sq ∈ P and oq
i = Normal.

OMPs can be filtered based on the spatial distance between the corresponding stations. For this
purpose, we introduce a spatial constraint maxdist on OMPs. This constraint specifies the maximum
geographical distance (denoted maxdist) between stations in each OMP. OMPs satisfying the spatial
constraint represent sets of nearby stations showing an overload situation. The higher is maxdist,
the larger is the area including stations with critical/intermittent levels of dock occupancy.

Definition 6 (Spatial constraint). Let maxdist be a positive number. An OMP P satisfies the spatial constraint
if for every pair of stations sj, sk ∈ P, j 6= k, their geographical distance d(sj, sk) is below maxdist.

Given an OMP P = {s1, . . ., sk} that satisfies the spatial constraint, every subset P′ ⊂ P satisfies it
as well. In fact, if for all pairs of stations sj, sk ∈ P the condition d(sj, sk) < maxdist is verified, it easily
follows that the condition is also verified for all pairs of stations in P′ ⊂ P. Such a property, called
an anti-monotonicity property, will be particularly useful for efficiently generating all the OMPs of
interest (see Section 3.2.2).

In our implementation of the proposed methodology, geographical distances between stations
were approximated with the Euclidean measure [25] thus disregarding the road network, the presence
of obstacles, bridges, or underpasses. As discussed in [26], it can be deemed as a justifiable
simplification since (i) Cities generally act to maximize the permeability of movement for pedestrians
and cyclists, (ii) Network distances for ciclying journeys are not significantly longer than Euclidean
distances, especially in the city center. Similar approximations were made in other studies focused on
bike and car sharing system data analyses as well (e.g., [21,27]).

3.2.2. Proposed Approach for OMP Mining

The problem of generating OMPs has been addressed as an itemset mining problem. Itemset
mining is an exploratory data mining technique which consists of discovering interesting and useful
patterns in transactional databases [28]. More specifically, it entails discovering the groups of attribute
values that frequently co-occur in the analyzed database. Itemset mining has been applied in
various application domains such as market basket analysis, bio-informatics, text mining, product
recommendation, and Web clickstream analysis.

To enable the itemset mining process in our target context, the records contained in D are tailored
to a transactional data format. To this purpose, we first introduce the concept of occupancy item
(o-item, in short); next, each record Ri ∈ D is represented in a transactional data format as a set of
o-items.

An o-item represents a dock occupancy measurement acquired within a given time period and
associated with a given station. More formally, an o-item is modeled as a triple 〈sj, oj

i , TPi〉, where sj
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is an arbitrary station, oj
i is the occupancy level of station sj at any timestamp ti ∈ TPi, and TPi is a

time period. Note that the exact timestamp at which the measurement was acquired is not explicitly
reported in the o-item because the goal is to identify the stations that have acquired critical dock
occupancy levels within each time period.

In the transactional dataset T , each transaction is logically identified by a Transaction IDentifier
(TID). Each record contained in D is represented as a transaction in T characterized by the same
identification value (i.e., a record with RID equal to RIDx is mapped to a transaction with TID equal
to TIDx).

Example 2. Table 2 reports the transactional representation of dataset D on Table 1. Records RID1-RID7 are
mapped to transactions TID1-TID7.

An occupancy itemset (o-itemset, in short) is a set of o-items (of arbitrary size) such that all the
contained o-items correspond to the same time period. The frequency of an o-itemset is the number of
transactions including it.

Example 3. {〈s1, Overloaded, TP1〉, 〈s3, Overloaded, TP1〉} is an o-itemset with frequency equal to 2 in the
transactional dataset in Table 2 because it occurs in transactions with TID equal to TID1 and TID2. This
o-itemset indicates that stations s1 and s3 were temporarily overloaded in two different measurements acquired
in period TP1.

Table 2. Example of Occupancy level dataset in transactional format.

Transaction IDentifier (TID) Transaction

TID1 〈s1, Overloaded, TP1〉, 〈s2, Overloaded, TP1〉, 〈s3, Overloaded, TP1〉
TID2 〈s1, Overloaded, TP1〉, 〈s2, Normal, TP1〉, 〈s3, Overloaded, TP1〉
TID3 〈s1, Overloaded, TP1〉, 〈s2, Overloaded, TP1〉, 〈s3, Normal, TP1〉
TID4 〈s1, Overloaded, TP1〉, 〈s2, Normal, TP1〉, 〈s3, Normal, TP1〉
TID5 〈s1, Normal, TP2〉, 〈s2, Overloaded, TP2〉, 〈s3, Normal, TP2〉
TID6 〈s1, Normal, TP2〉, 〈s2, Overloaded, TP2〉, 〈s3, Normal, TP2〉
TID7 〈s1, Normal, TP3〉, 〈s2, Normal, TP3〉, 〈s3, Normal, TP3〉

OMPs and their criticality and intermittence values can be derived from the mined o-itemsets.
Therefore, our proposed methodology for OMP mining is based on the following two steps. First,
o-itemsets are mined. Then, OMPs are generated on top of the mined o-itemsets and their criticality
and intermittence values are computed. In the following, the two steps are separately described.

Step 1: O-itemset mining. A set of o-itemsets is extracted from the transactional representation of the
occupancy level dataset. Each of the mined o-itemsets satisfies the following conditions. (i) All the
contained o-items have the same occupancy level (i.e., all normal or all overloaded); and (ii) All the
stations contained in the o-itemset satisfy the spatial constraint maxdist. Thus, for every pair of stations
appearing in the o-itemset, their geographical distance is below maxdist.

Condition (i) allows us to extract two different types of o-itemsets: the critical o-itemsets, which
include only the o-items with occupancy level overloaded, and the normal o-itemsets, which include
only the o-items with occupancy level normal. These o-itemsets combine the stations having all the
same occupancy level in a given time period. As discussed below, these two o-itemset types will be
useful at the next step to compute the OMP intermittence value. Condition (ii) allows us to filter out
the combinations of o-items related to faraway stations. This will allow us to generate only OMPs
including nearby stations in Step 2.

Step 2. OMPs generation. The output of Step 1 is processed at Step 2 to generate the set of OMPs.
An OMP P is generated from a pair of critical and normal o-itemsets that include (i) the same stations
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and (ii) the same time period. The frequency values of these two o-itemsets are used to compute the
criticality and intermittence values of P.

