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Abstract: Due to their wide adaptability to different application fields spanning from opinion
dynamics to biology, the analysis of evolutionary dynamics is a compelling problem in the
science of networks and systems. In this paper, we deal with controlled evolutionary dynamics
in networks. We discuss a novel approach to model these phenomena, which enables us to
estimate the duration of the process depending on the network topology and on the control
policy adopted. In a previous work, we have presented some preliminary results including a
feedback control policy to speed up the dynamics. These encouraging results have pushed us
toward deeper analysis of the problem. Here, we exhibit some critical issues concerning the
feedback control policy originally proposed, which limit its applicability to real-world scenarios,
and we address them by proposing a new improved control policy. Finally, using Monte Carlo
simulations, we test the effectiveness of our approach to evolutionary dynamics and of the new
control policy proposed here, against a real-world scenario, obtaining an extremely promising
outcome for our future research.

Keywords: Multi-Agent Systems; Graph-based methods for networked control; Control over
Networks; Feedback Control; Evolutionary Dynamics

1. INTRODUCTION

In the last few years, evolutionary dynamics have emerged
as an effective modeling strategy to study and understand
the effect of the introduction of a novel state in a network
system and to predict its diffusion. We mention the works
in Lieberman et al. (2005); Ohtsuki and Nowak (2006);
Rychtář and Stadler (2008); Broom et al. (2011); Allen
et al. (2017); Zino et al. (2017a). This paradigm yields very
flexible models, which can be adapted to many different
application fields, such as biology (e.g., to study the spread
of a new species in a geographic region), opinion dynamics
(e.g., to analyze the approval for a new political party),
or diffusion of innovation (e.g., to predict the success of
a new asset introduced in a population). However, few
analytical results are available for these dynamics: most of
the works in the literature are based on extensive Monte
Carlo simulations, as in Lieberman et al. (2005); Broom
et al. (2011); Allen et al. (2017), but for few analytical
results for some very specific network topologies such
as rings and small-world graphs, in Ohtsuki and Nowak
(2006); Rychtář and Stadler (2008). In Zino et al. (2017a),
we have proposed a change of perspective in the approach
to model evolutionary dynamics, which has enabled us
to perform analytical estimations of the time needed for
the novel state to spread in a network, depending on its
topological structure.

One of the most compelling objectives of the study of
mathematical models is the development of effective con-
trol strategies to act on the evolution of a system and
modify its outcome. Some paradigmatic examples come
from the epidemiological field. The mathematical analy-
sis of epidemics spreading in interconnected communities
in Ganesh et al. (2005); Pastor-Satorras et al. (2015);
Fagnani and Zino (2017), have allowed for the design of a
bunch of control policies with relevant applications for the
health system. See, e.g., Borgs et al. (2010); Drakopoulos
et al. (2014); Nowzari et al. (2016). Another example lies
in the modeling of opinion dynamics in Ligget (1985);
Montanari and Saberi (2010); Young (2011). These stud-
ies have paved the way for several applications, such as
the development of accurate strategies to maximize the
influence of an opinion spreader in Kempe et al. (2003).
Having considered these encouraging results obtained from
the analysis of network dynamics, we set our main goal
in the development of effective control strategies, which
allows for speeding up the diffusion of the novel state over
the network. Some preliminary results in this direction are
available in Zino et al. (2017a), where a feedback control
policy to solve this problem has been proposed.

The main contributions of this work, thus, consist in: i)
pointing out some critical issues of the feedback control
policy presented in our preliminary work; ii) proposing a
novel feedback control policy that addresses these prob-
lems; and iii) testing the applicability of our model and



the effectiveness of the proposed feedback control policy
against a real-world scenario for evolutionary dynamics.

The paper is organized as follows. In Section 2, we present
the model for controlled evolutionary dynamics in network
systems. Then, in Section 3, we discuss the control strate-
gies for the process: first, we recall our preliminary results
comparing the effectiveness of constant control policies and
feedback ones, then we propose a novel feedback control
policy that is capable of addressing the main critical issues
of our preliminary proposal. Then, in Section 4, we present
a case study based on a real-world parameter setting,
in which the effectiveness of our novel feedback control
policy is proved. Finally, Section 5 concludes the paper by
discussing our results and presenting the future steps of
our analysis.

