
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A High-Level Semantic Approach to End-User Development in the Internet of Things / Corno, Fulvio; De Russis, Luigi;
Monge Roffarello, Alberto. - In: INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES. - ISSN 1071-5819. -
STAMPA. - 125:(2019), pp. 41-54. [10.1016/j.ijhcs.2018.12.008]

Original

A High-Level Semantic Approach to End-User Development in the Internet of Things

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.ijhcs.2018.12.008

Terms of use:

Publisher copyright

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.ijhcs.2018.12.008

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2720712 since: 2019-01-07T12:26:48Z

Elsevier

A High-Level Semantic Approach to End-User
Development in the Internet of Things

Fulvio Cornoa, Luigi De Russisa,∗, Alberto Monge Roffarelloa

aDepartment of Control and Computer Engineering, Politecnico di Torino, 10129 Torino,
Italy

Abstract

Various programming environments for End-User Development (EUD) allow the

composition of Internet of Things (IoT) applications, i.e., connections between

IoT objects to personalize their joint behavior. These environments, however,

only support a one-to-one mapping between pairs of object instances, and adopt

a low level of abstraction that forces users to be aware of every single technol-

ogy they may encounter in their applications. As a consequence, numerous open

questions remain: would a “higher level” of abstraction help users creating their

IoT applications more effectively and efficiently compared with the contempo-

rary low-level representation? Which representation would users prefer? How

high-level IoT applications could be actually executed? To answer these ques-

tions, we introduce EUPont, a high-level semantic model for EUD in the IoT.

EUPont allows the creation of high-level IoT applications, able to adapt to dif-

ferent contextual situations. By integrating the ontology in the architecture of

an EUD platform, we demonstrate how the semantic capabilities of the model

allow the execution of high-level IoT applications. Furthermore, we evaluate

the approach in a user study with 30 participants, by comparing a web interface

for composing IoT applications powered by EUPont with the one employed by

a widely used EUD platform. Results show that the high-level approach is un-

derstandable, and it allows users to create IoT applications more correctly and

∗Corresponding author
Email addresses: fulvio.corno@polito.it (Fulvio Corno), luigi.derussis@polito.it

(Luigi De Russis), alberto.monge@polito.it (Alberto Monge Roffarello)

Preprint submitted to International Journal of Human-Computer StudiesDecember 17, 2018

quickly than contemporary solutions.

Keywords: End-User Development, Internet of Things, Trigger-Action

Programming, Semantic Web, Abstraction

1. Introduction and Problem Definition

The Internet of Things (IoT) is, nowadays, a well-established paradigm [1].

In this context, end-user personalization of IoT systems is particularly impor-

tant, as demonstrated by many works in the literature [2, 3, 4]. End-User De-

velopment (EUD), in particular, empowers users to define IoT applications, i.e.,5

connections between different IoT devices and Web services, in various areas,

like the home, the car, or for a healthy lifestyle. Many works in the litera-

ture (e.g., [5, 2, 6, 3, 4]) demonstrate the effective applicability of EUD tech-

niques for the creation IoT applications. Such personalizations can be defined,

nowadays, through different cloud services. These services typically employ10

a trigger-action programming approach (e.g., “IF something happens, THEN

perform an action”) to combine different IoT devices and Web services. With

this approach, users can connect a pair of “things” in such a way that, when

one of them performs a particular action, another action is automatically trig-

gered on the second. IoT applications created with this approach are also called15

trigger-action rules, and present a one-to-one mapping between pairs of service

or device instances. They may include, for example, “if the bedroom motion

sensor detects a movement, then turn on the table lamps in the bedroom” or

“if tomorrow’s forecast calls for rain, then delay the garden sprinkler system.”

End users that want to realize such applications do not need to write any code;20

instead, they can take advantage of Task Automation (TA) tools [7] such as

IFTTT1 or Zapier2. Among these tools, IFTTT is the most popular, and has

drawn a large community of users. IFTTT allows the composition of IoT appli-

cations (named recipes) between more than 500 supported devices and services

1https://ifttt.com (last visited on January 11, 2018)
2https://zapier.com/ (last visited on January 11, 2018)

2

https://ifttt.com
https://zapier.com/

(named channels)3.25

TA environments like IFTTT are successful in terms of user understand-

ability and ease of use, but present their own set of problems. We identify, in

particular, two major issues:

• Adaptation. In the forthcoming IoT world, new “things” will not always

be knowable a priori [8] but they may appear and disappear at every30

moment, also depending on user location (e.g., as with public services

in a smart city). Contemporary TA tools work only with well-know IoT

devices, previously associated to a specific user, only.

• Abstraction. Two IoT devices that provide equivalent or identical func-

tions (e.g., setting the indoor temperature) but differ in brands are treated35

like distinct entities. As the number of available IoT devices grows and

varies, the complexity of the IoT ecosystem becomes higher and higher [9].

Therefore, the amount of information present in current TA tools can be-

come too high and the interfaces cluttered.

With such a “low-level” of abstraction, the user experience with contempo-40

rary TA tools is put to a hard test. First, users are forced to know in advance

any involved technological detail, and they have to define several rules to pro-

gram their IoT ecosystem, i.e., every IoT devices and Web service needs to be

managed separately. For instance, a user cannot create an IoT application that

can be applied to all her connected lamps, unless they are equally branded,45

nor to other kinds of devices that may provide interior lighting. Furthermore,

contemporary IoT application cannot include friends’ or family’s availability or

their GPS positioning, and users cannot define similar rules for yet unknown

places or “thing”.

To overcome these issues, we claim that a new breed of programming plat-50

forms should be designed to support a “higher level” representation of trigger-

3On November 2016, IFTTT rebranded its recipes as applets and its channels as services.

We maintained the older names to better discuss related work.

3

action rules (and involved devices and services). However, different open ques-

tions still remain: would a higher level of abstraction help users creating their

IoT applications more effectively and efficiently compared with the contempo-

rary low-level representation? Which representation would users prefer, and55

which advantages and disadvantages would they perceive? How high-level IoT

applications could be actually executed? To answer these questions, we first

formally define EUPont (End-User Programming ontology) [10], a high-level

representation for End-User Development that allows users to model abstract

IoT applications like “if I enter a closed space, then set the temperature to 2060

Celsius degree.” Such applications can be adapted to different contextual situa-

tions, independently of manufacturers, brands, and other technical details. The

representation abstracts the IoT ecosystem by modeling devices and services on

the basis of their functionality. Through semantic and reasoning capabilities,

EUPont is able to link real devices and services to the abstract behaviors they65

can execute, thus providing a strong support for the run-time execution of the

high-level rules. After defining the model, we describe its integration in the

architecture of an EUD platform, and we explore the advantages of using such a

representation in the definition of IoT applications thanks to a user study with

30 participants. Results confirm the suitability and understandability of the70

approach, and provide interesting insights. They also show that the EUPont

approach allows users to create IoT applications more correctly and quickly than

contemporary solutions.