The OMP generation process is detailed here using an example case. Let us consider a
pair of critical (denoted IC) and normal (denoted IN) o-itemsets, having both the same stations
and the same time period. Consider for instance the critical o-itemset IC = {〈si, Overloaded, TPk〉,
〈sj, Overloaded, TPk〉} and the normal o-itemset IN = {〈si, Normal, TPk〉, 〈sj, Normal, TPk〉}. Let denote
as f req_value(critical) and f req_value(normal) their respective frequency in time period TPk in the
analyzed dataset. Let P be the OMP generated from these two o-itemsets. The following statements
hold:

(i) Pattern P contains all the stations appearing in the critical o-itemset IC (or equivalently in the
normal o-itemset IN), i.e., P={si, sj}.

(ii) According to Definition 5, the criticality of pattern P in time period TPk is the number of times
all the stations in P are overloaded in TPK. It follows that that criticality of P in period TPk is
equal to the number of transactions in TPk including the o-itemset IC. Thus,

criticality = f req_value(critical). (1)

(iii) According to Definition 5, the intermittence of pattern P in a time period TPk is the number
of times at least one station in P (but not all stations at the same time) is overloaded in
TPk. It follows that the intermittence of P in period TPk is equal to the total frequency of all
o-itemsets with the same stations as P, such that at least one station (but not all them at the
same time) is overloaded in TPk. For the sake of efficiency, our approach avoids generating
all these o-itemsets, but instead it proceeds as follows. Let us denote as card_value the total
number of transactions in period TPk in the analyzed dataset. It easily follows that card_value
is equal to the sum of the following three terms: the frequency of the critical o-itemset IC
( f req_value(critical)), the frequency of the normal o-itemset IN ( f req_value(normal)) and the
total frequency of all o-itemsets with the same stations as P, such as at least one station (but not
all them at the same time) is overloaded at time TPk. Therefore, we compute the intermittence
of P in period TPk as

intermittence = card_value− ( f req_value(critical) + f req_value(normal)). (2)

Example 4. P={s2, s3} is an OMP with criticality equal to 1 and intermittence equal to 2 in time period
TP1. These measures are computed based on the frequencies of the critical o-itemset {〈s2, Overloaded, TP1〉,
〈s3, Overloaded, TP1〉} and of the normal o-itemset {〈s2, Normal, TP1〉, 〈s3, Normal, TP1〉}. The critical
o-itemset has frequency equal to 1 being contained in the transaction with TID equal to TID1. Thus, the
criticality of P is equal to freq_value(critical) = 1. The normal o-itemset has frequency equal to 1 since it is
included in the transaction with TID equal to TID4 (i.e., freq_value(normal) = 1). card_value is equal to 4
because four transactions refer to time period TP1. Based on Equation (2), it follows that the intermittence of
P is computed as intermittence = 4 − (1 + 1) = 2. This intermittence value corresponds to the total frequency
of the o-itemsets {〈s2, Normal, TP1〉, 〈s3, Overloaded, TP1〉} and {〈s2, Overloaded, TP1〉, 〈s3, Normal, TP1〉},
respectively contained in the transactions with TIDs equal to TID2 and TID3.

In Section 3.2.3, we describe the algorithm used in the BELL framework to mine the OMPs
including nearby stations according to the spatial constraint maxdist as well their criticality and
intermittence values.

3.2.3. The OMP-Miner Algorithm

Algorithms 1 and 2 report the pseudo-code of the algorithm we devised to extract OMPs.
It consists of the following three main phases:
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• Phase 1: Creation of a compact in-memory representation of the occupancy level transactional
dataset (Algorithm 1, line 1).

• Phase 2: Mining of all the critical and normal o-itemsets including nearby stations according to
the spatial constraint maxdist (Algorithm 1, line 2).

• Phase 3: Generation of the OMPs on top of the mined o-itemsets and computation of their
criticality and intermittence levels (Algorithm 1, lines 3–7).

To implement the o-itemset mining phase of the proposed methodology, we exploited an
itemset-based approach relying on the state of the art FP-growth algorithm [29]. The main advantage of
the FP-growth based approach is the selective generation of the candidate o-itemsets, which prevents
the time- and memory-consuming candidate generation phase adopted by the a priori strategy [30].

Algorithm 1 OMP-Miner(T , maxdist, T P)

Require: T : occupancy level dataset in transactional format
Require: maxdist: maximum distance between two stations in the same OMP
Require: T P : set of time periods TP1, . . ., TPq
Ensure: P : the set of OMPs for each time period in T P

1: FPTree← FP-tree(T ) { Create the initial FP-tree from T }
2: F ← O-ITEMSETMining(FPTree, maxdist, ∅) { Recursive projection-based o-itemset mining

function} { Generate OMPs on top of the mined o-itemsets in F }
3: Fnormal : normal o-itemsets IN in F
4: Fcritical : critical o-itemsets IC in F
5: H: Hash map with keys 〈IN , TPk〉 storing the criticality values of each normal o-itemset IN ∈

Fnormal for each period TPk
6: card_value[]: vector storing in the k-th element the number of transactions in T associated with

period TPk
7: P = ComputeOMPintermittence(Fcritical ,H,card_value)
8: return P

Phase 1 entails storing the measurements reported in the transactional representation T of the
original dataset into a compact tree-based structure. To accomplish this task, we exploit the prefix-tree
data structure adopted by FP-Growth, namely the FP-tree, to store the transactional dataset T .

In our context, each node of the tree contains an o-item together with the frequency of the o-item
in the path. A transaction in T is stored in the FP-tree as a path connecting o-items corresponding to
the same time period. Figure 2 reports the FP-tree that represents the transactional dataset T in Table 2.
For the sake of compactness and readability Overloaded and Normal conditions in o-items are denoted
as O and N, respectively. The key advantage of scanning the FP-tree index instead of the original
dataset in the o-itemset mining process is that in the FP-tree multiple dataset transactions containing
the same o-items are stored in the same path. For example, the FP-tree path [〈s1, O, TP1〉, 〈s2, O, TP1〉,
〈s3, O, TP1〉] represents transaction with TID equal to TID1, but subpath [〈s1, O, TP1〉, 〈s2, O, TP1〉]
represents a common part in transactions with TIDs equal to TID1 and TID2.

The FP-tree is built as follows (Algorithm 1, line 1). For each o-item in T , its frequency is
computed and stored in a data structure called Header Table. O-items are ordered in the Header Table
by decreasing value of their frequency, and they are linked to the FP-tree nodes including them. For the
sake of compactness, in Figure 2 only a portion of the whole Header Table is shown. Transactions in
T are then considered one at time. First, the o-items in the transaction are ordered according to the
o-item order in the Header Table; then, the ordered transaction is inserted in the FP-tree using the
same approach described in [29].
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Figure 2. The FP-tree representing the example transactional occupancy level dataset (Table 2).