1.1 Notation

We gather here some notation conventions used through-
out this paper. The all-1 vector is denoted as 1 and the
all-0 vector as 0. A vector of all-0 but a 1 in the i-th
position is denoted by δ(i). For a vector x ∈ Rn, xT

indicates the transpose. R+ denotes the set of non-negative
real numbers.

2. MODEL

The topological structure of the system is described as
a graph, on whose nodes the novel state is introduced.
Depending on the application field, the nodes may repre-
sent, e.g., geographic locations occupied by a species (in
biological applications), or individuals having an opinion
(in social science applications). For the sake of simplicity,
in this paper we adopt the biological interpretation, that
is the standard one used in the literature of evolutionary
dynamics, e.g., in Lieberman et al. (2005). So, the network
represents a geographic region and the novel state maps a
mutant species introduced in the region. We assume that
each node is fully occupied by just one species, either the
native one or the mutants. Species occupation varies ac-
cording to a spreading mechanism and an external control,
detailed below.

• The geographical graph. We consider an undirected
connected weighted graph G = (V, E ,W ), W ≥ 0,
entry-wise. The node set V = {1, . . . , n} represents
the locations, link {i, j} ∈ E represents proximity
of nodes i and j, and the weight Wij measures the
frequency of interactions between the pair of linked
nodes. We suppose W to be symmetrical and Wij >
0 ⇐⇒ {i, j} ∈ E .
• The spreading mechanism. We assume each undi-

rected link {i, j} to be equipped with an independent
Poisson clock with rate Wij , which models the times
the two species in nodes i and j interact. When the
clock associated with the link {i, j} clicks, if the two
species in i and j differ, then a conflict takes place
and the winning species occupies both locations. Each
conflict is won by mutants (each conflict indepen-
dently of the others) with probability β ∈ [0, 1].
• The external control. We fix an integrable non-

negative function u(t) and a target node m(t) ∈ V,
t ∈ R+. At time t, mutants are introduced in node
m(t) at rate u(t).

i

λ+i (x)

λ−i (x)

i

Fig. 1. Transitions of the Markov process X(t). Red nodes
have state 1, white nodes have state 0.

Remark 1. The external control can be generalized by
introducing mutants in more than one location at each
time, as considered in Zino et al. (2017a). However, here
we restrict our analysis to the case of a unique target node,
both due to space constraints and because in real-world
scenarios to control more than one node at a time may be
excessively expensive and/or unfeasible. See Harris et al.
(2011).

The quadruple (G, β, u(t),m(t)) defines a controlled evolu-
tionary system. To it, we now associate a n-dimensional
Markov process X(t) that describes the evolution of
the system. Details on Markov processes can be found
in Levin et al. (2009). ComponentXi(t) ∈ {0, 1} represents
whether location i at time t is fully occupied by the native
species (Xi(t) = 0) or by the mutants (Xi(t) = 1). Time
t = 0 is the moment mutants are started to be introduced
in the system, so the initial configuration is X(0) = 0.
Formally,X(t) is a non homogeneous Markov jump process
on the configuration space {0, 1}n. The only transitions
that can take place from a generic state X(t) = x =
(x1, . . . , xn) are the ones to states that differ from x in
a single entry. Their rates are, for i ∈ V:

λ+i (x) =

{
β(1− xi)(Wx)i + (1− xi)u(t) if i = m(t)

β(1− xi)(Wx)i if i 6= m(t)

λ−i (x) = (1− β)xi [W (1− x)]i ,
(1)

where λ±i (x) denotes the transition rate from state x to

state x± δ(i), as shown in Fig. 1.

In the following of this work, two reasonable assumptions
are made. First, in order to force the presence of an
external control, we assume that

X(t) = 0 =⇒ u(t) > 0 . (2)

Second, we consider a mutant exhibiting some evolution-
ary advantages, modeled by β > 1/2.