The remainder of the paper is organized as follows: Section 2 reviews the

related literature. Section 3 describes the design and organization of the EU-75

Pont ontology, while Section 4 presents the architecture of the platform that

exploits the ontology for the definition and the execution of trigger-action rules.

Section 5 describes the user study we conducted to evaluate the proposed ap-

proach and the representation. Section 6 discusses the results of the user study.

Eventually, Section 7 concludes the paper.80

4

2. Related Works

2.1. End-User Development in the Internet of Things

According to Lieberman et al. [11], End-User Development can be defined

as “a set of methods, techniques, and tools that allow users of software systems,

who are acting as non-professional software developers, at some point to cre-85

ate, modify or extend a software artifact”. The IoT already changed the way

end users use the Internet, as well as mobile and sensor-based devices: people

are increasingly moving from passive consumers to active producers of informa-

tion, data, and software [12]. They can access new building blocks and tools,

analogously to what happened with blogs and wikis during the early phases90

of the Web [13]. Moreover, integration of IoT technologies with Web services

and applications through end-user programming environments allows users to

effectively participate in the IoT [14]. Therefore, is not surprising that, in the

last years, and several commercial Task Automation (TA) tools (e.g., IFTTT

or Zapier) were born with the aim of allowing end user personalization of IoT95

devices and Web services.

The research community, especially in the HCI and ubiquitous computing

fields, started to explore the possibilities offered by EUD more than 10 years

ago. One of the first works in this domain is iCAP [5], a visual, PC-based, and

rule-based system for building context-aware applications that does not require100

users to write any code. To compose a context-aware application with iCAP,

users employ the trigger-action approach: they drag components (i.e., devices,

locations, time, etc.) either in a “situation” section (if) or in an “action” area

(then). Components can be already present in the system or can be created by

users by sketching their icon. More recent works move away from the desktop105

to embrace mobile or Web-based interfaces, but without substantially changing

the underlying programming paradigm.

The trigger-action programming approach is, in fact, one of the most popular

adopted paradigms and offers a very simple and easy to learn solution for cre-

ating end-user IoT applications, according to Barricelli and Valtolina [9]. They110

5

analyzed the most popular end-users tools for the creation of IoT applications,

and presented a classification model for the IoT. They found two main types of

task automation environments, which differ in terms of activities and interac-

tion styles. The first type included programming environments like IFTTT, i.e.,

tools that allow users to define sets of desired behaviors in response to a spe-115

cific event (e.g., [3, 4]). The second type stemmed from the (now discontinued)

Yahoo Pipes, i.e., tools that use formula languages and/or visual programming

for data transformation and mashup (e.g., [15]). They concluded the analysis

by arguing that the second type of programming environments “offers a too

complex solution for supporting end-users in expressing their preferences.” To120

better cope with the evolving IoT scenario, Barricelli and Valtolina did not

move towards a high level representation, instead they presented an extension

of the trigger-action paradigm that incorporated not only devices, sensors, and

Web applications, but also recommendation systems, other IoT users, space and

time, and the social dimension.125

Similarly, Ur et al. [2] found that the trigger-action approach can be both

useful and usable for end-user development in IoT settings like smart homes.

Their paper investigated the practicality of end-user programming for customiz-

ing smart home devices, by evaluating thousands of trigger-action rules publicly

shared on IFTTT, and conducting a usability test with more than 200 partic-130

ipants. They discovered that inexperienced users can quickly learn to create

programs with multiple triggers and actions. They also found that the level of

abstraction end-users employ to express triggers needs to be better explored. In

particular, they found that many users expressed triggers one level of abstrac-

tion higher, e.g., “when I am in the room” instead of “when motion is detected135

by the motion sensor.”

In another study, Ur et al. [16] empirically analyzed more than 200,000

IFTTT public recipes, the largest-scale investigation of this type up to now,

finding that a large number of users is crafting a diverse set of IoT applications,

which represents a very broad array of connections for filling gaps in devices and140

services functionality. According to the authors, this explosion of channels and

6

connections highlights the need to provide users with more support for discov-

ering functionality and managing collections of IoT applications. The analysis

emphasizes also the future need of making “IFTTT recipes more expressive.”

Huang and Cakmak [17] systematically studied the impact of different trig-145

ger and action types in trigger-action programming environments, focusing their

efforts on IFTTT. Two user studies revealed inconsistencies in interpreting the

behavior of trigger-action programming and some errors in creating programs

with a desired behavior. After a characterization of these issues, they offered

four recommendations for improving the IFTTT interface with the aim of mit-150

igating the issues that arise from mental model inaccuracies: (a) to include

prompts for warning users in ambiguous situations; (b) to disallow confusing

options; (c) to better distinguish event and state triggers when they are related

to the same underlying concept (e.g., “it starts raining” and “it is raining”); and

(d) to consider higher level program statements alternatives to “if” and “then.”155

Our work starts from the issues and the opportunities presented by these

papers and explores the need and the advantages of describing IoT applications

with a higher level of abstraction. For this purpose, we adopted a semantic

approach by designing the EUPont ontological model.

2.2. Modeling the IoT Ecosystem Through Ontologies160

Adding semantics to IoT systems is a topic of particular interest in the lit-

erature. The lack of open IoT standards naturally leads to a semantic-oriented

perspective [18], and researchers agree that the IoT could benefit from a se-

mantic approach in terms of interoperability, data integration, and knowledge

extraction [19]. Semantics in the IoT has mainly been adopted in a very spe-165

cific area, i.e., for describing sensors and their capabilities. One of the most

significant and widespread models in use in this field is the Semantic Sensor

Network (SSN) [20], an ontology to describe sensors, observations, and features

of interest. Other contributions in this area have been proposed by the Open

Geospatial Consortium (OGC), that developed a set of XML-based standards170

to describe sensors and their related data [21]. The expressiveness of these

7

vocabularies and ontologies allows them to be used on a very wide range of ap-

plications. However, as reported by Bermudez et al. [22], they are too specific,

and the description of non-essential components for many use cases can make

the ontologies heavy to query and process. To tackle this issue, they proposed175

IoT-lite [22], a lightweight instantiation of SSN that allows interoperability and

discovery of sensory data in heterogeneous IoT platforms.

The IoT, however, is not composed by sensors, only. Unfortunately, few

previous works include in their models other concepts, such as users, on-line

services, interfaces, etc. In the IOT-A project4, the authors identified entities,180

resources, and services as key concepts of the IoT domain. In [23], the au-

thors proposed a modeling approach in which IoT resources are able to expose

standard service interfaces. Similarly, Wang et al. [24] exploited the concept

of services to extend SSN and to represent other IoT-related concepts such as

actuators, gateways, and servers.185

Even with the introduction of such new concepts to sensor modeling, all the

aforementioned vocabularies represent the IoT with a device and technology-

oriented perspective. This approach does not entirely take into account con-

temporary IoT ecosystems, where categories (e.g., lighting systems, tempera-

ture systems, etc.) and final capabilities of IoT entities (e.g., “can this lighting190

device be turned on?”) are a fundamental information.

