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Abstract—Approximate Computing (AxC) trades off between
the level of accuracy required by the user and the actual
precision provided by the computing system to achieve several
optimizations such as performance improvement, energy
and area reduction etc. Several AxC techniques have been
proposed so far in the literature. They work at different
abstraction levels and propose both hardware and software
implementations. The common issue of all existing approaches
is the lack of a methodology to estimate the impact of a
given AxC technique on the application-level accuracy. In
this paper we propose a probabilistic approach to predict the
relation between component-level functional approximation and
application-level accuracy. Experimental results on a set of
benchmark applications show that the proposed approach is
able to estimate the approximation error with good accuracy
and very low computation time.

keywords: Approximate computing; Functional approxima-
tion; Quality Metrics; Bayesian Networks;

I. INTRODUCTION

Approximate computing (AxC) refers to the idea that
computer systems can let applications trade off accuracy for
efficiency. Intuitively, instead of performing exact calculations,
AxC aims at selectively relaxing the accuracy of the compu-
tation in order to gain in terms of lower power consumption,
faster execution time, etc.

Several publications demonstrated the effectiveness of this
approach when applied to algorithms showing an inherent
resiliency to errors [1], [2]. Proposed solutions work both at
the hardware or software level.

Among the different AxC techniques [3], functional ap-
proximation aims at replacing a computational function with a
different implementation that closely matches (approximates)
the original implementation. Let us denote with the generic
term component the hardware or software module responsible
for the implementation of a computing function. Given an
application, the functional approximation allows for replacing
one or more components Cp with approximate versions Cax.

Despite the literature being rich of proposals for the im-
plementation of approximate arithmetic operations [4], [5],
[6], the selection of the components to approximate, and
the selection of the best approximation techniques for an
application remains a challenging problem.

Most of the approaches proposed in the literature simply run
several times the approximate application (i.e., the application
implemented with Cax), and compare the outcomes with the

precise application (i.e., the application implemented with Cp)
[7], [8]. The comparison is achieved through the adoption of
an appropriate error metric. If the accuracy of the approxi-
mate application is not satisfactory, the selected approximate
component (Cax) must be replaced with a different one. Every
time a new Cax is considered, the application must be executed
and analyzed again. Since the above process iterates until a
desired level of accuracy is reached, the cost depends on the
final amount of runs to reach it.

A different approach that analytically formalizes the error
induced by Cax and how it propagates in the application
has been proposed in [9]The benefit of this approach is that
there is no need to execute the application every time its
approximation must be evaluated. However, the formalization
is clearly application dependent. Therefore, building the formal
model of an application is very complex and requires to deeply
analyze the algorithms implemented by the application.

Bearing in mind such considerations, this paper presents a
stochastic approach to predict the impact of an approximate
component Cax on the accuracy of an application. First, each
candidate Cax is characterized as an isolated application, thus
computing its approximation error distribution. Second, the
knowledge of the error distribution of all considered Cax is
exploited to build a Bayesian Network (BN) [10] modeling
the approximation error propagation through the application’s
data flow.

The remainder of the paper is structured as follows. Sec-
tion II overviews the main concepts of the proposed approach.
Section II-A presents the Cax characterization, while Sec-
tion II-C presents the proposed Bayesian model. Results are
discussed in Section III. Finally, IV summarizes the main
contributions and concludes the paper.

II. METHODS

Figure 1 sketches the global modeling flow that is composed
of three main steps: (i) Component characterization: given
a library of approximate components, the goal is quantifying
the error introduced by their approximation; (ii) Bayesian
network construction: it aims at analyzing the application
source code in order to build the Bayesian Network modeling
the entire data flow of the application; (iii) Approximation
analysis: the produced Bayesian network is used to analyze
the approximation introduced at the application level.



Application
model

Application
source code

CPTs

Operators

AxC techniques
(component level)

(1) Components 
characterization

(2) Bayesian
Network

construction  

(3) Approximation
analysis

Fig. 1: Approximation estimation workflow.