Phase 2 entails generating all the critical and normal o-itemsets including only nearby stations
by recursively visiting the FP-tree (Algorithm 1, line 2). The O-ITEMSETMining algorithm relies
on the recursive FP-tree visit adopted by FP-Growth. However, in our proposed approach, the
anti-monotonicity property of the spatial constraint (see Section 3.2.1) is exploited to reduce the number
of generated combinations. The O-ITEMSETMining algorithm considers one at a time the o-items
in the Header Table and generates the o-itemsets including the targeted o-item and a combination
of the other o-items in the dataset. For instance, consider the FP-tree in Figure 2. First the o-item
i∗ = 〈s3, O, TP1〉 is selected to generate the o-itemsets including it (Algorithm 2, line 3). At this first
step the o-itemset I={〈s3, O, TP1〉} with frequency equal to 2 is extracted.

To generate further extensions of the current o-itemset I, the dataset transactions including all
o-items in I should be analyzed (Algorithm 2, line 4). These transactions are represented in the FP-tree
paths containing all o-items in I. For instance, when I = {〈s3, O, TP1〉}, two FP-tree paths, highlighted
in Figure 3a, are selected. These paths represent transactions with TIDs TID1 and TID2. To avoid the
generation of useless new o-itemsets, nodes from each selected path are filtered as follows (Algorithm 2,
line 5). (i) To guarantee the compliance with the spatial constraint, nodes containing o-items that do
not satisfy the maximal distance constraint with o-items in I are discarded. (ii) To guarantee that the
o-itemsets are homogeneous in the occupancy level (i.e., all o-items have level Normal or Overloaded),
nodes with an occupancy level different from the o-items in I are pruned.

In the example in Figure 3b, two nodes are pruned from the selected paths. (i) We supposed that
stations s3 and s1 do not verify the spatial constraint, i.e., d(s3, s1) > maxdist while d(s3, s2) < maxdist.
Since the mined o-itemsets cannot contain both stations s3 and s1, the node with o-item 〈s1, O, TP1〉 is
pruned from the selected paths; (ii) Node with o-item 〈s2, N, TP1〉 is pruned because its occupancy
level is different from the occupancy level in I = {〈s3, O, TP1〉}.

When the pruning phase is concluded, a conditional FP-tree, including only the selected paths is
created (using the same approach used in Algorithm 1, line 1) and the O-ITEMSETMining algorithm
is recursively invoked on it (Algorithm 2, line 8). This new invocation iterates over the conditional
FP-tree with the aim of extending the o-itemset I with the o-items in the conditional FP-tree. A stop
condition for the recursive invocation is reached when the conditional FP-tree is empty. In this case,
the algorithm backtracks to the previous invocation of the O-ITEMSETMining function; then, it restarts
the mining process from there by considering a different o-item in the local FP-tree.

In our running example, the conditional FP-tree associated with the second algorithm invocation
contains only o-item 〈s2, 0, TP1〉. Thus, the o-itemset {〈s3, O, TP1〉, 〈s2, O, TP1〉} with frequency equal
to 1 is generated. At this point, a stop condition for the recursive invocation has been reached since
the conditional FP-tree with respect to the o-itemset {〈s3, O, TP1〉, 〈s2, O, TP1〉} is empty. The algorithm
backtracks to FP-tree represented in Figure 2 to target the extraction of the o-itemsets including the
o-item which precedes item 〈s3, O, TP1〉 in the Header Table.
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(a) Paths containing o-item 〈s3, 0, TP1〉 in the initial FP-tree

(b) Node pruning based on maximal distance constraint and occupancy
level with respect to {〈s3, O, TP1〉}

(c) I’s conditional
FP-tree with
with respect to
{〈s3, O, TP1〉}

Figure 3. O-itemset mining example.

Phase 3 aims at generating OMPs by properly combining the critical and normal o-itemsets mined
at Phase 2 and stored in sets Fcritical and Fnormal , respectively (Algorithm 1, lines 3 and 4).

For each critical o-itemset IC ∈ Fcritical , an OMP P is generated with criticality and intermittence
value computed according to Equations (1) and (2), respectively. For instance, the critical o-itemset
{〈s3, O, TP1〉, 〈s2, O, TP1〉} with frequency equal to 1 and the normal o-itemset {〈s3, N, TP1〉, 〈s2, N, TP1〉}
with frequency equal to 1 are mined during Phase 2 from the running example dataset in Table 2.
Those two o-itemsets are related to time period TP1, which is associated with four transactions in the
running example dataset. Given those two o-itemsets and the number of transactions associated with
TP1, the OMP-Miner algorithm extracts the OMP {s3, s2} associated with TP1 with criticality equal to 1
and intermittence equal to 2.

To efficiently compute the pattern intermittence value, the normal o-itemsets and their
corresponding frequency values are stored in a hash map data structure. Given a critical o-itemset IC,
the frequency of the corresponding normal o-itemset IN including the same stations is returned by the
hash map given the key 〈IN , TPk〉 (Algorithm 1, line 7).
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Algorithm 2 O-ITEMSETMining(FPTree, maxdist, I∗)

Require: FPTree, an FP-tree
Require: maxdist: maximum distance between two stations in the same o-itemset
Require: I∗, the set of o-items with respect to which FPTree has been generated
Ensure: F , the set of o-itemsets extending I∗

1: F ← ∅
2: for all o-item i∗=〈sj, oj

i , TPi〉 in the header table of FPTree do

3: I ← I∗ ∪ {i∗} {Generate a new o-itemset I by joining o-itemset I∗ and o-item i∗ }
4: F ← F ∪ {I}

STATE CondPathsI ← selectConditionalPaths(FPTree, I) { Select I’s conditional paths}
5: PrunedCondPathsI ← applyConstraints(CondPathsI , I) {Prune o-items k∗=〈sk, ok

i , TPi〉 such that

∃〈sx, ox
i , TPi〉 ∈ I| distance(sk, sx)>maxdist or ok

i 6= ox
i }

6: FPTreeI ← createFP-tree(FPTree, I) {Build I’s conditional FP-tree}
7: if FPTreeI 6= ∅ then

8: F ← F ∪ O-ITEMSETMining(FPTreeI , maxdist, I) { Recursive mining}
9: end if

10: end for
11: return F

Complexity Analysis

Phases 1 and 2 of OMP-Miner are based on an FP-growth-like mining algorithm. Similar to
FP-growth [29], its complexity is linear with respect to the number of mined o-itemsets, which is
combinatorial with the number of items, i.e., 2#items in the worse case. However, enforcing the spatial
constraint allows us to significantly reduce the number of generated itemsets (see Algorithm 2). Finally,
the extracted o-itemsets are combined to mine OMPs and compute their quality measures. In addition,
this final phase is linear with respect to the number of mined o-itemsets.