Such information is partially taken into account by some previous works in

the field of smart homes. With DogOnt [25], the authors presented a building

modeling ontology designed to fit real world home automation system capa-

bilities and to support interoperation between currently available and future195

solutions. By exploiting reasoning capabilities, DogOnt is able to describe, for

example, where a device is located, the set of capabilities of such a device, and

the technology-specific features needed to interface the device. In the same

field, on behalf of the European Commission, the TNO5 organization developed

4http://www.iot-a.eu/public (last visited on November 11, 2016)
5https://www.tno.nl/en/ (last visited on November 11, 2016)

8

SAREF6, a shared model of consensus that facilitates the matching of existing200

assets (standards, protocols, data-models, etc.) in the smart appliances domain.

2.3. Tools and Models for Context-Dependent Applications

The process of abstracting for lowering the complexity is already adopted

in many different fields such as software engineering [26], and the usage of

semantic methodologies is a common approach for reaching this purpose. In the205

field of IoT personalization, for example, Ardito et al. [27] presented a visual

composition paradigm that allows non-programmers to synchronize the behavior

of smart objects by defining their semantics, with the aim of determining more

engaging user experiences in Cultural Heritage (CH) sites. The composition

metaphor, in particular, promotes smart objects as entities characterized not210

only by native events and actions (as conceived in many IoT platforms) but

also by attributes that the domain experts can define to assign semantics to

the objects. Differently from such an approach, that requires users to know in

advance what a device can do, we formalize the semantics of the IoT devices

and services in advance, i.e., by designing the EUPont ontology.215

To support the high-level abstraction modeled by the EUPont ontology, EUD

platforms must be able to adapt the same IoT application to different contex-

tual situations. Starting from the Context Toolkit [28], there has been a long

history of interest in supporting the development of context-dependent applica-

tions. Gu et al. [29], for example, developed a Service Oriented Context-Aware220

Middleware, named SOCAM, for building context-dependent services. As in our

work, SOCAM used ontologies and semantic reasoning to provide efficient sup-

port for acquiring, discovering, interpreting and accessing various contexts. In

particular, the middleware model relied on two-levels context ontologies, where

the upper ontology defined general concepts, while the bottom ontologies dealt225

with low-level domain-oriented contexts (e.g., smart home, vehicle, etc.). This

decoupling of layers is particularly important to tackle domain specificity, as

6http://ontology.tno.nl/saref (last visited on November 11, 2016)

9

also reported by Desolda et al. [30]. In their work, the authors proposed a

model that includes new operators for defining rules, by combining multiple

events and conditions exposed by smart objects. Besides reporting the results230

of a study to identify possible visual paradigms to compose their rules, the au-

thors presented the architecture of a platform to support rules execution. The

architecture was composed of three layers, i.e., interaction layer, logic layer,

and service layer. The separation of concepts enables the definition of multiple

front-ends addressing different execution platforms, i.e., different devices. We235

also adopted a layered approach in our work, both in the architecture of the

EUD platform and in the EUPont ontology. In our model, high-level concepts

(i.e., the abstract triggers and actions) are separated from low-level concepts

(e.g., real devices and services), and they are linked together thanks to the

semantic and reasoning capabilities of the model.240

Another system for managing the context was proposed in the work of In-

dulska and Robinson [31]. Here, the authors proposed a model-based context

management system, named ACoMS, that could dynamically configure and re-

configure the gathering and preprocessing functionality of contextual informa-

tion, to provide fault tolerant provisioning services. In the same work, the245

authors classified the development of context-dependent applications according

to three main approaches:

• no application-level context model : each application directly communi-

cates with sensors and other sources of context information;

• implicit context model : applications are developed with the aid of reusable250

libraries/toolkits for processing context information;

• explicit context model : applications have their own well-defined context

models and use a shared context management.

In our work, we follow a mixed approach between implicit and explicit con-

text model. In fact, the proposed EUD platform shares a generic context model,255

that is the result of a merging process between different specific context infor-

10

mation. Such specific information are relative to a particular application area,

and can be retrieved thanks to reusable libraries and toolkits. For example,

in Section 4, we use the Dog Gateway [32, 33]. The Dog Gateway is a home

and building automation gateway able to manage different networks as a single,260

technology neutral, home automation system. Similarly to our work, but fol-

lowing the explicit context model approach, Ghiani et al. [4] proposed a method

and a set of tools that allow end-users to personalize the contextual behavior of

their IoT applications through trigger-action rules. The authors, in particular,

described a generic model and its specialization in a home automation use case,265

evaluating it during the rule definition process. Differently from that work,

where trigger-action rules maintain a direct mapping with real devices and ser-

vices, we designed EUPont with the possibility of expressing more abstract IoT

applications.

3. The EUPont Ontology270

To design the EUPont ontology, we carefully reviewed the content and the

structure of existing TA tools in the IoT as well as the reported issues and

challenges from the literature. In particular, we deeply analyzed all the IFTTT

channels, along with their triggers and actions, to find high-level behaviors and

possible common functionality. Then, we grouped the triggers and the actions275

of the different devices and services according to each identified behavior. For

example, we obtained the behavior “set the temperature” by grouping different

actions of 20 diverse devices (e.g., Caleo, ecobee, Nest, tado Smart AC Control,

Wink Aros, etc.). Starting from the result of this analysis and taking into ac-

count the findings from related works, we formally designed EUPont to validate280

our hypothesis. EUPont allows end-users to define abstract and technology-

independent trigger-action rules that can be adapted to different contextual

situation. Furthermore, thanks to semantic and reasoning capabilities, the on-

tology itself provides a strong support for executing the defined trigger-action

rules on real devices and services. We chose to exploit the Semantic Web frame-285

11

work for four main reasons:

Reasoning capabilities. Semantic reasoning can be used to infer information

that has not been explicitly told about, thus facilitating the mapping

between abstract information to the low-level details needed to actually

execute high-level rules.290

Data integration and reuse. The continuous growing of the IoT ecosystem

raises the question of how new “smart objects” can be easily integrated

in existing end-user development solutions. Semantic technologies offer by

nature advantages in terms of data reuse and integration, thus making it

easy to integrate new devices and services.295

Meaningful information. In a semantic model, and, in particular, in a OWL

ontology, data is enriched with semantic information, i.e., meaning. Thanks

to such a semantic, we can easily perform queries on the representation

such as “which IoT devices or services can perform a particular action?”

or “which IoT devices or services can generate a particular event?”, thus300

easily implementing a “programming by functionality” feature.

Concept hierarchies. A semantic model is described as a graph that embeds

inheritance relationships among concepts, thus allowing the definition and

the linking of multiple levels of abstraction with ease.