A. Approximate component characterization

This section presents the approach used to characterize a
given set of approximate components Cax. Among the dif-
ferent functional approximation techniques, this paper focuses
on the precision reduction [3] approach. Given an n bits data
type, precision reduction works by reducing the size of the
data type cutting its k less significant bits. Therefore, given
a number x expressed on n bits, its approximated value x̃
is expressed on n − k bits, without changing the original bit
weights. This paper exploits the Worst Case Error (WCE) as
a quality metric to assess the approximation of an operator:

WCE = max
∀i

∣∣x(i) − x̃(i)

∣∣ (1)

where (i) is the i-th value of x. Since precision reduction
truncates k bit from a data type, the maximum value of WCE
is equal to 2k−1. Once both the error and the quality metrics
are defined, it is possible to identify the following classes of
approximations for x̃:

Class(x̃) =


P (Precise) if E = 0

A (Acceptable) if E ≤WCE

U (Unacceptable) if E > WCE

(2)

As an example, let us apply precision reduction with k =
2. Reasonably presuming that the possible values of x are
uniformly distributed, the probability to have x̃ in P, A or U
can be computed as:

P (x̃ is P ) = P (E = 0) = 1
4

P (x̃ is A) = P (E ≤WCE) = 3
4

P (x̃ is U) = P (E > WCE) = 0
(3)

Equation (3) allows us to quantify the error introduced by
the precision reduction, i.e., the adopted functional approxi-
mation technique, on a single value. The problem now is to
determine how this error propagates through the application
when computations are performed. This in turn requires to
characterize each operator manipulating the approximated
numbers. Let us consider as a case study the sum operator (+).
Given two precise numbers x1 and x2 and two approximate
numbers

∼
x1 and

∼
x2, the application of the sum operators

generates two different results denoted as ypr and yaxc:
ypr = x1 + x2 (4) yaxc =

∼
x1 +

∼
x2 (5)

The error introduced by the + operator can therefore be
defined as:

E+ = |ypr − yaxc| (6)

Table Ia lists all possible combinations of events that the
operator can observe at its inputs. The goal of the characteri-
zation of the operator is to classify yaxc as P, A or U depending
on the input combinations shown in Table Ia.

TABLE I: Events classification

(a) Input Events

Event
∼
x1

∼
x2

1 P P
2 P A
3 P U
4 A P
5 A A
6 A U
7 U P
8 U A
9 U U

(b) yaxc Classification

Ex̃1 Ex̃2 Eyaxc Class
1 1 2 A
1 2 3 A
1 3 4 U
2 1 3 A
2 2 4 U
2 3 5 U
3 1 4 U
3 2 5 U
3 3 6 U

Let us start considering that events 2 and 4 are equivalent,
as well as events 3 and 7 and events 6 and 8. Moreover, if at
least one input is U, the output is U, otherwise if one input
is A and one is P, yaxc will be A. Then, if both inputs are P,
the output is P. The problem is reduced to the classification
of yaxc when both inputs are A (event 5). Let us enumerate
all possible cases for Event 5 as shown in Table Ib. The first
two columns report all possible errors for

∼
x1 and

∼
x2. The

third column computes the error of yaxc as the sum of input
errors of

∼
x1 and

∼
x2. The last column classifies the yaxc error

accordingly to equation (3) (with WCE = 3). Table Ib allows
us to easily compute the following probabilities:

P (yaxc is P | (5)) = 0
P (yaxc is A | (5)) = 1/3
P (yaxc is U | (5)) = 2/3

(7)

Working with a Bayesian model, the goal of the characteri-
zation of a component is to build a Conditional Probability
Table (CPT) able to model the conditional probability of
having approximation errors at the output of the component,
depending on the level of approximation of the inputs of the
component. Table II summarizes the approximation proba-
bilities for the + operation with respect to the two inputs
in the form of a CPT. The first two rows list all possible
combinations of classes for

∼
x1 and

∼
x2. The remaining rows

provide the probability for the output classification based
on the combination of inputs. A similar analysis can be
used to characterize other operators such as difference (−),
multiplication (∗) and quotient (/).

