POLITECNICO DI TORINO
Repository ISTITUZIONALE

Network security and anomaly detection with Big-DAMA, a big data analytics framework

Original

Network security and anomaly detection with Big-DAMA, a big data analytics framework / Casas, Pedro; Soro,
Francesca; Vanerio, Juan; Settanni, Giuseppe; D'Alconzo, Alessandro. - ELETTRONICO. - (2017), pp. 1-7. (Intervento
presentato al convegno 6th IEEE International Conference on Cloud Networking, CloudNet 2017 tenutosi a Czech
Technical University in Prague, cze nel 2017) [10.1109/CloudNet.2017.8071525].

Availability:
This version is available at: 11583/2720820 since: 2018-12-17T17:48:01Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/CloudNet.2017.8071525

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

25 April 2024



Network Security and Anomaly Detection with
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Abstract—The complexity of the Internet and the volume of
network traffic have dramatically increased in the last few years,
making it more challenging to design scalable Network Traffic
Monitoring and Analysis (NTMA) systems. Critical NTMA ap-
plications such as the detection of network attacks and anomalies
require fast mechanisms for on-line analysis of thousands of
events per second, as well as efficient techniques for off-line
analysis of massive historical data. The high-dimensionality of
network data provided by current network monitoring systems
opens the door to the massive application of machine learning
approaches to improve the detection and classification of network
attacks and anomalies, but this higher dimensionality comes with
an extra data processing overhead. In this paper we present
Big-DAMA, a big data analytics framework (BDAF) for NTMA
applications. Big-DAMA is a flexible BDAF, capable of analyzing
and storing big amounts of both structured and unstructured
heterogeneous data sources, with both stream and batch process-
ing capabilities. Big-DAMA uses off-the-shelf big data storage
and processing engines to offer both stream data processing and
batch processing capabilities, decomposing separate engines for
stream, batch and query, following a Data Stream Warehouse
(DSW) paradigm. Big-DAMA implements several algorithms for
anomaly detection and network security using supervised and
unsupervised machine learning (ML) models, using off-the-shelf
ML libraries. We apply Big-DAMA to the detection of different
types of network attacks and anomalies, benchmarking multiple
supervised ML models. Evaluations are conducted on top of real
network measurements collected at the WIDE backbone network,
using the well-known MAWILab dataset for attacks labeling.
Big-DAMA can speed up computations by a factor of 10 when
compared to a standard Apache Spark cluster, and can be easily
deployed in cloud environments, using hardware virtualization
technology.

Keywords—Big-Data; Network Traffic Monitoring and Analysis;
Network Attacks; Machine Learning; High-Dimensional Data;
MAWILab.

I. INTRODUCTION

Network Traffic Monitoring and Analysis (NTMA) is
paramount today to shed light on the operation of complex and
large networks, especially when things go wrong. A main chal-
lenge for big NTMA applications is the analysis and processing
of very large amounts of fast and heterogeneous network
monitoring data. Network monitoring data usually comes in
the form of high-speed streams, which need to be rapidly
and continuously processed and analyzed. Different systems
have been conceived in the past to collect large amounts of
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measurements in operational networks. What is needed is a
flexible data processing system capable to analyze and extract
useful insights from such rich data. The fast development of
Big Data processing solutions has boosted the implementation
of novel solutions for big data processing. However, conceived
platforms are very dissimilar, with different requirements, and
are conceived for very specific targets and needs. As a result,
each Big Data practitioner needs to muddle through the wide
range of available solutions. Similarly for Big Data analytics
through machine learning based techniques, there is a big gap
to the application of such techniques for NTMA applications,
despite the growing existence of ML libraries for Big Data
platforms.

In this paper we introduce Big-DAMA, a Big Dara Ana-
lytics Framework (BDAF) for NTMA applications, designed
with comprehensive network monitoring in mind. Starting
from a predecessor system called DBStream [8], we have
conceived a first running prototype of the Big-DAMA BDAF.
Big-DAMA is a flexible BDAF, capable of analyzing and
storing big amounts of both structured and unstructured hetero-
geneous data sources, with both stream and batch processing
capabilities. Big-DAMA implements multiple data analytics
algorithms for network security and anomaly detection using
both supervised and unsupervised machine learning models.
These models are implemented using off-the-shelf machine
learning libraries.