3.3. Knowledge Exploration

The OMPs extracted with the OMP-Miner algorithm can be explored by system managers to gain
insight into system usage. This explorative analysis allows domain experts to focus their attention on a
limited number of stations on given areas and in specific time periods. Based on the mined knowledge,
domain experts may recommend targeted maintenance actions with the aims of reducing disruption
to end users. To effectively explore the mining result, a list of recommendations is given below.

Exploration of intermittent situations. To detect significant intermittent situations, OMPs should
be ranked by decreasing intermittence value. To ease the exploration process, the OMPs with very
low intermittence value can be discarded. OMPs with maximal intermittence value indicate groups
of stations that are frequently fully occupied in an alternate fashion. These OMPs represent station
occupancy level conditions that could result in a limited disservice to the end user. If the stations in
the OMP are located in the same area, then an alternative arrival station can be recommended to users
who reach an occupied station. The severity of the possible disservices for end users can vary based on
the criticality value of the OMP. When the pattern criticality level increases, the stations indicated by
the OMP are more frequently fully occupied at the same time; thus, end users are unlikely to find a
free dock at nearby stations.

To avoid disservices, system managers can suggest an alternative nearby station with free docks
for parking; in case of OMPs with high intermittence but low criticality values, bicycles may be
repositioned in nearby stations because they are rarely fully occupied at the same time.

Exploration of critical situations. In order to detect significant critical situations which could lead to
serious disservice for end users, OMPs should be ranked by decreasing criticality value. To ease the
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exploration process, the OMPs with very low criticality value can be discarded. OMPs with maximal
criticality value indicate groups of nearby stations that are frequently fully occupied at the same time.
Thus, end users are unlikely to find free docks for their bikes in this area.

Since nearby stations are all fully occupied, maintenance actions such as bicycle repositioning
should be carried out considering stations that are further away or located in other areas of the
city. Therefore, to address these issues, maintenance actions could be much more expensive or
even inapplicable. Alternative actions could be considered such as planning station resizing or
system enlargement.

Exploration of the spatio-temporal distribution of intermittent and critical situations. To support
management of the bicycle sharing system, the mined OMPs can be visualized on a map of the city area.
Since each station in the OMP is characterized by a geographical position, OMPs can be represented as
restricted city areas including the corresponding stations. This representation is intuitive and effective
for highlighting the areas which could lead to disservices for end users. OMP representations can be
differentiated based on the type of imbalance in station occupancy (i.e., critical, intermittent) and the
degree of severity of the discovered pattern. Domain experts can also analyze intermittent and critical
situations for different values of time periods to identify the time frames associated with more serious
disruptions. For example, they can consider 1-h time slot as time period to analyze the number and
significance of intermittent and critical situations for each hour in a day. Alternatively, they can adopt
a courser time granularity, as a larger time slot size (e.g., morning, afternoon, evening, night), to gather
a more high-level view of the dock overload conditions in the bicycle sharing system.

Domain experts are recommended to adhere to the following guideline in order to properly set up
the OMP-Miner algorithm. The spatial constraints maxdist should be set according to the geographical
distribution of the stations in the city area. For example, stations located at a walking distance can be
considered as near while stations located in different districts can be classified as distant. To ensure
that the extracted OMPs include only close stations, the user should set maxdist as the largest distance
between a pair of nearby stations.

Some examples OMPs representing significant intermittent and critical situations in real data
collections, and the analysis of their spatio-temporal distribution, are reported in Section 4.

4. Experimental Results

The efficiency and usability of the BELL system on real data acquired from bicycle sharing systems
were validated in two important cities: Barcelona, the capital city of the autonomous community
of Catalonia and Spain’s second most populated city and New York, the most populated city in the
United States of America.

The experimental evaluation addresses the following aspects. Some examples of interesting
OMPs representing significant intermittent and critical situations, extracted from the analyzed data
collections, are presented in Section 4.2. Section 4.3 evaluates the impact of the system configuration
parameters on the number of mined OMPs and on their corresponding intermittence and criticality
values, while Section 4.4 reports performance evaluation in terms of execution time for the OMP-Miner
algorithm. The main characteristics of the analyzed datasets are summarized in Section 4.1.

The OMP-Miner algorithm was implemented by using the C language. The experiments were
performed on a 2.67 GHz six-core Intel(R) Xeon(R) X5650 machine (Turin, Italy) with 32 Gb of main
memory running Ubuntu 18.04 server with the 3.5.0-23-generic kernel.

4.1. Reference Use Case Datasets

This section briefly presents the main characteristics of the two bike sharing systems considered
as reference use case in this study and describes data that we have considered on the system usage.

The Bicing system in Barcelona. Bicing is the bicycle sharing system in Barcelona which consists of
377 stations distributed all over the city area. Stations have a fixed number of parkings, which vary
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from 15 to 39. A description of the service is given in [13]. To perform our analyses, the collection
of measurements described in [13] have been taken into account. The acquired data (from a single
operator) include 30 million records from the Bicing stations over a period of approximately a semester
of service (i.e., between 15 May and 30 November 2008). Occupancy values were acquired every 5 min.

The Citi Bike system in New York. Citi Bike is the bicycle sharing system in New York which features
thousands of bikes at 528 stations across New York and Jersey City. Bicycles are available 24/7,
365 days a year. More information about the system is given in [2]. To perform our analyzes, an ad hoc
Web crawler was developed which downloaded and parsed the JSON data from the Citi Bike system
feed to retrieve the historical occupancy data. Occupancy values were acquired every 5 min over a
time period of approximately 13 months (i.e., between 23 October 2014 and 17 November 2015).

Characteristics of the collected data on the system usage. In both bicycle sharing systems, each
station is characterized by the information on its name and geographic coordinates (latitude and
longitude). Historical data on station occupancy can be collected by submitting periodical requests to
the stations in the system and storing the corresponding responses. Specifically, for each station, we
acquired the information on the number of free and occupied slots in different time instants within a
given time window.

4.2. OMP Characterization

In what follows, some OMPs are discussed as representative examples of the insights mined
through our framework. Specifically, some top ranked OMPs with maximal intermittence and criticality
values are discussed as reference cases. These OMPs represent dock overload conditions that could
yield to disservices for end users in the usage of the bicycle sharing system.