TABLE II: Conditional Probability Table for the + Operator

x1 P A U
x2 P A U P A U P A U

yaxc

P 1 0 0 0 0 0 0 0 0
A 0 1 0 1 1/3 0 0 0 0
U 0 0 1 0 2/3 1 1 1 1



Despite its complexity, this activity must be performed only
once for each considered AxC technique. Its results can then
be reused several times.

B. Bayesian network construction

Once the impact of a single approximate component on its
output data has been probabilistically characterized, this infor-
mation can be used to evaluate the impact of the approximation
at the full software scale. As explained in Section II, the final
accuracy of an application depends on the propagation of the
introduced approximations across the data of the application.
Therefore, we model the application in the form of a Bayesian
Network as follows:
(i) all data and operators involved in the computation are
represented as nodes;
(ii) edges depict the dependency between data and operators;
(iii) for each node, a CPT express how the approximation of
the parents impacts the outcome of a computation.

Once built, this model enables to analyze how errors are
propagated from the root nodes down to the leaves repre-
senting the outcome of the application. To show how the
application is modeled, let us consider the example depicted
in Figure 2-A, consisting of a short sequence of instructions
performing mathematical operations. The applied precision
reduction is k = 2 to all the data. In order to build the BN
structure, the application Data Dependence Graph (DDG) [11]
is analyzed. Yellow nodes in Figure 2-B are input nodes. They
express a CPT (Figure 2-C) indicating the marginal probability
of the related data to be in one of the approximation classes
defined in equation (2). All intermediate nodes represent the
different operators that can be associated with the CPTs
computed during the component characterization phase (see
Section II-A). As an example, the Var2 node involves a sum
of the two input nodes. Its CPT reported in Figure 2-D is
therefore the one computed for the + operator and reported
in Table II. Finally, orange nodes identify the leaves of the
network representing the output of the computation. They are
the observation points in which the effect of the approximation
can be probabilistically analyzed.
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Fig. 2: Bayesian Network example

The full BN creation process has been automated using a
publicly available BN library [12].

C. Approximation analysis

Once the BN is built, Bayesian inference can be used to
analyze the network in order to predict the level of approx-
imation at the output of the application [13]. The prediction
can be made computing the posterior probability of the leaves
of the network (orange nodes in Figure 2) to be in one of
the three approximation classes defined in equation (3). This
can be done by applying different update beliefs algorithms
proposed in the literature. In particular, the library used to
implement the proposed framework [12] provides two solvers:
(1) the exact solver proposed by Lauritzen in [14] that can be
used with medium size models (i.e., tens of nodes), and (2) the
Estimated Posterior Importance Sampling (EPIS) approximate
stochastic solver proposed in [15] that can be used with very
large models (i.e., thousands of nodes). The flexibility of the
proposed model can be very useful to have a quick insight
on the accuracy reduction of the application, thus enabling to
quickly explore different design solutions.

III. EXPERIMENTAL RESULTS

The capability of the proposed evaluation approach has been
tested on a set of four simple benchmarks. All benchmarks are
software applications written in C language. The main purpose
of the experiments is to prove the accuracy of our predictions
when compared to the real execution of the application with
different workloads. The bit reduction parameter k is set to
2 and, therefore, according to equation (1), WCE is equal
to 3. To show how the accuracy of the proposed approach is
influenced by the target application, we performed a set of
experiments on different types of applications including:
Consecutive sums (CSs): a program performing a cascade of
consecutive sums
Matrix multiplication (MM): a function that is widely used
in several computations including linear equations solvers.
Two experiments multiplying two 2 × 2 matrices and two
4×4 matrices (MM2 and MM4) of 8-bits elements have been
performed.
Discrete cosine transform (DCT): a function important for
several engineering applications (e.g., audio and images com-
pression).