The Big-DAMA framework is currently deployed as an
experimental cluster running on top of virtual hardware tech-
nology. To show the application of Big-DAMA in an opera-
tional NTMA application, we apply the Big-DAMA BDAF to
the detection of network attacks and traffic anomalies on top
of real datasets collected at the WIDE backbone operational
network. The principal challenge in automatically detecting
network attacks and traffic anomalies is that these are generally
evolving targets. It is difficult to precisely and continuously
define the set of possible anomalies that may arise, especially
in the case of network attacks, because new attacks as well
as new variants to already known attacks are continuously
emerging. As such, a general anomaly detection system should
be able to detect a wide range of anomalies with diverse
structures, and ML-based models provide promising results
to capture the underlying characteristics of such unexpected
events. This paper builds on top of our recent early work
(i.e., extended abstracts) on big-data analytics [6] and machine
learning for network security [7].

The reminder of the paper is structured as follows. Section
IT presents an overview on the related work. In Section III we



describe the main characteristics of the Big-DAMA BDAF.
Section IV presents the experimental results of the study, in-
cluding an in-depth analysis on the application of Big-DAMA
to the automatic detection and analysis of network attacks and
traffic anomalies, as well as a performance comparison of Big-
DAMA against other BDAFs. Finally, Section V concludes the

paper.

II. STATE OF THE ART

The Big Data era has led to an ever-growing research and
development of big data data processing systems [10]. An
overview of past and current Big Data Analysis Frameworks
includes traditional Database Management Systems (DBMS)
and extended Data Stream Management Systems (DSMSs),
noSQL systems, and Graph-oriented systems. While most
target the off-line analysis of static data, some systems target
the on-line analysis of data streams.

DSMSs such as Gigascope [11] and Borealis [12] support
continuous on-line processing, but cannot run off-line analyt-
ics over static data. The Data Stream Warehousing (DSW)
paradigm can to handle both on-line and off-line processing
requirements within a single system. DataCell, DataDepot [9]
and DBStream [8] are examples of DSWs. NoSQL systems
such as MapReduce [13] have also rapidly evolved, supporting
the analysis of unstructured data. Apache Hadoop [14] and
Spark [15] are very popular implementations of MapReduce
systems. These are based on off-line processing rather than
stream processing. There has been some promising recent work
on enabling real-time analytics in NoSQL systems, such as
Spark Streaming [16], Indoop [17], Muppet [18] and SCALLA
[19], but these remain unexploited in the NTMA domain.
Besides these systems, there is a large range of alternatives,
including Storm, Samza, Flink (stream-based analysis); Hawq,
Hive, Greenplum (SQL-oriented); Giraph, GraphLab, Pregel
(graph-oriented), as well as well known DBMSs commercial
solutions such as Teradata, Dataupia, Vertica and Oracle Exa-
data (just to name a few of them).

The application of BDAFs for NTMA tasks requires
particular system capabilities, such as scalability, real-time
processing, iii) historical data processing, and iv) the avail-
ability of traffic data analysis algorithms. Traditional SQL-like
databases are inadequate for the continuous real-time analysis
of data. As we mentioned before, DSWs have been introduced
to extend traditional database systems with continuous data
ingest and processing. These technologies leverage arbitrary
SQL frameworks to perform rolling data analysis, i.e., they
periodically import and process batches of data arriving at
the system. In some cases, such technologies have shown
outperforming results when compared to off-the-shelf Big Data
technologies [8]. More recent solutions include ENTRADA
[23], a Hadoop-based DSW for network traffic analysis, using
off-the shelf Impala query engine and Parquet file format based
on Google’s Dremel [24] to achieve high performance, relying
on columnar data storage. BDAFs based on the MapReduce
paradigm have been recently started to be adopted for NTMA
applications [20]. Considering the specific context of network
monitoring, some solutions to adapt Hadoop to process traffic
data have been proposed [21]. However, the main drawback of
such Big Data technologies in general is their inherent off-line
processing, which is not suitable for real-time traffic analysis,

highly relevant in NTMA tasks. One of the few systems that
leverage Hadoop for rolling traffic analysis is described in [22].

The current trend in BDAFs is towards on-line data pro-
cessing, using stream-based processing engines such as Spark
Streaming, Storm, Samza and Flink, but none of them has been
yet applied to the NTMA domain.