OMPs were extracted from the Bicing and Citi Bike datasets using a standard system configuration
with maxdist = 0.5 km, full-th = 3, and time period equal to time slot size of 1 h.This configuration pinpoints
a time-space granularity suitable to provide useful information to end users and system managers.
For example, we set maxdist = 0.5 km because bikers are (usually) more willing to move to physically
closer stations if the expected destination is fully occupied. We set the time period equal to time slot
size = 1 h to determine more precisely sets of nearby stations that could lead to service disruption.
Parameter full-th has been set to 3 to represent situations when the station is (almost) full. The impact
of the system parameters on the characteristics of the extracted OMPs is discussed in Section 4.3.

Example OMPs with maximal intermittence. The OMP-Miner algorithm generates as output a set
of OMPs with various intermittence values. The intermittence measure of an OMP is computed to
measure the presence of a dock overload condition from the occupancy levels of the corresponding
stations (see Algorithm 1, line 7). The higher the intermittence value, the more severe the imbalance
condition. Hence, OMPs with highest intermittence values should be considered first in the
result exploration.

Tables 3 and 4 report some examples of top ranked OMPs with maximal intermittence value
extracted from the Bicing and Citi Bike datasets, respectively. In both tables, OMPs are sorted by
decreasing intermittence value. The example OMPs from the Bicing dataset (Table 3) are characterized
as follows.

OMPs with identifiers (IDs) 5–7 represent dock overload conditions that could yield a limited
disservice for end users. Each of these OMPs represents a group of stations that the end user is likely
to find fully occupied in alternate fashion (in about 62–63% of the recorded timestamps according to
the intermittence value). However, the low criticality values of these OMPs point out that the stations
in each OMP are rarely fully occupied at the same time (in about 0.13–1.56% of the cases). It follows
that, in case the user is unable to park in one station, she/he can move to another nearby station where
free parking docks will be available with a high probability. For example, OMP with ID 5 indicates
that the usage levels of stations Carrer de Bonavista and Pl. del Poble Romaní are critical in an alternate



Appl. Sci. 2018, 8, 2521 16 of 27

fashion from 7:00 a.m. to 8:00 a.m. in 63% of the cases, but they are fully occupied at the same time
only in 1.56% of the cases.

On the other hand, OMPs with IDs 1–2 represent dock overload conditions that could result in
a more serious disservice for end users. Each of these OMPs models a group of stations having both
intermittence and criticality values higher than OMPs with IDs 5–7. For each OMP, at least one station
has a high probability of being occupied (intermittence value higher than 71%), and all stations have a
non-negligible probability of being fully occupied at the same time (criticality about 8%). Therefore,
in case the user cannot park in one station, she/he might not find a free dock at a nearby station
approximately 8% of the time. As an example, OMP with ID 1 shows that, from 4:00 a.m. to 5:00 a.m.,
stations Vilamara davant, Mallorca and Calabria have a critical usage level in an alternate fashion in
73.84% of the recorded timestamps, and they are simultaneously fully occupied in 8.29% of the cases.

OMPs with IDs 3-4 represent an intermediate condition between the two above. These OMPs
have intermittence and criticality values higher than OMPs with IDs 5–7 (intermittence 70–71% instead
of 63% and criticality 1.86–4% instead of 0.13–1.56%), but lower than OMPs with IDs 1–2 (intermittence
70–71% instead of 73% and criticality 1.86–4% instead of 8%).

Based on the mined knowledge, domain experts may recommend an alternative nearby station
for parking and/or targeted maintenance actions. For instance, they may decide to relocate bicycles at
the beginning of the time slot, moving them from stations with critical levels to non-critical stations.

Compared to the OMPs extracted from the Bicing dataset, the top ranked OMPs mined from the
Citi Bike dataset have very high intermittence values (between 90% and 100%) and criticality equal
to 0% (Table 4). For example, OMP with ID 2 consists of four nearby stations ({W 33 St & 8 Ave, W
29 St & 9 Ave, W 31 St & 8 Ave, Penn Station Valet}) with 100% intermittence and 0% criticality from
8:00 p.m. to 9:00 p.m. These stations are close to Madison Square Garden Stadium and Pennsylvania
Station, which are big subway and train hubs. These OMPs indicate conditions which could lead to a
limited disservice for the end users. On the one hand, since the OMP intermittence value is very high,
at least one of the stations in the OMP is likely to be fully occupied, while, on the other hand, since the
criticality value is 0%, at least one station has a free dock in all the recorded timestamps. Consequently,
the user will probably find a free dock among nearby stations.

Table 3. Bicing (Barcelona). Groups of stations with maximal intermittence in different hourly time slots.

OMP IDentifier (ID) OMP Time Slot Crit. Interm.
% %

1 {Vilamara davant, Mallorca, Calabria} [4:00 a.m., 5:00 a.m.] 8.29 73.84

2 {Vilamara davant, Mallorca, Calabria} [2:00 a.m., 3:00 a.m.] 8.58 73.53

3 {Sant Pere Mas Alt, Pl. Carles Sunyer, [10:00 a.m., 11:00 a.m.] 1.86 71.28Pl. Catalunya, Pl. Urquinaona}

4 {Pl. Catalunya A, Pl. Catalunya B, [11:00 a.m., 12:00 a.m.] 4.31 70.72Pl. Catalunya C, Pl. Urquinaona}

5 {Carrer de Bonavista, Pl. del Poble Romaní} [7:00 a.m., 8:00 a.m.] 1.56 63.05

6 {Carrer del Cana, Pl. del Poble Romaní} [5:00 a.m., 6:00 a.m.] 0.13 62.69

7 {Pl. del Poble Romaní, Montmany} [6:00 a.m., 7:00 a.m.] 0.13 62.41
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Table 4. Citi Bike (New York). Groups of stations with maximal intermittence in different hourly
time slots.

OMP IDentifier (ID) OMP Time Slot Crit. Interm.
% %

1 {W 42 St & 8 Ave, PABT Valet} [7:00 p.m., 8:00 p.m.] 0 100
PABT Valet}

2 {W 33 St & 8 Ave, W 29 St & 9 Ave, [8:00 p.m., 9:00 p.m.] 0 100W 31 St & 8 Ave, Penn Station Valet}

3 {W 41 St & 8 Ave, W 45 St & 9 Ave, [7:00 p.m., 8:00 p.m.] 0 100W 42 St & 8 Ave, PABT Valet}

4 {W 42 St & 8 Ave, PABT Valet} [6:00 p.m., 7:00 p.m.] 0 93.7

5 {E 22 St & Broadway, E 24 St & Park Ave} [11:00 a.m., 12:00 a.m.] 0 90

Example OMPs with maximal criticality. The OMP-Miner algorithm computes the criticality of
each of the mined OMPs (see Algorithm 1, line 4). The criticality measure indicates the unavailability
of most of the docks in a set of stations. The higher the criticality, the more critical the situation of
imbalance that need to be faced.