From (1) and (2), it is straightforward that 1, the all-
mutants configuration, is the only absorbing state of the
process and that, in the long run, mutants will almost
surely occupy the whole network. Hence, what is of interest
in the applications is the analysis transient behavior,
captured by the following two quantities: the expected
diffusion time, defined as

τ = E
[
inf
{
t ∈ R+ : X(t) = 1

}]
, (3)

and the expected control cost, defined as

J = E
[∫ ∞

0

u(t)dt

]
, (4)

with the understanding that, once the process is absorbed,
then u(t) is set to 0. The effectiveness of various control
policies will be compared through the analysis of these two
quantities.



In order to tackle the analysis of this evolutionary dy-
namics, we introduce two stochastic processes, being one-
dimensional observables on the system:

Z(t) := 1TX(t), (5)

which counts the number of locations occupied by mu-
tants, and

B(t) := X(t)TW (1−X(t)) , (6)

which counts the total weight of the links in the boundary
between locations occupied by the native species and
mutants.

The estimation of τ and J is a non-trivial problem. How-
ever, a simple heuristic which can give an interesting
intuition on the main quantities that influence τ can be
found in the analysis of the N-Intertwined Mean Field Ap-
proximation (NIMFA) of the evolutionary process, which
considers a continuous-state relaxation of the system, as
detailed in Van Mieghem (2011).

Remark 2. Let the state of each node assume a continuous
value xi ∈ [0, 1], which represents the probability that
the node is occupied by mutants. Then, according to the
NIMFA, the evolution of the vector x is governed by the
following ODE, obtained following the procedure in Kurtz
(1981):

ẋ = λ+(x)− λ−(x)

= βdiag (1− x)Wx+ (1− xm(t))u(t)δ(m)

−(1− β)diag (x)W (1− x).

(7)

Similar to the stochastic processes, we can define z(t) =
1Tx(t) and b(t) = x(t)TW (1− x(t)). Then, from (7), z(t)
is the solution of the Cauchy problem{

ż = (2β − 1)b(t) + (1− xm(t))u(t)

z(0) = 0.
(8)

Since β > 1/2, from (8) we deduce that the velocity of
the process is proportional to i) the magnitude of the
boundary between the native species and mutants, i.e.,
b(t); and ii) the control rate in nodes occupied by the
native species.

From this heuristic, we can hypothesize that a technique
to achieve fast diffusion should: i) compensate for the
slowdowns of the process when the total weight of the links
on the boundary B(t) is small (i.e., in correspondence to
bottlenecks of the graph), and ii) avoid wasting energy
introducing mutants in nodes with state 1 and when the
process is already evolving fast.

3. CONSTANT VS. FEEDBACK CONTROL
POLICIES

In Zino et al. (2017a), we have proposed two families of
control policies:

• Constant control policies. We fix m(t) = m, ∀ t ∈ R+,
and given u ∈ R+,

u(t) =

{
u if Xm(t) = 0
0 if Xm(t) = 1.

(9)

• Feedback control policies. We assume m(t) to be
moved in such a way that Xm(t) = 0, and u(t) to
be a feedback control of the state of the system. We
set

(a) Easy (b) Easy with feedback (c) Hard

Fig. 2. Examples of geographical graphs (a) easy to control
even with constant policies, (b) easy to control only
with feedback policies, and (c) hard to control with
any policy.

u(t) =

{
u0 if Z(t) = 0
0 if Z(t) = n
B(t)ũ(Z(t)) else,

(10)

where ũ(z) is the actual control function that depends
only on the number of nodes occupied by mutants
Z(t).

Remark 3. The rationale for the feedback control pol-
icy (10) lies in the observations stated in Remark 2. In
fact, the main idea is to activate the control (i.e., to
set ũ(z) > 0) only for those values of Z(t) that may
correspond to bottlenecks of the graph.

These two specific families of control policies allow for
an analytical estimation of τ and J . These estimations
have been performed in Zino et al. (2017a) (detailed proofs
are available in Zino et al. (2017b)) and yield to classify
geographical graphs, depending on their topology, into
three classes: i) easy to control even with constant control
policies (e.g., expander structures such as complete or
Erdos-Renyi random graphs), for which a constant control
policy guarantees fast diffusion of the mutants; ii) easy
to control only with feedback control policies (e.g., barbell
graphs), for which constant control policies fail to achieve
fast diffusion, but feedback control policies succeed; and
iii) hard to control with any control policy (e.g., rings),
for which mutants need a long time to diffuse under any
control policy. Fig. 2 depicts a remarkable example for each
one of the three classes.