III. THE BiIG-DAMA FRAMEWORK

The main purpose of Big-DAMA is to analyze and store
large amounts of network monitoring data. Big-DAMA uses
off-the-shelf big data storage and processing engines to offer
both stream data processing and batch processing capabilities,
following a standard lambda architecture, decomposing sepa-
rate frameworks for stream, batch and query. Lambda archi-
tecture is a data processing architecture designed to handle
massive quantities of data by taking advantage of both batch-
and stream-processing methods. This approach to architecture
attempts to balance latency, throughput, and fault tolerance by
using batch processing to provide comprehensive and accurate
views of batch data, while simultaneously using real-time
stream processing to provide on-line data analysis capabilities.

In a nutshell, Big-DAMA uses Apache Spark streaming for
stream-based analysis, Spark for batch analysis, and Apache
Cassandra for query and storage. There are two main reasons
for using Cassandra instead of simply HDFS or Hadoop-based
DBs such as Hive: fault-tolerance and speed. Cassandra is fully
distributed and has no single point of failure, whereas HDFS
has a single point-of-failure represented by the HDFS name
nodes. Regarding speed, Cassandra has been built from scratch
for the particular case of on-line transactional data, whereas
HDFS follows a more static data warechousing perspective. In
addition, Cassandra is highly scalable and provides linear scal-
ability without compromising processing performance. Finally,
being a NoSQL system it allows to store and handle multiple
sources of heterogeneous data, including unstructured data.

Fig. 1 shows a high level architectural design og Big-
DAMA. Inspired on DBStream [8], the Big-DAMA BDAF
follows a DSW paradigm, offering the possibility of combining
on-the-fly data processing with large-scale storage and analytic
capabilities. This paradigm provides the means to handle both
types of on-line and off-line processing requirements within a
single system.

For the purpose of anomaly detection, Big-DAMA imple-
ments the Automatic Network Anomaly Detection and Diagno-
sis system (ANAD?) we previously conceived in [5]. Following
this framework, network traffic is processed on the fly and
two different types of features are extracted: symptomatic
features and diagnostic features. All features are analyzed
for the sake of anomaly detection. However, the symptomatic
features are designed such that their changes directly relate
to the presence of abnormal and potentially harmful events.
On the other hand, changes in the diagnostic features per-
se do not have a negative connotation, but rather ease and
guide the interpretation of the anomalous event. Within the
Big-DAMA BDAF, we have conceived different algorithms
for network security and anomaly detection using supervised
and unsupervised machine learning models. These models
are currently implemented on top of the Big-DAMA batch-
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Figure 1: (top) Automatic Network Anomaly Detection and
Diagnosis system - ANAD?. (bottom) Data Stream Warehouse-
based architecture for Big-DAMA platform, using Hadoop
ecosystem. ANAD? runs on top of Big-DAMA.

processing branch, using off-the-shelf, Spark ML machine
learning libraries.

Following the recently introduced data flow model [25],
we are currently exploring the adoption of Apache Beam, an
advanced unified programming model, which simplifies the
implementation of both batch and streaming data processing
jobs which can run on the base Spark execution engine used by
Big-DAMA, by offering a single unified programming model.

Big-DAMA is currently deployed on top of a virtualized
data cluster, consisting of 12 virtual nodes with a total capacity
of 150 GB of memory and 30 TB of data storage, connected
through Open vSwitch technology. The physical infrastructure
consists of 3 physical server nodes, each equipped with 2
Intel Xeon(R) E5-2630 v2-2.60GHz CPUs (24 cores total)
and with a total capacity of 64 GB of memory. Virtualization
is achieved by Linux Kernel-based VMs, using Proxmox
Virtual Environment (https://www.proxmox.com/) for manage-
ment and orchestration. Big data frameworks are partially
managed through a Cloudera, Hadoop ecosystem installation
(https://www.cloudera.com/), using distribution CDH 5.10 and
Cloudera Manager (with Spark 2).

IV. DETECTING NETWORK ATTACKS WITH BIG-DAMA

To showcase Big-DAMA, we apply the system to the
analysis of diverse types of network attacks on real network
traffic measurements collected at the WIDE backbone network,
using the well-known MAWILab dataset for attacks labeling
[1]. MAWILab is a public collection of 15-minute network
traffic traces captured every day on a backbone link between
Japan and the US since 2001. Building on this repository,
the MAWILab project uses a combination of four traditional
anomaly detectors (PCA, KL, Hough, and Gamma, see [1]) to
partially label the collected traffic.