Tables 5 and 6 report the top ranked OMPs with maximal criticality value mined from the Bicing
and the Citi Bike dataset, respectively. OMPs in Tables 5 and 6 represent potentially severe disservices
for the end users of the system because they identify groups of nearby stations whose levels of usage
are frequently all critical at the same time.

For example, for the Bicing in Table 5, OMP with ID 1 indicates that from 10:00 a.m. to 11:00 a.m.
stations Marquas de l’Argentera and Avinguda del Marques Argentera (approximated distance 300 m) both
have critical usage levels in approximately 38% of the recorded timestamps. Thus, one third of the
time the parking is unavailable in this time slot in the mentioned areas. If the problem persists, users
working or living in the neighborhood are strongly discouraged from using the service. Since nearby
stations are all fully occupied, maintenance actions such as bicycle repositioning should be carried out
considering stations that are further away or located in other areas of the city. Therefore, in order to
address these issues, maintenance actions could be much more expensive or even not feasible.

Results in Table 6 report even more critical situations for some groups of stations in the Citi Bike
dataset. For instance, OMP with ID 1 representing the nearby stations E 85 St & 3 Ave and E 84 St & 1
Ave has a criticality equal to 51%. Hence, in half of the cases, both stations are fully occupied.
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Table 5. Bicing (Barcelona). Groups of stations with maximal criticality in different hourly time slots.

OMP IDentifier (ID) OMP Time Slot Crit. Interm.
% %

1 {Marquas de l’Argentera, [10:00 a.m., 11:00 a.m.] 37.96 19.23Avinguda del Marques Argentera}

2 {Gran Via, Rocafort} [11:00 a.m., 12:00 a.m.] 35.94 19.91

3 {Gran Via, Rocafort} [10:00 a.m., 11:00 a.m.] 34.48 19.84

4 {Marquas de l’Argentera [11:00 a.m., 12:00 a.m.] 33.52 21.15Avinguda del Marques Argentera}

5 {Paralà lel, Pl. Jean Genet} [1:00 a.m., 2:00 a.m.] 32.64 25.42

6 {Paralà lel, Sant Oleguer, Pl. Jean Genet} [1:00 a.m., 2:00 a.m.] 23.41 41.91

7
{Marquas de l’Argentera,

[10:00 p.m., 11:00 p.m.] 22.99 37.16Avinguda del Marques Argentera,
Pl. Comercial}

8
{Marquas de l’Argentera

[12:00 p.m., 1:00 a.m.] 22.48 32.55Avinguda del Marques Argentera,
Pl. Comercial}

Table 6. Citi Bike (New York). Groups of stations with maximal criticality in different hourly time slots.

OMP IDentifier (ID) OMP Time Slot Crit. Interm.
% %

1 {E 85 St & 3 Ave, E 84 St & 1 Ave} [8:00 p.m., 9:00 p.m.] 51.15 29.01

2 {E 53 St & Madison Ave, E 48 St & 5 Ave} [9:00 a.m., 10:00 a.m.] 49.76 20.53

3 {E 84 St & 1 Ave, E 82 st & 2 Ave} [9:00 p.m., 10:00 p.m.] 49.26 27.53

4 {E 85 St & 3 Ave, E 84 St & 1 Ave} [7:00 p.m., 8:00 p.m.] 45.01 31.13

5 {W 51 St & 6 Ave, E 48 St & 5 Ave} [9:00 a.m., 10:00 a.m.] 44.93 16.91

Hourly distribution of intermittent/critical OMPs. The OMP-Miner algorithm allows us to extract
OMPs and store their criticality/intermittence values in different time slots (see Algorithm 1, line 5).
Analyzing the quality measures in different time slots allows domain experts to detect time-constrained
imbalance situations (e.g., situations arising in specific hourly time slots).

Figures 4 and 5 show the hourly distribution of the number of OMPs and their corresponding
levels of intermittence and criticality. The two figures report, for each hourly time slot, the total number
of mined OMPs characterized by different ranges of intermittence and criticality values. In order to
identify OMPs that could lead to a disservice for end users, OMPs with an intermittence/criticality
value greater than or equal to 20% have been taken into consideration.

In the Bicing dataset (Figure 4), a significant number of OMPs with intermittence/criticality
values greater than or equal to 20% occurs in all hourly time slots. However, OMPs with higher values
of intermittence/criticality mainly occur between 1:00 a.m. and 2:00 a.m., between 7:00 a.m. and
1:00 p.m., and between 4:00 p.m and 11:00 p.m.

OMPs mined from the City Bike dataset (Figure 5) show a similar hourly distribution to OMPs
from the Bicing dataset. However, a lower number of OMPs with high intermittence/criticality values
comes from the City Bike dataset, probably because the stations in New York are more widespread
than those in Barcelona.

Domain experts can thus gather useful insights on the usage of the bicycle sharing system. On the
one hand, they can identify daily time periods in which service disruptions may occur, and, on the
other hand, they can also identify the set of nearby stations which are involved in these disservices.
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Figure 4. Bicing (Barcelona). Hourly distribution of the number of OMP and their corresponding levels
of intermittence/criticality. maxdist = 0.5 km. time slot size = 1 h. full-th = 3.
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Figure 5. Citi Bike (New York). Hourly distribution of the number of OMPs and their corresponding
levels of intermittence and criticality. maxdist = 0.5 km. time slot size = 1 h. full-th = 3.

Geographical distribution of significant intermittent and critical OMPs. Each OMP represents a
group of geo-referenced stations. To support the management of the bicycle sharing system, maps
can be used to highlight the city areas associated with OMPs (i.e., groups of stations) with high
intermittence and criticality values. Notice that OMPs can be easily visualized on a map because
they represent groups of nearby stations. The extraction and visualization of OMPs including distant
stations is prevented by enforcing the spatial constraint in the OMP-Miner algorithm (see Algorithm 2,
line 5).

For example, Figure 6a,b show two heat maps (The heat maps have been generated by using
the service provided by Babicki et al. [31].) of the areas of Barcelona identified by the OMPs in
hourly time slot (between 11:00 a.m. and 12:00 a.m.). OMPs in this time slot represent significant
intermittent and critical situations according to the results in Figure 4. In Figure 6a,b, the color intensity
of areas increases with the density of occurrence of OMPs and their intermittence and criticality values,
respectively. The higher the color intensity, the more severe the disservice to end users.