EUPont models all the 379 devices and services (100%) available on IFTTT305

on March 2017. We also manually mapped in the EUPont representation 951

IFTTT triggers out of a total of 976 (97.44%), and 528 actions out of the 551

(95.83%) available on IFTTT. Triggers and actions that we could not model

in the EUPont representation were ambiguous in terms of functionality. For

example, the action “execute a scene with my IntesisHome hub” is ambiguous310

because the scene that can be activated on the hub is defined by the user, and

it can include many different settings. Moreover, to investigate the complete-

ness of the obtained model, we automatically translated the 295,156 IFTTT

12

rules present in the repository extracted by Ur et al. [16] into the EUPont rep-

resentation. We were able to represent 290,964 IFTTT rules, thus reaching a315

percentage coverage of 98.58%, as better detailed in [10].

To develop the EUPont ontology, we used Protégé7, a free and open-source

OWL ontology editor for building intelligent systems. Moreover, we adopted

HermiT8 as the semantic reasoner. The resulting ontology is available at http:

//elite.polito.it/ontologies/eupont.owl.320

3.1. EUPont structure

Figure 1 shows the general structure of EUPont, while Table 1 reports the

main modeled concepts and how they are linked together. The ontology is

composed of three layers, which are interlinked to support both the composition

and the execution of abstract and technology-independent trigger-action rules.325

In particular, the Trigger-Action Programming layer (TAP) allows end-users to

compose rules in the EUPont representation, while the IoT Ecosystem (IoT)

hides the technological details of real devices and services. In addition, the

shared Contextual Information layer (CI), along with a set of SWRL rules,

supports the semantic reasoning to provide a mapping between real devices and330

services with the aim of abstracting the triggers and actions they can reproduce.

The Contextual Information (CI) Layer describes the concepts of Lo-

cation(s) and User(s) that are shared between the TAP and the IoT layers.

Such concepts allow us to represent Locations and Users that can be referred by

trigger-action rules, and describe the contextual information of the IoT ecosys-335

tem, e.g., the position of a device, or the users subscribed to a Web service.

The Trigger-Action Programming (TAP) Layer allows the definition of

abstract trigger-action rules, that are independent from manufacturers, brands,

or any other technological details. As reported in Table 1, the layer models

three main concepts, i.e., Rule, Trigger, and Action. A Rule can have multiple340

7https://protege.stanford.edu (last visited on January 11, 2018)
8http://www.hermit-reasoner.com/ (last visited on January 11, 2018)

13

http://elite.polito.it/ontologies/eupont.owl
http://elite.polito.it/ontologies/eupont.owl
http://elite.polito.it/ontologies/eupont.owl
https://protege.stanford.edu
http://www.hermit-reasoner.com/

Table 1: Main concepts modeled in the EUPont ontology.

Concept Description Layer

Rule The EUPont representation for describing a rule. A Rule

has at least one Trigger and at least one Action.

TAP

Trigger The EUPont representation for a Trigger, i.e., an event to

react to. It is specialized in a hierarchy of events expressed

at different level of abstraction, and can be linked with Lo-

cation(s) and User(s), i.e., the Contextual Information.

TAP

Action The EUPont representation for an Action, i.e., an action to

perform. It is specialized in a hierarchy of actions expressed

at different level of abstraction, and can be linked with Lo-

cation(s) and User(s), i.e., the Contextual Information.

TAP

Location The EUPont representation for Location(s) in the modeled

ecosystem.

CI

User The EUPont representation for User(s) in the modeled

ecosystem.

CI

IoT Entity The EUPont representation for IoT devices or services, that

are modeled on the basis of their categories (e.g., environ-

ment systems, user devices, etc) and final capabilities, i.e.,

offered Service(s). IoT Entities can be linked with Loca-

tion(s), e.g., for specifying the position of a device, and

User(s), e.g., for specifying who is authorized to control

them.

IoT

Service The EUPont representation for one of the capabilities of an

IoT Entity.

IoT

Command The EUPont representation for a low-level action that can

be executed on an IoT Entity that offers a particular Service.

It includes the technology-specific features, i.e., the low-level

details, needed to interface the IoT entitiy.

IoT

Notification The EUPont representation for a low-level event that can be

generated by an IoT Entity that offers a particular Service.

It includes the technology-specific features, i.e., the low-level

details, needed to interface the IoT entitiy.

IoT

14

Figure 1: The EUPont structure: the Trigger-Action Programming and the IoT Ecosystem

layers refer to the same Contextual Information, and are linked together thanks to a set of

SWRL rules.

Triggers and multiple Actions [30].

To allow end-users to choose their preferred level of abstraction and to sup-

port a reduction in the amount of information displayed on a graphical interface,

Triggers and Actions are hierarchical organized by functionality in two levels:

1. High-Level. It models generic triggers to be verified, or actions to be345

executed, and it does not include any technical detail, nor the type of

device or service to be used to implement the desired behavior.

2. Medium-Level. It models specific triggers to be verified, or actions to be

executed, and it allows the specification of the generic devices or services

type to be used, without including any technological detail.350

As an example, Figure 2 shows a partial view of the hierarchical tree that

characterizes lighting-related actions. Illuminate and Get Darker actions belong

to the High-Level layer, since the behaviors they define can be achieved in

different ways, e.g., by turning the lights on or off, or by closing or opening a

blind. If an end-user is interested in better specifying the desired operation,355

15

she can use the Medium Level, which for lighting-related actions includes Turn

Lights On, Close the Blinds, etc.

Figure 2: A partial view of the hierarchical class tree that characterizes lighting-related actions.

Figure 3: Graphical representation of the rule “if I enter in a place, then set the temperature

to...” as modeled in EUPont.

To further clarify the modeling approach, Figure 3 graphically shows how

the rule “if I enter in a place, then set the temperature to...” is modeled in

EUPont. The rule has exactly one trigger of type EnterTrigger, and one action360

of type SetTemperatureAction. With the relationship details, it is possible to

define a list of related details for both the Action and the Trigger, e.g., the

temperature value to be set. Furthermore, through the two relationships who

and where, the Trigger and the Action can be related to the involved User(s)

16

and Location(s), respectively, thus linking the TAP concepts to the CI layer.365

Such properties can be generic (e.g., any friends, or any closed space) or specific

(e.g., my friend Mark, or my kitchen).

The IoT Ecosystem (IoT) Layer models IoT devices and services on the

basis of their categories (e.g., environment systems, user devices, etc.) and final

capabilities (e.g., switching capabilities, communication capabilities, etc.). For370

this purpose, the IoT Entity concept is specialized in various subclasses that

represent different device and service types. Furthermore, each IoT Entity can

offer one or more Service(s), that represent a particular capability. Service(s)

may offer Command(s), i.e., actions that can be executed, and Notification(s),

i.e., events that can be registered.375

Figure 4 graphically shows how a real device can be modeled in EUPont.

The NEST HOME individual, that represent a specific Nest thermostat, of-

fers a HeatingService, which allows to set a target temperature through the

NEST SET COMMAND, an instance of the SetToCommand class. Through

the two relationships isIn and isOf, the Nest thermostat can be linked to its380

position and to the users that are authorized to control it, respectively. In this

way, the IoT layer is linked with the CI layer.