The main strength of the proposed feedback control policy
is in the fact that it allows for speeding up the diffusion
process, relying on just two observables: Z(t) and B(t),
and under the only assumption that it is possible to move
the target node to a generic location occupied by the
native species. We remark that no optimization is needed
in the choice of such target node, which is usually a
computationally hard problem, see Kempe et al. (2003).

However, when considering real-world applications of our
proposed control policy, three problems may arise, restrict-
ing its usability. First, the detection of the bottlenecks
of a graph is a NP-complete problem, which implies that
a heavy computational effort is required for their exact
computation in large-scale systems. Second, the control
policy in (10) is very sensible to small errors in the data.
For instance, if a node is added to the graph, then the
control policy could fail in activating in correspondence
to the bottlenecks. This also implies that the bottlenecks
of the graph should be detected exactly (solving the NP-
complete problem), since small errors in their estima-



tion could hamper the effectiveness of the control policy.
Finally, the feedback control policy originally proposed
could waste energy, inserting mutants when the process
is already evolving fast.

Therefore, we propose here a novel feedback control pol-
icy capable of addressing these three issues. Specifically,
considered the importance of the observable B(t) that
has been highlighted in Remark 2, we seek to exploit its
knowledge in a more thoughtful way. The core idea is to
use this observable in order to activate the control only in
the presence of slowdowns of the spreading mechanisms,
corresponding to bottlenecks of the topology. This allows,
on the one hand, to improve the robustness of the control
technique, that is not prone anymore to small errors in
the data, and, on the other hand, to avoid useless waste
of energy when the evolutionary advantage of the mutants
guarantees the speed of the process to be sufficiently large.
Moreover, in this new control policy, there is no need for
actually detecting the bottlenecks of the network, since
they are automatically identified through the observable
B(t) when the process slows down. Hence, we should
intuitively act on the system only when B(t) is small. To
this aim, fixed a positive parameter C > 0, we let

u(t) =

{
C −B(t) if Z(t) 6= n, B(t) < C
0 else,

(11)

where C > 0 guarantees assumption (2) to be verified.

Remark 4. The new control policy in (11) is able to
address the three issues posed by the original proposal.
In fact, the explicit use of the observable B(t) enables
us to immediately recognize when the process enters in
a bottleneck and promptly compensates for the slowdown,
without any useless waste of energy when the process is
already evolving fast.

We observe that, in order to tune the parameter C, one
has to estimate the magnitude of the bottlenecks of the
geographical graph to decide when to activate the control
to compensate for the slowdowns. However, the exact
detection of these bottlenecks is not required by our new
control policy: one can estimate them using fast algorithms
and define the parameter C accordingly, making our policy
feasible for the application to large-scale systems.

The theoretical analysis of our novel feedback control
policy (11) in terms of the computation of an upper-bound
on the expected diffusion time τ and on its expected cost
J will be part of our future research. Instead, we devote
the remaining of this paper to show the potentiality of our
mathematical model on a realistic case study. Specifically,
we aim to numerically prove the effectiveness of our new
control technique by applying it in a parameters setting
based on a real-world scenario.

4. CASE STUDY

In this section, we present a case study to show the poten-
tiality our feedback control policy to speed up evolutionary
dynamics in network systems. Inspired by a current hot
topic in epidemic control, we consider a possible strategy
to control the Zika outbreak in Rwanda (details about the
outbreak can be found in CDC Centers for Disease Control
and Prevention (2018a)) by substituting Aedes aegypti

Fig. 3. Topological graph of the considered geographic
area. Links connect locations within 11.7 km.

mosquitoes with genetically modified organisms (GMOs)
that are similar to the disease-spreading mosquitoes but do
not transmit the Zika virus. Similar control strategies that
involve the use of GMOs have been proposed and adopted
in trials and experiments to fight other mosquitoes-borne
diseases such as dengue fever in Central and South Amer-
ica. More details can be found in Harris et al. (2011);
Carvalho et al. (2015).