Figure 6a shows that intermittent situations are mainly localized in the city center in four distinct
areas. The area with the highest intensity is centered in Placa Catalunya, while the other two large areas
are centered in History Museum of Catalonia and La Vila Olimpica del Poblenou and a small area is in Pla
de Miquel Tarradell.
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Instead, based on Figure 6b, critical situations are more spread over the geographical areas.
The larger area in Figure 6b covers all the three main areas in Figure 6a. Moreover, three additional
areas show up, two of them located on the top of the map (in the Torre Glories and El Maresme Forum
areas) and one on the bottom (Drassanes area).

We also exploited heat maps to analyze the geographical distribution of OMPs mined in hourly
time slot (between 11:00 a.m. and 12:00 a.m.) in New York (see Figure 7a,b). Compared to Barcelona,
more areas in New York are characterized by OMPs with high intermittence and criticality values.
The areas with the highest intensity for intermittence situations are mainly located in the World Trade
Center (on the bottom of the map), while the highest intensity for critical situations is located both in
the areas of the World Trade Center and of the Museum Of Modern Art (on the top of the map).

(a) Intermittence (b) Criticality

Figure 6. Heat maps representing intermittence and criticality values in Barcelona at the hourly time
slot (between 11:00 a.m. and 12:00 a.m.). maxdist = 0.5 km, and time slot size = 1 h. full-th = 3.

(a) Intermittence (b) Criticality

Figure 7. Heat maps representing intermittence and criticality values in New York at the hourly time
slot (between 11:00 a.m. and 12:00 a.m.). maxdist = 0.5 km, and time slot size = 1 h. full-th = 3.

4.3. Parameter analysis

The main parameters of the OMP-Miner algorithm are as follows: (i) The threshold used to
discriminate station occupancy levels into Normal and Overloaded, i.e., the occupancy threshold
full-th; (ii) the threshold used to decide whether two stations are located nearby or not, i.e., the
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maximum distance threshold maxdist; and (iii) the time granularity used to analyze the evolution of
imbalance situations over time, i.e., time slot size.

We analyzed the impact of parameters full-th, maxdist, and time slot size on (i) the cardinality of the
mined OMPs (i.e., the number of OMPs per time slot), (ii) the distribution of the intermittence values
of the mined OMPs, and (iii) the distribution of the criticality values of the mined OMPs. Moreover,
we also analyzed the impact of the day category on the hourly distribution of the intermittence and
criticality values for the mined OMPs.

In the experimental evaluation, we varied one parameter at a time, and we set the standard
configuration for the remaining parameters. The standard configuration was introduced in Section 4.2
as maxdist = 0.5 km, full-th = 3, time slot size = 1 h.

For the sake of brevity, we will hereafter report the results achieved on the Bicing dataset
(Barcelona) considered as a reference example study. Similar results have been obtained from the Citi
Bike dataset.

Occupancy threshold (full-th). Figure 8a,b show the impact of the full-th parameter on the mined
OMPs. The two figures report the total number of mined OMPs for each range of intermittence and
criticality value when increasing full-th.

A station is in an overloaded condition when less than full-th free docks are available. Therefore,
the higher occupancy threshold value we set, the more OMPs with high intermittence/criticality value
could be extracted. The results reported in Figure 8a,b show this trend. The number of OMPs for each
intermittence and criticality range increases almost linearly when increasing the full-th value. This
increase is higher for the intermittence index.
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Figure 8. Barcelona. Impact of the occupancy threshold on the characteristics of the mined OMPs.
maxdist = 0.5 km. time slot size = 1 h.

Maximum distance threshold (maxdist). Figure 9a,b show the impact of the maxdist parameter on the
number of mined OMPs. The two figures report the total number of mined OMPs for each range of
intermittence and criticality value when increasing maxdist.

When the maxdist value is increased, the number of nearby stations also increases. Consequently,
the number of mined OMPs increases because larger patterns including more stations are also
generated. Results show that when increasing maxdist the number of OMPs increases almost
exponentially for each intermittence range and almost linearly for each criticality range.

However, the number of OMPs that are worth considering for manual inspection (i.e., those with
high intermittence/criticality values) remains roughly stable even while enforcing maxdist values
higher than 0.5 km. Setting maxdist values higher or equal to 0.6 km is less interesting in our context
of analysis because the end users are willing to move to physically closer stations if the expected
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destination is fully occupied.
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Figure 9. Barcelona. Impact of the maximum distance threshold on the characteristics of the mined
OMPs. full-th = 3. time slot size = 1 h.

Time slot size. The distribution of the number of extracted OMPs for each intermittence and criticality
range when varying the time slot size were also analyzed. Experiments were performed for time slots
ranging from two to eight hours; as a representative example, Figure 10 reports the results achieved on
the Bicing dataset with the 4-h time slot.

Considering a courser time granularity to analyze collected data as, for example, a larger time
slot size, can provide a high-level view of the station overload conditions in the bicycle sharing system.
This view can be useful for end users but expecially for system managers to identify the time frames
when usage conditions are critical. For instance, results in Figure 10a point out that the number of
OMPs with high intermittence value (between 50–59%) is significantly higher between 8.00 a.m. and
12:00 p.m.

Domain-experts can then focus on each selected time frame to locally analyze collected data with
a finer time granularity (i.e., a time slot with lower size). This latter analysis can provide more detailed
information on dock overload conditions on each selected time frame.

In some cases, using time slots with a larger size could smooth local intermittence and criticality
peaks of potential interest. For instance, few OMPs with intermittence in the range 70–79% are mined
with a 4-h time slot (see Figure 10a). Instead, when considering 1-h time slots, around 50 patterns
with intermittence between 70–79% are generated in the 10:00 a.m., 11:00 a.m., 12:00 p.m. time slots
(see Figure 4a).

Day category. Experiments have been performed to analyze the impact of the day category on the
hourly distribution of intermittence and criticality. We compared the OMPs extracted by considering
the station occupacy log data related to workdays with respect to those mined by considering the
weekends. Results are shown in Figure 11a–d.

Extracted OMPs show a significantly different trend in weekdays and weekends. More OMPs
with higher criticality and intermittence values are mined in weekdays. These OMPs are mainly
located in the time period from 7:00 a.m. to 2:00 p.m. In weekends, OMPs with high intermittence and
criticality values (about 70–79%) are mainly related to the period from 12:00 a.m. and 1:00 a.m. and
from 7:00 p.m. to 11:00 p.m. Moreover, OMPs with high intermittence values are also mined for the
2:00 p.m. time slot.