We firstly evaluate the detection performance and execution
times of five different supervised ML models, using as input
a very large number of traffic features extracted from the

Table I: Input features for the ML-based detectors.

| Field Feature | Description
Tot. volume # pkts num. packets
# bytes num. bytes
pkt_h H(PKT)
PKT size pkt_{min,avg,max,std } min/max/std, PKT
pkt_p{1,2,5,...95,97,99} percentiles
# ip_protocols num. diff. IP protocols
ipp_h H (IPP)
IP Proto ipp_{min,avg,max,std } min/max/std, IPP
ipp_p{1,2.,5,...95,97,99} percentiles
% icmp/tep/udp share of IP protocols
pkt_h H(TTL)
IP TTL ttl_{min,avg,max,std } min/max/std, TTL
ttl_p{1,2,5,...95,97,99} percentiles
% IPv4/IPv6 share of IPv4/IPv6 pkts.
IPv4/IPv6 # IP_src/dst num. unique IPs

top_ip_src/dst

most used IPs

# port_src/dst

num. unique ports

top_port_src/dst

most used ports

TCP/UDP ports port_h H (PORT)
port_{min,avg,max,std } min/max/std, PORT
port_p{1,2,5,...95,97,99} percentiles

flags_h H (TCPF)

TCP flags (byte) flags_{min,avg,max,std } 1nin/1nax/st§, TCPF
flags_p{1,2,5,...95,97,99} percentiles

% SYN/ACK/PSH/... share of TCP flags
win_h H(WIN)

TCP WIN size win_{min,avg,max,std } min/max/std, TCPF
win_p{1,2,5,...95,97,99} percentiles

packet traces. We then study in detail the relevance of the
different extracted features to detect the analyzed attacks, and
evaluate different feature selection approaches to keep the most
relevant features and improve execution times. Finally, we
benchmark the performance of Big-DAMA against other big
data platforms, to show that the proposed system is not only
highly accurate but can also outperform other similar platforms
in terms of execution times. We firstly evaluate the detection
performance and execution times of five different supervised
ML models, using as input a very large number of traffic
features extracted from the packet traces. We then study in
detail the relevance of the different extracted features to detect
the analyzed attacks, and evaluate different feature selection
approaches to keep the most relevant features and improve
execution times. Finally, we benchmark the performance of
Big-DAMA against other big data platforms, to show that
the proposed system is not only highly accurate but can also
outperform other similar platforms in terms of execution times.

A. Data Description & ML Models

The traffic studied in this paper spans two months of packet
traces collected in late 2015. From the labeled anomalies and
attacks, we focus on a specific group which are detected simul-
taneously by the four MAWILab detectors, using in particular
those events which are labeled as “anomalous” by MAWILab.
We consider in particular 5 types of attacks/anomalies: (i)
DDoS attacks (DDoS), (2) HTTP flashcrowds (mptp-la), (3)
Flooding attacks (Ping flood), and two different flavors of
distributed network scans (netscan) using (4) UDP and (5)
TCP-ACK probing traffic. We train different ML models to
detect each of these attack types separately, thus each detection
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Figure 2: Detection performance per type of attack and ML-based approach.

approach consists of five different detectors which run in par-
allel on top of the data, each of them specialized in detecting
one of the five aforementioned attacks types. As a result, each
detection approach can not only detect the occurrence of an
attack, but also classify its nature.

We select five fully-supervised models to conceive the
detectors, including CART Decision Trees (CART), Random
Forest (RF), Support Vector Machines (SVM), Naive Bayes
(NB) and Neural Networks (MLP). We selected these detec-
tors based on the a-priori good performance shown by their
application in previous work on anomaly detection [2] and
traffic classification [3]. We use Spark ML Machine-Learning
libraries to calibrate these ML-based algorithms and to perform
the evaluations. We address the interested reader to the survey
[3] and to the Spark ML documentation for additional infor-
mation on the algorithms and their configuration parameters.
We evaluate the detection performance per anomaly type,
considering a slotted, time-based evaluation. For doing so, we
split the traffic traces in consecutive time slots of one second
each, and compute a set of features describing the traffic in
each of these slots. In addition, each slot ¢ is assigned a label
I;, consisting of a binary vector [; € R>*! which indicates at
each position if anomaly of type j = 1..5 is present or not in
current time slot.