4.1 Parameter Settings

The geographical network is constructed as follows. We
consider a data set of 1621 locations in Rwanda with their
GPS coordinates from National Imagery and Mapping
Agency (2018). Two nodes are connected if and only if
the mosquitoes in the two locations can contact. Hence,
we establish a threshold corresponding to 11.7 km, that is
the maximum distance traveled by mosquitoes to lay their
eggs, according to Bogojević et al. (2007): locations within
this distance are connected. The so obtained network is
represented in Fig. 3. Since the duration of the life cycle
of an Aedes aegypti lasts in average 10 days, accord-
ing to CDC Centers for Disease Control and Prevention
(2018b), we set the activation rate of each undirected link
(i, j) ∈ E equal to Wij = 0.1. Finally, we give the GMOs
a little evolutionary advantage. We model it by setting
β = 0.53. The parameters used in the case study are
summarized in Table 1.

4.2 Simulations

We have performed 200 Monte Carlo simulations of the
evolutionary dynamics on the network for each control
policy (constant control policy and the new feedback one).
Simulations are generated according to a Gillespie algo-
rithm, following Gillespie (1976). In order to compare the
two policies, we set the specific parameters of the two con-
trol policies in such a way that the average costs coincide.

Table 1. Parameters of the Rwanda case study

Parameter Meaning Value

n Number of locations 1621
Wij Activation rate 0.1
β Evolutionary advantage 0.53
u Control rate (constant) 2
C Control parameter (feedback) 1.5
t Time unit day
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Fig. 4. Diffusion time and control cost of the 200 simu-
lations performed, both under the constant control
policy (blue squares) and under the new feedback
control policy (red circles).
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Fig. 5. Monte Carlo estimation (200 simulations) of the
expected diffusion time τ , in (a), and of the expected
control cost, in (b), with 95% confidence intervals
for the constant (blue squares) and the new feedback
control policy (red circles).

To this aim, we fix u = 2 (for the constant control) and
C = 1.5 (for the feedback one). Our simulations, reported
in Fig. 4, allow for estimating the magnitude of the im-
provement gained by adopting the feedback control policy:
at the same cost, the diffusion time reduces in average by
more than 56% (such an improvement is guaranteed by a
strong statistical significance of the result, given by a p-
value p < 0.001), as depicted in Fig. 5. This comparison
also shows that the outcomes of feedback control policy
are less variable than the ones of constant control policy.
Hence, the feedback control policy we proposed seems to
outperform the constant one, not only in average, but also
considering worst case scenarios.

5. CONCLUSION

In this paper we have studied controlled evolutionary dy-
namics, where a novel state is introduced in a network
and its diffusion is studied. First, we have presented our
framework, recalling some preliminary results for these
dynamics from Zino et al. (2017a), in which the effective-
ness of feedback control policies to speed up the diffusion
process had been proved. Then, we have presented the
main contributions of this paper, that are i) the discussion
of some concerning problems related with the feedback
control policy originally developed in Zino et al. (2017a)

that limit its applicability, and the proposal of a novel
feedback control policy capable to address and overcome
these issues; and ii) the analysis of a real-world biological
evolutionary system as a case study. The goal of the
presentation and the analysis of this case study is twofold:
first, we want to show the applicability of our model to
real-world scenarios, far beyond the toy examples consid-
ered in our preliminary work; and second, we aim to prove
the validity and the effectiveness of our proposed feedback
control policy.

Given the promising results obtained in the case study pre-
sented in Section 4, in our future research we are planning
to tackle the analysis of the proposed control policy in
order to derive accurate bounds on the expected diffusion
time and the expected control cost and to investigate its
robustness. On the other hand, we are aiming to establish
fundamental limits on the diffusion time achievable under
any control policy. By combining these two future results,
the effectiveness of our new control policy will be analyti-
cally evaluated, paving the way for further researches seek-
ing for an optimal strategy within the family of feedback
control policies we proposed. Finally, from an application
perspective, we aim to study the feasibility of the proposed
feedback control policy in real-world scenarios.
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