These results highlight different usages of the bike sharing system of Barcelona during the days
of the week. They support the need for different actions (such as bike rebalancing actions) depending
on the type of day of the week we are considering. For example, bike rebalancing actions may be more
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relevant in weekdays than in weekends, and they must be scheduled in different time periods based
on the day category.
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Figure 10. Bicing (Barcelona). Distribution of the number of OMPs and their corresponding levels of
intermittence/criticality with a time slot granularity of 4 h. maxdist = 0.5 km. full-th = 3. time slot size = 4 h.
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(b) Weekdays: Criticality
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(c) Weekends: Intermittence
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(d) Weekends: Criticality

Figure 11. Barcelona. Characteristics of the mined OMPs related to weekdays and weekends. full-th = 3.
time slot size = 1 h.
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4.4. Algorithm Performance

We analyzed the performance of the OMP-Miner algorithm in terms of execution time.
OMP-Miner requires time both for (critical and normal) o-itemset extraction and for the consequent
generation of OMPs on top of the mined o-itemsets. The o-itemsets extraction is the most
computationally expensive step. With the default parameter setting, the extraction time of o-itemsets
is approximately 454 s for Bicing (Barcelona) and 825 s for Citi Bike (New York), while the time for
OMP generation is a few milliseconds in both cases.

We also analyzed how the system parameters impact on the execution time. Specifically, we
focused our analysis on the maximum distance threshold maxdist, which can impact significantly on the
number of mined OMPs, and thus on the execution time. Experiments were run by varying the maxdist
value while the standard configuration was adopted for the other parameters. The execution time,
similarly to the number of mined OMPs, increases more than linearly with respect to the maximum
distance threshold value. The time ranges from 3 min when maxdist = 0.1 km up to 42 min when
maxdist=0.6 km. The execution time increases to more than one hour when values of maxdist greater
than 0.6 km are used, i.e., when maxdist is set to values that are considered not interesting in our
application domain. Most of the execution time is spent on o-itemset generation, while even in the
worst case the OMP generation requires a few seconds.

5. Discussion

The BELL methodology analyzes historical occupancy data acquired from bicycle sharing
systems with the aim of identifying situations of imbalance in dock occupancy levels of bike stations.
The proposed methodology relies on an itemset-based approach, which extracts recurrent patterns
from historical data and provides domain experts with a set of interpretable patterns to explore. The
extracted OMPs describe the context (i.e., city area and time slot) in which a set of stations is in a
critical/intermittent dock overload condition. The discovered patterns represent (i) groups of nearby
stations whose slots are almost all occupied at most points of time, and (ii) groups of nearby stations
among which at least one of them (but not all of them) has a high level of occupancy at most points of
time (possibly in an alternate fashion).

The position of this paper differs to a large extent from previous works in the literature. Specifically,
(i) previous works on clustering of the stations based on their usage profiles have been unable to
identify intermittent dock overload situations; (ii) studies on forecasting future occupancy levels of the
stations have applied supervised techniques, while the methodology presented in this paper relies
on an unsupervised technique (i.e., itemset mining); (iii) previous approaches aimed at planning
re-balancing actions are complementary to the proposed work because they can be applied to a subset
of stations with intermittent dock occupancy levels.

The results achieved by the BELL methodology on real bicycle sharing system data have shown
potentially harmful dock overload situations in the stations of bike sharing systems. Specifically,
we explored the applicability of the BELL methodology in two real case studies, the Barcelona and
New York bicycle sharing systems. Notably, the achieved results show behaviors peculiar to each use
case. For example, in New York, the mined OMPs highlight situations of imbalance mainly due to
intermittent occupancy levels (i.e., intermittence value = 100%, criticality value = 0%). This implies that,
although some areas were characterized by a strongly imbalanced bike distribution among stations
in certain time slots, at least one station per area had a non-critical dock occupancy in the analyzed
period. Hence, planning re-balancing actions could be sufficient to counteract situations of imbalance.
Conversely, in Barcelona, situations of imbalance were usually characterized by a mix of critical and
intermittent conditions. Hence, re-balancing actions may not be sufficient and long-term maintenance
actions (e.g., station resizing) need to be put in place to counteract the issue.

The takeaways from this study can be summarized as follows:
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• The use of data mining tools to analyze bicycle sharing system data has become more and more
attractive.

• Unsupervised approaches, like the BELL methodology presented in this study, characterize
system usage in the medium and long-term. They identify contexts in which user experience
could worsen due to recurrent system inefficiencies.

• System users may take advantage of the data-driven approaches to system monitoring because
potentially critical situations can be automatically detected and managed without the need for
explicit notification.

• Urban policymakers can exploit the BELL methodology to periodically monitor the dock overload
situations detected in specific city areas at different time slots.

• Based on the knowledge extracted by the BELL methodology, policymakers could put in place
medium-term actions, such as rebalancing actions triggered by the extraction of OMPs with high
intermittence value, and long-term actions, such as station resizing or new station placement
triggered by the extraction of OMPs with high criticality value.

• The results in the real case studies demonstrated the quality of the proposed methodology in
supporting system managers under various aspects.

As future work, we plan to integrate other data sources to enrich the quality of the generated
model. Variables such as the presence of environmental pollution, road network features, vehicular
traffic, and the presence of cycling lanes as indicators of favorable/unfavorable conditions for bike
sharing system usage will also be taken into consideration. In parallel, we will investigate the
portability of the proposed methodology for different mobility services offered in urban contexts.
For example, we plan to apply the proposed approach to charging stations of electric cars and to indoor
car parks.

6. Conclusions

This study presented a novel exploratory data-driven methodology, named BELL. It identifies
situations of dock overload in multiple stations which could lead to either service disruption or
low customer satisfaction. To describe in a concise way situations of imbalance in the occupancy
levels of spatially correlated stations, it proposes a new type of pattern, called Occupancy Monitoring
Pattern. The achieved results demonstrated the effectiveness of BELL in identifying useful knowledge
regarding the spatio-temporal distribution of possible service disruptions for end users of bicycle
sharing systems. Possible scenarios of usage of the mined patterns, such as supporting maintenance
activities and improving user experience, were discussed.
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Appendix A

Table A1. Notation.

Symbol Description

TW Reference time window
TS Set of points of time in TW
si Station of the bicycle sharing system
oj

i occupancy level of station sj at any timestamp ti
S Set of stations
D Occupancy level dataset in relational format
Ri Dataset record corresponding to timestamp ti
T Occupancy level dataset in transactional format

RID Record identifier
TID Transaction identifier

P Occupancy Monitoring Pattern
maxdist Spatial constraint
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