To better detect the attacks and anomalies, we compute
a large number n of features describing a time slot, using
traditional packet measurements including traffic throughput,
packet sizes, IP addresses and ports, transport protocols, flags,
etc. Tab. I describes the set of n = 245 features, which are
computed for every time slot ¢ = 1..m. Note that besides
using traditional features such as min/avg/max values of some
of the input measurements, we also consider the empirical

distribution of some of them, sampling the empirical distri-
bution at many different percentiles. This provides as input
much richer information, as the complete distribution is taken
into account. We also compute the empirical entropy H(-) of
these distributions, reflecting the dispersion of the samples in
the corresponding time slot.

B. Detection Performance with Full Features

We test the detection/classification capabilities of the five
supervised approaches by computing the True and False Pos-
itive Rates (TPR/FPR) for each of the attack types, using
as input the full set of 245 features. Fig. 2 depicts the
Receiver Operating Characteristic (ROC) curves obtained with
each detector, for the proposed attack classes. To reduce
over-fitting, all presented results correspond to 10-fold cross
validation. Fig. 2 provides the comparative results obtained
for the selected supervised detectors. Besides the NB model,
the tested approaches provide all highly accurate results for
the five types of attacks. In general, detection performance is
slightly worse for DDoS attacks. Both the MLP and the RF
models achieve the best performance, detecting around 80%
of the attacks without false alarms.

Tab. II reports, for each model, both the area under the
ROC curve and the total execution time for the complete 10-
fold cross validation round. Execution times are relative to the
smallest execution time observed in the models benchmarking.
For the moment, let us just focus on the first row of each model
(i.e., features mode fu/l), which corresponds to the performance
using all the input features. Whereas MLP and RF models
provide very similar detection results, training the MLP model
takes much longer than training the RF one, i.e., 3 orders of
magnitude longer times. This makes of RFs a very appealing



Table II: Area under the ROC curve and relative execution time on MAWI dataset.

DDoS mptp-la ping-flood netscan-UDP netscan-TCP (ACK)
model features mode ROC relative ET ROC relative ET ROC relative ET ROC relative ET ROC relative ET
full 0.922 27.8 0.972 12.3 0.952 20.8 0.972 14.4 0.918 223
CART FS 0.924 1.9 0.944 1.4 0.972 1.7 0.958 1.8 0.938 2.2
top PLCC 0.874 1.6 0.965 1.9 0.956 6.1 0.970 4.9 0.920 6.0
full 0.995 | 27.4x10% | 0.998 | 27.3x10% | 0.996 | 27.3x10% | 0.997 | 27.3x10% | 0.997 | 27.4x10°
MLP FS 0.947 59.5 0.979 76.1 0.993 74.6 0.994 13.8 0.989 72.8
top PLCC 0.869 25.6 0.993 21.6 0.997 1.4%10° 0.994 1.1x10% 0.993 12%10%
full 0.828 29.3 0.952 27.4 0.963 26.5 0.944 26.4 0.929 26.1
Naive Bayes FS 0.863 1.36 0.993 0.969 2 0.969 2.1 0.950 2
top PLCC 0.824 1.1 0.982 32 0.981 4.9 0.925 43 0.959 4.6
full 0.979 10.5 0.998 4.6 0.996 7.5 0.995 7.2 0.989 7.5
Random Forest FS 0.984 5 0.987 2.6 0.995 3.8 0.995 4 0.990 4.5
top PLCC 0.942 4.4 0.988 2.4 0.991 53 0.996 5.8 0.988 5.7
full 0.935 37.6 0.982 5.5 0.980 13.5 0.982 11.2 0.968 18.3
SVM FS 0.803 3 0.916 0.932 2.8 0.933 2 0.877 2.2
top PLCC 0.755 2.2 0.982 1.1 0.948 3.4 0.938 3.9 0.900 4

solution for the application of Big-DAMA to the detection of
network attacks. Next we show that execution performance can
still be improved by using less and more relevant input features
for the analysis.

C. Improving Execution Time by Feature Selection

While using a large set of input features can normally result
in improved performance for some supervised approaches, it
is not always the best strategy to follow, as it may negatively
impact execution performance. Using more features increments
the dimensionality of the feature space, normally introducing
undesirable effects such as sparsity and training over-fitting.
At the same time, using irrelevant or redundant features may
diminish performance in the practice [4]. We show next that
by carefully addressing the pre-filtering of input features by
standard feature selection techniques, we can dramatically
reduce the execution times.