Finally, High Level Rules in the model need to be executed on real devices

and services, i.e., there must be a link between the IoT layer and the TAP layer.

Thanks to semantic reasoning, the ontology itself is able to provide such a385

link, by automatically mapping the defined EUPont Rules with real devices and

services in the IoT Ecosystem able to reproduce the desired behaviors. Such a

reasoning process is supported by a set of predefined SWRL rules. The goal of

SWRL rules is to instantiate one or more allowTo object properties, i.e., the

actual link between real devices and services and EUPont Rules. To exemplify390

the mechanism, Figure 5 reports the SWRL rule that links the NEST HOME

thermostat (Figure 4) with the Action for setting the temperature (Figure 3).

Thanks to the SWRL rules, when a SetTemperatureAction is defined, any Io-

TEntity that offers a HeatingService with a SetToCommand is automatically

considered able to reproduce the SetTemperatureAction, i.e., an allowTo is au-395

17

Figure 4: A device (Nest thermostat) modeled in the EUPont representation. The ovals

represent classes, rectangles represent class instances (i.e., individuals), while arrows define

object properties, i.e., relationships between individuals.

tomatically instantiated between NEST HOME and ACTION 247.

Figure 5: An example of a SWRL rule defined in EUPont

Since the SetTemperatureAction is a Medium Level action, the same NEST HOME

thermostat is also automatically able to reproduce the High-Level behaviors that

are parents of that action in the TAP hierarchy, e.g., Heat Up a Place. Such an

ability connection, along with the information stored on the shared Contextual400

Information layer, can be used at run-time by EUD platforms to execute EUPont

rules onto real devices and services, according to the contextual situation.

4. Architecture of an EUPont-powered Platform

To evaluate the feasibility of our approach, we designed an EUD platform

that exploits EUPont for the definition and the execution of abstract rules. Such405

18

a platform was then implemented for a smart home scenario, which serves as a

working example in this section.

4.1. Platform Architecture

The architecture of the designed platform (Figure 6) can be divided in three

main layers: the real IoT devices and services, the Middleware layer, and the410

EUD server.

Figure 6: Overall organization of the platform that we designed for the definition and the

execution of trigger-action rules in the EUPont representation

The Middleware layer aims at simplifying the communication between

the EUD server and the heterogeneous IoT ecosystem, where the EUPont rules

need to be executed. To communicate with real IoT devices and services (rela-

tionships F in Figure 6), any IoT middleware systems that exposes REST APIs415

can be exploited, ranging from smart home gateways to mobile applications.

In the implemented smart home scenario we adopted the open source Dog [33]

gateway as the Middleware layer, due to its support to multiple smart devices

19

and services9. The Dog gateway, in particular, already provides an abstraction

of IoT devices by means of the DogOnt [25] ontology10.420

The EUD server allows the definition of EUPont rules and supports their

executions. It contains four main modules: the EUPont ontology, the Graphical

User Interface (GUI), the Model Merger, and the Rule Engine. The core element

of this layer is the EUPont ontology, described in the previous section.

By interacting with the Graphical User Interface (GUI), end-users can com-425

pose trigger-action rules in the EUPont representation. The GUI is loaded with

triggers and actions defined in the Trigger-Action Programming layer of EU-

Pont (relationship A in Figure 6), thus allowing the usage of the High-Level and

Medium Level abstraction. Furthermore, the usage of technology-independent

triggers and actions allow the GUI to reduce the amount of displayed informa-430

tion. Different GUIs can be implemented to exploit the EUPont representation,

ranging from web-based interfaces to mobile applications. For the smart home

scenario we realized a web-based GUI, similar to the one employed for the user

study.

Finally, the Model Merger and the Rule Engine blocks are responsible for435

the communication with the real-word context (i.e, the actual IoT ecosystem).

In particular, the Model Merger first collects real time information regarding real

devices and services, e.g., their positions, their statuses, and their capabilities

(relationship E in Figure 6). Then, it translates such information into OWL

axioms, to continuously update the Contextual Information and IoT Ecosystem440

layers of EUPont (relationship B in Figure 6). Since it has to deal with domain-

specific information, the implementation of the Model Merger depends on the

real-world context in which the platform operates. In the implemented smart

home scenario, the merge between EUPont and the information coming from

Dog happens through a dedicated Java module that exploits the middleware’s445

REST API. The Rule Engine, instead, is in charge of mapping the defined

9https://dog-gateway.github.io (last visited on October 16, 2018)
10http://elite.polito.it/ontologies/dogont.owl (last visited on October 16, 2018)

20

https://dog-gateway.github.io
http://elite.polito.it/ontologies/dogont.owl

EUPont rules onto real devices and services (relationship D in Figure 6). The

block is strongly supported by the ontology (relationship C in Figure 6): by

reasoning on the contextual information included in EUPont and by exploiting

the available SWRL rules, the Rule Engine can select real devices and services450

that are a) currently available, and b) able to perform the desired abstract

behaviors. Also in this case, the implementation of the Rule Engine depends on

the context in which the rules need to be executed. In the smart home scenario,

we used the Dog API to directly execute actions and register events on real

devices, according to the defined EUPont rules.455

5. Evaluation

We conducted a user study to evaluate the suitability and the understand-

ability of the EUPont approach by end-users. The user study was a controlled

in-lab experiment that involved 30 participants, of which 15, only, had program-

ming experience. It focused on the creation of IoT applications both with the460

current low level representation of IFTTT and the high level representation of

EUPont. The study addressed the following research questions:

• RQ1: Does the EUPont representation help users creating their IoT ap-

plications more effectively and efficiently compared with the low level rep-

resentation?465

• RQ2: Which of the two representations is preferred by users, and which

are the perceived advantages and disadvantages of the two solutions?

To carry out the study, we built two versions of a graphical interface modeled

after IFTTT. Whereas our low level (LL) interface resembles the representation

adopted by IFTTT (Figure 7), but with a limited number of channels, our470

high level (HL) interface allows users to create trigger-action rules with the

EUPont representation, i.e., through the Medium and High-Level of abstraction

of EUPont. For the HL interface, in particular, we used the High-Level of

abstraction for triggers, and the Medium-Level of abstraction for actions. We

21

Figure 7: The study interface in the LL representation, showing the recipe “If I am approaching

home, then set my Nest thermostat to 22 Celsius degree”

made this choice according to previous works in the literature, e.g., [16], that475

show that users are typically more abstract when referring to event, while they

are more specific in defining actions. Figure 8 shows an example of the HL

interface with the recipe “Set the temperature to 22 Celsius degree when I enter

a place”. Here, Place is the trigger channel and Temperature is the action

channel.480

Table 2 reports the number of channels, actions, and triggers present in

both interface versions. The interfaces incorporate the minimum number of

channels, triggers, and actions needed to complete the study. Since the EUPont

representation can help minimize the amount of information presented to the

users, the number of triggers and actions in the two interfaces are different.485

Table 2: Channels, triggers, and actions in the interfaces

Interfaces Trigger

Channels

Action

Channels

Triggers Actions

Low Level 54 42 294 126

High Level 9 7 23 10

22

Figure 8: The study interface in the HL representation, showing the recipe “If I enter any

place, then set the temperature to 22 Celsius degree”

5.1. Methodology

The study was composed of five tasks related to the creation of trigger-

action rules. All the participants performed all the five tasks twice, once with

the LL and once with the HL interface. We followed a two-way mixed design.