In order to show the accuracy of the prediction obtained
through the proposed model, a precise and the approximate
version of each application have been executed 10,000,000
times. At every execution, a random workload has been
generated and provided to both versions of the application. For
every execution, the result provided by the precise version and
the one provided by the approximate version of the application
have been compared in order to compute the approximation
error as described in equation (6).

Table IIIa summarizes the result of the analysis of the
selected applications. For each application, the first row (BN)
reports the probabilities computed resorting to the proposed
BN based model, while the second (App. Run) row re-
ports the values computed by running the application several
times (i.e., both the precise version and the approximate
version). The last row (Abs. Error) quantifies the absolute error



TABLE III: Experimental Results

(a)

P A U
BN 0.0015 01.167% 98.831%

App. Run 0.0016% 0.257% 99.741%CSs
Abs. Error 0.0001pp 0.91pp 0.91pp

BN 0.4673% 0.002% 99.53%
App. Run 0.0005 0 99.999%MM2

Abs. Error 0.4668pp 0.002pp 0.469pp
BN 0.002% 0.00002% 99.998%

App. Run 0 0 1MM4
Abs. Error 0.002pp 0.00002pp 0.002pp

BN 28.736% 69.490% 1.773%
App. Run 32.173% 66.07% 1.776%DCT

Abs. Error 3.437pp 3.42pp 0.003pp

(b)

Time(s)
BN 0.002

App.Run 2.077
Gain 99.90%
BN 0.004

App.Run 35.874
Gain 99.99%
BN 0.005

App.Run 153.824
Gain 99.99%
BN 0.297

App.Run 198.222
Gain 99.85%

(c)

# Executions # input bits
1

10,000,000 56

1
10,000,000 64

1
10,000,000 256

1
10,000,000 512

(|BN−App.Run|), expressed in percent points (pp), observed
between the two evaluation methods.

Looking at CSs, MM2 and MM4, one can immediately
appreciate the capability of the proposed model that is able
to estimate the accuracy of the approximate application with
a negligible absolute error. For more complex applications,
such as the DCT function, the error slightly increases. Indeed,
modeling functions of greater complexity in a precise manner
is not trivial. In particular, we employed the DCT function
used in the JPEG encoder benchmark proposed within the
AxBench suite [16] which receives 64 8-bits input values and
produces 64 8-bits outputs. Nevertheless, also in this case, the
estimation remains accurate with a worst case deviation of
3.5 pp. The reported numbers for DCT refer to the average
number of P A and U predicted by the BN and produced by
the running application over the 64 outputs.

The benefit of the proposed approach becomes evident
when looking at the time required to analyze an application.
Table IIIb reports, for each application and for each evaluation
technique, the required analysis time expressed in seconds.
The BN execution time includes the sum of the time needed
to automatically create the BN starting from the application
code and the time for its evaluation. The gain is calculated as:
100 ∗ (App run time − BN time)/App run time. Moreover,
Table IIIc highlights the important gain in terms of the number
of executions of the application. Indeed, while to build the BN
it is enough to analyze the application only once, the compari-
son of the approximate and precise application requires several
runs to account for the high number of possible combinations
of inputs and to produce significant statistical estimations.

IV. CONCLUSION

In this paper, we proposed a probabilistic approach able to
predict the inaccuracy of the results of a complex software
application due to the functional approximation techniques
applied to selected components. The prediction is performed
by modeling the application data flow using a Bayesian
Network model. Each operator handling approximated data is
characterized only once and reused every time the operator is
used in an application. The proposed approach has been tested
on a set of relevant software benchmarks. Results showed that
the accuracy is high for most applications with a significant
gain in terms of computation time. This opens interesting

paths toward the use of this model to perform design space
exploration in the approximate computing domain.
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