There are different search strategies and evaluation cri-
teria to construct a sub-set of traffic features. We con-
sider correlation-based selection, following two different ap-
proaches: (i) plain top, individually linearly correlated-to-the-
target feature selection - referred to as top PLCC, in which we
simply take the mostly linearly correlated features for each
attack type; (ii) sub-set search selection - referred to as F1S, in
which we select sub-sets of features that are poorly correlated
among each other, but highly correlated to the targets. In
this case, we use Best-First search as search strategy. Fig. 3
shows the absolute values of the linear correlation coefficients
(PLCC) between features and attacks, separated by attack
type. Features are sorted by decreasing correlation coefficient
magnitude. A first observation is that features are in general
poorly correlated to the attacks, with PLCC values generally
below 0.5. Note that less input features are highly correlated
to the DDoS class, which justifies the poorer performance
obtained for this attack type. For the sake of top-PLCC feature
selection, we keep features with a PLCC coefficient value
above 0.2, resulting in 11, 29, 51, 45 and 47 features for the
DDoS, HTTP flashcrowd, ping flood, UDP and TCP netscans
attacks respectively. In the case of FS feature selection, the
procedure selects 13, 19, 19, 21 and 19 features respectively.
Tab. II shows also the area under the ROC curve and the
total execution time for these feature selection approaches.
Note that in all cases, there is a significant reduction on the
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Figure 3: Linear correlation between features and attacks
(absolute values). Features are sorted by correlation coefficient
magnitude. p-values are below 0.01 for the flagged, top corre-
lated features.

execution times, with an associated reduction on the detection
performance. Still, for the two best models, namely MLP and
RF, detection results are still highly accurate. Interesting is the
case of the CART decision tree model, for which performance
even slightly increases for some types of attacks, with a
dramatic reduction on the execution times.

To get a better understanding on which are the best
features to detect the studied attacks, Tab. III reports the top-
10 correlated features per attack type, and Fig. 4 shows the
inter-feature correlations among each set of 10 features, in
the form of a circular graph. Features are coherent with the
characteristics of each attack type, e.g., having a large number
of packets towards a top targeted destination IP and destination
port in the case of a DDoS attack. Note that in all cases,
features derived from the empirical distributions are present
in the top-10 features, suggesting that such types of features,
generally not computed in other studies, are highly relevant
for the sake of detection of network attacks.



Table III: Top-10 correlated features per attack type.

| || DDoS | HTTP flashcrowd | Ping flood | UDP netscan | TCP netscan |
fi # pkts % pkts — +TCPgsi.port | % IPv4 pkts head p (IPep) % IPv4 pkts
fa % pkts — +IP P (TCPyst-port) % IPv6 pkts head p (IPje;) % IPv6 pkts
I3 tail p (TCPSTC-POﬂ) head p (TCPdst-port) P (IPien) head p (UDPdsl-port) tail p (TCPsrc-port)
fa tail p (UDPdst-port) head p (TCPdSt-port) % ICMP pkts % pkts — +IP head p (TCPyin-size)
fs tail p (TCPgst-port) tail p (TCPgst-port) % pkts — +IP | tail p (UDPse-port) head p (TCPyinsize)
fe head p (UDPsrc-port) tail p (TCPdst-port) # dst IPs p (IPlen) # TCPdst-ports
I7 # TCPdst-porls head p (TCPwin-size) head p (IPlen) % UDP pkts P (TCPdst-port)
fs head p (IPrL) % pkts — +IP head p (IPr1) | tail p (UDPggiport) tail p (TCPyst-port)
fo # src IPs H (p (TCPgst-port) ) head p (IPT7,) | # dst IPs head p (TCPggt-port)
f10 head p (IPTTL) tail p (TCPsrc-port) # src IPs # UDPdst-pons p (TCPdst-pon)

(d) netscan UDP

Figure 4: Top-10 feature correlation

D. Big-DAMA vs. DBStream vs. Spark

To conclude the paper, we benchmark the performance
of Big-DAMA against other big data solutions used for
network monitoring. We use the benchmark developed in
[8] for the sake of comparing network monitoring systems,
but slightly modify it to fit the network security tasks and
datasets used in this paper. The benchmark consists of 7
different, inter-dependent analysis tasks or jobs, which are
representative of the standard operations performed for net-
work traffic monitoring and analysis. These jobs consists of
recursively updated results, with different time-window batch
lengths (i.e., processing micro-batches of 1 minute to long
batches of 1 hour) and different analysis complexity. The
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graphs for the different types of attack.