We considered the used representation (LL or HL) as the within-subject factor,490

and the participant group (users with or without programming experience) as

the between-subject factor. The experiment was carried out in an office of our

university, and took about 1 hour per participant. Two tasks out of five were

carried out with the think-aloud protocol. In this case, we asked participants

to vocalize their thought process as their performed the tasks. All study ses-495

sions were video recorded and observation notes were taken by the researchers.

System activities and associated data were logged as well.

5.1.1. Participants

The study involved 30 participants. To avoid the introduction of biases

in the population sample, we recruited two different groups of university stu-500

dents by considering their formal programming training and experience. Each

group was composed of 15 participants. We sent an e-mail to a mailing list of

students of the Department of Control and Computer Engineering of our uni-

versity (POLITO) to recruit participants with programming experience. For

23

the second group of participants, we held a brief seminar during a psychology505

class of the University of Turin (UNITO), to introduce the students to the IoT

world. At the end of the seminar, we explained the nature of the study that we

wanted to carry out, and we recruited 15 volunteers. During the study, we gave

the participants an initial questionnaire to gather general information. Table 3

summarizes the demographics of our participants. All the participants were stu-510

dents (15 female) with a mean age of 22.23 years (SD = 2.19). We asked them

about their programming experience, their experience with IoT devices and ser-

vices, and whether they were familiar with IFTTT, through three questions

based on a Likert scale from 1 (Very low) to 5 (Very high). The 15 participants

with formal programming training indicated a quite high programming expe-515

rience level (M = 3.33, SD = 0.62). The difference with the other group of

participants was substantial (M = 1.13, SD = 0.35). Even the experience with

IoT devices was different between the two groups (M = 2.73, SD = 0.70 for the

POLITO students, and M = 1.73, SD = 1.16 for the UNITO students). In-

stead, we found that the declared experience with IFTTT was similarly low for520

both groups (M = 1.47, SD = 0.74 for the POLITO students, and M = 1.00,

SD = 0 for the UNITO students).

5.1.2. Procedure

We gave participants the initial questionnaire and a privacy module. Then,

we introduced them to trigger-action programming and to the IFTTT environ-525

ment. In this “training” phase, we showed to the participants each channel

involved in the study, and we composed a trigger-action rules in both the LL

and HL representations as an example. After the training phase, participants

started to complete the five tasks. The order of the tasks and the order of

the used representations were counterbalanced. At the end each session, we530

performed a final debriefing with the participant, with the aim of finding the

perceived advantages and disadvantages of the two experimented representa-

tions. Task descriptions, questionnaires, debriefing questions and answers, and

moderator interventions were in Italian, and translated for the purpose of this

24

Table 3: General Demographics

Characteristics Values POLITO UNITO

Gender Male 13 2

Female 2 13

Age 20-24 10 15

25-29 5 0

Education Undergrad 8 15

Grad 7 0

Programming Experience 1 - Very Low 0 13

2 - Below Average 1 2

3 - Average 8 0

4 - Above Average 6 0

5 - Very High 0 0

IoT Experience 1 - Very Low 0 9

2 - Below Average 6 3

3 - Average 7 2

4 - Above Average 2 0

5 - Very High 0 1

IFTTT Experience 1 - Very Low 10 15

2 - Below Average 3 0

3 - Average 2 0

4 - Above Average 0 0

5 - Very High 0 0

25

paper.535

5.1.3. Tasks

We designed five tasks of the same type to be completed with both LL and

HL interface. Each task consisted of two different parts: a user scenario and a

goal. The user scenario described a generic user, her owned devices, and some

of her typical activities. It did not contain any explicit reference to the general540

categories of the ontology. Moreover, to avoid any biases towards the high-level

abstraction of EUPont, the user scenario reflected the contemporary low-level

abstraction by specifying all the technologies owned by the involved users in

“low-level” terms, i.e., with manufacturers and brands. The goal defined a

specific behavior that the user wanted to obtain from her devices, and it was545

definable with one or more trigger-action rules. All the tasks (from T1 to T5)

are reported in Appendix A. An example of a task (T1) was:

User scenario: Mary is a researcher in a university. She is envi-

ronmentally friendly, and, in particular, she is interested in saving

energy. However, she is distracted, and she often forgets to turn the550

lights off. For this reason, she started to gather information about

IoT devices, and she equipped her home with some smart lights.

She installed two Philips Hue lamps in her bedroom, and two Stack

Lighting lamps in the living room and in the kitchen. Furthermore,

she used a Samsung SmartThings Hub to remotely control the doors555

and the surveillance system. Also her office is equipped with smart

devices: a surveillance system connected to a SmartThings hub, and

few LIFX smart lights.

Goal: Mary would like to automatically turn the lights off when she

leaves a room or her office.560

To investigate whether the participants were aware of the the potentials

and the limitations of the two representations, tasks were divided in a) solvable

(completely or at least approximately) in both the representations (T1, T2,

26

and T4), or b) impossible to be solved in the low-level representation (T3 and

T5). One task for each category (T1 and T5) was performed by the participants565

following the think-aloud protocol. Users could complete a task with one or more

trigger-action rules, or, in any moment, they could mark a task as impossible if

they think that the rule is not completely realizable. For example, proximity of

other people (e.g., T5) can be included in HL rules, but they is not supported

by contemporary LL representations. Figure 8 shows the end of a rule insertion570

process in a task resolution, with the buttons to continue, terminate, or mark

the task as impossible (top right).

During the study design phase, we defined a possible solution for each task

in both representations. In the reported example, the task could be solvable

with one rule in the EUPont representation:575

• If I leave an indoor place, then turn the lights off in the same indoor place.

In the low-level representation, instead, the task could be successfully com-

pleted with the following set of rules:

• If the SmartThings hub no longer detects presence (from the bedroom

camera), then turn the bedroom Philips Hue lamps off;580

• If the SmartThings hub no longer detects presence (from the living room

camera), then turn the living room Stack Lighting lamp off;

• If the SmartThings hub no longer detects presence (from the kitchen cam-

era), then turn the kitchen Stack Lighting lamp off;

• If the office SmartThings hub no longer detects presence (from the office585

camera), then turn the office LIFX lamps off.

5.2. Measures

Data from the study depended on two main factors (independent variables):

the representation used to carry out a task (LL or HL), and the participants

group (users with or without programming experience).590

27

For each task completion (with both interfaces), we collected the following

quantitative measures: a) the time (in seconds) needed by the participants to

complete a task11, b) the number of wrong triggers and c) the number of wrong

actions in the inserted rules, and d) the number of times that a participant

pressed “back”. Since the number of required rules for completing a task differed595

in the two representations, we normalized the four measures with respect to

the number of rules inserted by the user in the given task completion. Then,

to conduct statistical analysis, we calculated the means of these measures by

considering all the tasks completed by a user in the same representation. At

the end, for each user, we obtained the following four dependent variables:600

• wrong triggers: the normalized average number of wrong triggers in

rules composed in a given representation;

• wrong actions: the normalized average number of wrong actions in rules

composed in a given representation;

• back number: the normalized average number of times a participant605

pressed “back” in the composition of a rule in a given representation;

• duration: the average time (expressed in seconds) needed by the partic-

ipants to compose a trigger-action rule in a given representation.

We collected qualitative measures from the study by observing the users

in the two tasks performed with the think-aloud protocol, and the perceived610

advantages and disadvantages of the two representations in the final debriefing.

Furthermore, we analyzed whether participants recognized impossible tasks.

5.3. Quantitative Results

To answer RQ1, we analyzed the effect of the representation independent

variable (LL or HL) over the four dependent variables. We considered wrong615

triggers, wrong actions, and back number as measures able to indicate how a

11except for think-aloud tasks

28

representation effectively helps and guides users in defining their IoT applica-

tions. The duration measure was indeed used to investigate the efficiency of the

rule definition process. Table 4 reports the means of the four analyzed measures

in both representations.620

Table 4: Means and standard deviations of the four normalized dependent variables investi-

gated in the study

LL HL

Wrong Triggers 0.279 ± 0.028 0.120 ± 0.025

Wrong Actions 0.203 ± 0.028 0.038 ± 0.010

Back Number 0.971 ± 0.150 0.588 ± 0.117

Duration 39.647s± 2.600s 25.054s± 1.948s

5.3.1. Effectiveness Results

To investigate whether the HL representation allows users to create IoT ap-

plications more effectively, we conducted three different two-way mixed ANOVA

in SPSS with a post-hoc analysis with Bonferroni correction. We considered

wrong triggers, wrong actions, and the number of back as the dependent vari-625

ables; the used representation as the within-subject; and the participants group

as the between-subject. The Mauchly’s sphericity test was satisfied for the used

representation in all the three analysis.

Wrong Triggers. We found that, if we ignore whether the participant had

programming experience or not, the number of errors in the selection of triggers630

for rules composed with different representations significantly differ (F (1, 28) =

19.14, p < .05). Figure 9 indicates that participants composed HL rules with

less errors during the definition of triggers. The means of the wrong triggers,

in fact, were lower with the HL than with the LL representation (0.120 ± 0.025

vs. 0.279± 0.028, respectively). A post-hoc test with the Bonferroni correction635

revealed that this difference was statistically significant (p < .05).

The programming experience level of the participants did not significantly

influence the variable (F (1, 28) = 3.347, p > .05). Furthermore, there was not

29

Figure 9: The means for the main effect of the representation on the wrong triggers

a significant interaction between the used representation and the programming

experience in terms of wrong triggers (F (1, 28) = 8.348 × 10−6, p > .05).640

Wrong Actions. Also for the wrong actions variable, we found that there

was a significant main effect of the used representation (F (1, 28) = 35.837,

p < .05). As for the triggers, by ignoring the programming experience, the

number of errors in the definition of the actions for rules composed with different

representations significantly differs. Figure 10 indicates that participants made645

less errors during the definition of actions in HL rules, as the means of the

wrong actions variable were higher with the LL than with the HL representation

(0.203 ± 0.028 vs. 0.038 ± 0.010, respectively). Also in this case, a post-hoc

test with Bonferroni revealed that this difference was statistically significant

(p < .05).650

Figure 10: The means for the main effect of the representation on the wrong actions

30

The programming experience level of the participants did not significantly

influence the wrong actions variable (F (1, 28) = 0.001, p > .05) nor there was a

significant interaction between the representation and the programming experi-

ence in terms of wrong actions (F (1, 28) = 0.343, p > .05).

Back Number. Finally, we found that there was not a significant main655

effect of the used representation on the back number variable (F (1, 28) = 4.152,

p > .05). However, the back number was lower with the HL representation

(0.588 ± 0.117 vs. 0.971 ± 0.150), as shown in Figure 11.

Figure 11: The means for the main effect of the representation on the back number

5.3.2. Efficiency Results

To investigate whether the HL representation allows users to create IoT ap-660

plications more efficiently, we conducted another two-way mixed ANOVA. This

time, we considered the duration as the dependent variables. The Mauchly’s

sphericity test was satisfied for the independent variable (i.e., the used repre-

sentation). We found that the average time needed for composing rules was

significantly different for the two representations (F (1, 28) = 25.402, p < .05),665

independently from the programming experience. Users composed rules with

the HL representation faster than with the LL representation. In fact, the

means of the duration variable were lower for the HL than for the LL repre-

sentation (25.054s ± 1.948s vs. 39.647s ± 2.600s), as confirmed by a post-hoc

test with the Bonferroni correction (p < .05). Also in this case, there was not670

31

a significant effect of the programming experience level of the participants on

the duration variable (F (1, 28) = 0.263, p > .05) nor a significant interaction

between the used representation and the programming experience in terms of

duration (F (1, 28) = 0.354, p > .05).

5.4. Qualitative Results675

We analyzed the qualitative data collected during the study to establish

which representation is preferred by the users, and what are the perceived ad-

vantages and disadvantages of the two solutions (RQ2). The qualitative analy-

sis was conducted by two researchers in an iterative coding process. Inter-rater

reliability was determined using Fleiss’Kappa coefficient. First, a researcher680

transcribed the experiment videos and interviews. Then, both researchers in-

dividually coded the transcriptions. After this phase, they met and discussed

disagreements. Eventually, they settled on three code sets: (1) understanding

low level limits, (2) avoiding mistakes and confusion, and (3) advantages and

disadvantages.685

5.4.1. Understanding Low Level Limits

The limits of the LL representation were easily recognized by the majority of

the participants. During a task resolution, 15 of them asserted that a proximity

event of two people is impossible to define with the LL representation, since the

rules definable with IFTTT cannot explicitly involve other users than the rule690

creator. A user said “I cannot know the position of another person with the low

level functionality.” All of these 15 participants correctly stated that the task

was impossible to complete. Other 5 participants defined the event anyway, but

they explicitly acknowledged to be aware of the approximation they made. In

another task, 11 participants were upset because they had to insert the same695

rule for different technologies and places. Even if the action was the same (turn

the lights off), they had to consider all the different lights manufacturers, e.g.,

a participant said “I would like to use the same action for all the rules.”