7 jobs can be briefly described as follows: Jy: every 10
minutes, map source/destination IPs to the underlying Au-
tonomous System, using team cymru IP2ASN mapping lists
(http://www.team-cymru.org/), and compute aggregated traffic
statistics, such as min/max/avg RTT, number of distinct IPs,
total number of uploaded/downloaded bytes; J2: every hour,
compute same traffic statistics as for J;, but aggregating flows
by source AS; Js3: every hour, map source IPs to AS numbers,
and select the top 10 ASes having the biggest number of
IPs; Js: every hour, aggregate traffic into /24 subnetworks,
and select the top 10 /24 subnets with the biggest number
of flows; .Js: every minute, compute the total number of
flows and the uploaded/downloaded bytes for each source
IP; Jg and J; are incremental queries, which take advantage
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Figure 5: Performance comparison in terms of execution
time in processing MAWI data. Big-DAMA can speed up
computations by a factor of 10 when compared to a standard
Apache Spark cluster.

of the DSW architecture: in Jg, for every minute compute
the set of different destination IPs, and use it to update
the set of destination IPs which were active during the past
hour; finally, in J7, for every minute compute the number of
uploaded/downloaded bytes per source IP, and compute the
moving average during the past hour.

We compare Big-DAMA against two other solutions: our
previously conceived DBStream system [8], which is a BDAF
for network monitoring, and a standard, Spark stand-alone
cluster. Both Big-DAMA and Spark are deployed on the 12-
node virtualized infrastructure described in Sec. III. DBStream
does not support distributed infrastructures, and runs only on
a single node. While this makes the comparison rather biased
for DBStream, we have shown in [8] that even such a I-
node deployment can outperform a Spark cluster for recursive
analysis tasks as those available in the benchmark, in particular
jobs Jg and J;. Evaluations are done on top of the datasets
analyzed in this paper.

Fig. 5 reports the obtained results, considering different
volumes of analyzed data: 200 GB, 400 GB and 800 GB of
traffic. The first observation is that the comparative results
between DBStream and the Spark cluster previously obtained
in [8] still hold: when traffic volumes are smaller, DBStream is
capable to outperform a 12-node Spark cluster; this is mainly
due to the underlying characteristics of both systems, espe-
cially regarding the recursive jobs; DBStream is particularly
tailored to handle such type of analytics, whereas Spark is
meant for pure batch processing. Note however that the Spark
results are almost the same for the three data volumes, clearly
showing that the bottleneck is not on the cluster capacity, but
rather on the characteristics of Spark (data import times are
not considered in the benchmark). Big-DAMA is capable to
reduce the plain Spark cluster execution time by an order
of magnitude, taking about 20 minutes instead of the more
than 300 minutes taken by Spark. Contrary to DBStream, Big-
DAMA uses the power of the full 12-node cluster, and thus can
scale out linearly as compared to a single node. The combined
usage of Spark streaming for handling small batches and the
recursive nature of the DSW architecture to merge recursive
results on the Cassandra DB offer a high performance data
analytics system.

V. CONCLUDING REMARKS

We have presented Big-DAMA, a big data analytics frame-
work specially tailored for network monitoring applications.
Using off-the-shelf big data storage and processing engines,
Big-DAMA is capable of analyzing and storing big amounts of
both structured and unstructured heterogeneous data sources,
with both stream and batch processing capabilities. We have
shown the types of ML-based algorithms implemented in Big-
DAMA for network security, using off-the-shelf ML libraries.
By applying Big-DAMA to the detection of different types of
network attacks on top of real network measurements collected
at the WIDE backbone network, we have also explored novel
features to better and faster detecting common network attacks.
The analysis of feature selection techniques also showed that
it is possible to further reduce execution times by keeping only
the most relevant and correlated-to-the-target features. Finally,
we have shown that Big-DAMA can speed up computations
by an order of magnitude when compared to a standard
Apache Spark cluster, and can largely outperform our previous
DBStream solution for network traffic monitoring and analysis.
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