32

5.4.2. Avoiding Mistakes and Confusion

From the analysis of the thoughts and behaviors of the participants, it700

emerges that the HL representation helped users avoid mistakes in the rules

composition. During the solution of a task with the LL interface, a participant

said “It is important to stay focused, otherwise it’s easy to make mistakes and

forget something.” Furthermore, when we looked at the task solutions with

the low level representation, we noticed that errors and omissions were very705

common, even if users followed a correct reasoning process. This was evident

when participants had to face with many different technologies, as in the task

reported in subsection 5.1.3. In this case, 11 participants forgot to replicate

the same rule for all the different devices and rooms, or they wrongly defined

some triggers or actions details (e.g., the specific light type). With more general710

attributes, the HL representation seemed to mitigate this problem, since 26 par-

ticipants completed the tasks without any difficulty and correctly. The video

recordings analysis shows that users seemed to be more confused in defining

IoT applications with the LL representation. With such an interface, on a total

of 60 think-aloud task resolutions, only 2 participants successfully completed a715

task by immediately identifying the correct triggers and actions (3.3%). In all

the other cases, participants changed their mind several times before reaching

a solution. On the contrary, 29 think-aloud tasks were completed with the HL

representation without changing idea (48.3%).

5.4.3. Advantages and Disadvantages720

By analyzing the data from the debriefings, we coded the feedback given

by the participants about the low level representation in some disadvantages

and advantages. First of all, the participants recognized the adaptation and

abstraction issues identified in Section 1. They said that a user has to know in

advance the devices she owns to define her IoT applications. This disadvantage725

was especially cited by participants without programming experience. Starting

from this fact, tasks in the LL representation required various (complex) rules,

and the required time to define IoT applications was higher than the time re-

33

quired with the HL representation. The majority of the participants agreed that

generic concepts were impossible to define with the LL representation. Other730

users were disappointed about the large number of channels, often perceived

as not necessary. Not surprisingly, the specific nature of the LL representation

emerged as an advantage for some tasks, especially from participants with pro-

gramming experience, since it allows them to choose the best solution for their

needs (e.g., specify the GPS position of the smartphone).735

Similarly, participants found advantages and disadvantages for the high level

representation. The first disadvantage that emerges matches with some advan-

tages of the low level representation. In fact, participants said that sometimes

the HL interface seemed to be too generic, and it did not offer the possibility

to manage the details of the involved services. For this reason, a user does not740

have full control of what happens, and she must trust the system. Two par-

ticipants were worried about privacy and security issues for a system based on

the HL representation. From the participant answers we retrieved consistent

advantages of the high level representation as well. Participants were satisfied

about the generic abstraction of channels, actions, and triggers. The HL rep-745

resentation allowed the definition of generic behaviors and the composition of

fewer rules. Furthermore, the representation was simple, and easy to use and

understand, especially for non-programmers. Finally, defining IoT applications

with the HL representation required less time.

6. Discussion750

In this section, we discuss the results of our user study by summarizing the

resulting insights along different themes.

Reducing Displayed Information. In the upcoming IoT ecosystem, devices and

services will not always be knowable a priori and the complexity of the entire

IoT ecosystem will continuously increase. As some participants in our study755

found, a low-level representation risks to generate user interfaces that are clut-

tered and with too much information. For realizing the low-level interface, in

34

fact, we needed to provide 54 trigger channels and 42 action channels in the

low-level (Table 2). The high-level interface, instead, adopted 9 trigger chan-

nels and 7 action channels, only, to provide users with equivalent functionality.760

By presenting a lower number of channels, the high-level representation pow-

ered by EUPont allowed participant to compose IoT applications in less time,

with less errors, and with more guidance towards the choices they had. As a

result, using EUPont supported the reduction of the amount of displayed in-

formation helped and guided participants in the composition of trigger-action765

applications. Such a result might produce benefits even for interfaces based on

low-level representations, e.g., by showing to the user only her owned devices

and services.

Programming by Functionality. The leitmotif off all our work on End-User De-

velopment in the IoT is the need to put the user at the center of the inter-770

action, so that she can express her needs and desires without recurring to a

device-centric or app-centric language, but directly indicating the functionality

in which she is interested. As suggested by Ur et al. [16], in fact, the continuous

growth of trigger-action programming in the real world, and its application to

a range of online services and physical devices, suggests the need to provide775

users with more support for discovering functionality, i.e., the behaviors that a

rule aims to define. For such a reason, we designed EUPont to model triggers

and actions on the basis of the behavior they aim to reproduce, without the

need of specifying any technological (e.g., brands or manufacturers) details. In

this way, different low-level triggers or actions collapsed in the corresponding780

medium/high-level trigger or action, e.g., all the lamps offered the same turn the

light on action. The advantages of this modeling pattern have been confirmed

by the result of the user study: besides reducing the displayed information, a

different organization of triggers and actions, i.e., in terms of their final func-

tionality, helps users defining their IoT applications in terms of effectiveness and785

efficiency.

35

Custom Level of Abstraction. While a higher level of abstraction presents sev-

eral benefits, some participants of the study provided interesting issues related

to the EUPont representation. When using the High-Level of abstraction of

EUPont for defining triggers, in fact, the interface sometimes appeared to be790

too generic and did not offer the possibility to manage particular details of

involved devices and services. Even if this can be seen as a normal effect of

moving from a more specific model to a more abstract representation, some

participants would like to provide more details during the creation of their own

IoT applications (e.g., select all the lights but not the shades for illuminating795

a place). This may suggest that users did not immediately understand the full

potential of the High-Level of abstraction of EUPont or that they would like a

more precise control. However, they desired not to have the same amount of

details as in the low-level representation. Therefore it could be useful to provide

users with multi-level interfaces exposing the hierarchy of possible triggers and800

actions, ranging from the highest level of abstraction to triggers and actions

with more specific details. For example, the the Medium-Level of abstraction

of EUPont could provide more fine-grained control than the highest level of ab-

straction also for the triggers, e.g., by allowing users to specify how to capture

the event of entering their home. The need of more than one level of abstraction805

is also motivated by the study Ur et al. [2], in which the authors explored the

trigger-action paradigm in the smart home scenario. In particular, consistently

with other related works [5, 34], they found that participants tended not to

mention sensors directly, and they discovered that many participants express

triggers one level of abstraction higher.810

Context-dependency. During the study, we noticed that some participants often

forgot to replicate the same rule for all their available devices in the low-level

representation, or they wrongly defined some specific trigger or action details.

Participants explicitly said that to reach a goal they had to insert several rules in

the low-level representation, and the required time to define IoT applications was815

high. Furthermore, by analyzing the experiment videos and interviews, we found

36

that often users would like to reuse the same trigger or action for different rules,

since their final meaning was the same. For this purpose, EUPont naturally

provides ways to adapt trigger-action rules to different contextual-situation,

with the aim of addressing extremely contextualized user needs [4].820

Trustfulness, Security, and Privacy. Some participants in the user study high-

lighted that they should have a profound trust in a system that adopted the

presented high-level representation. Similarly, two participants were worried

about privacy and security issues that a system based on the high-level model

could present, especially due to the abstract nature of the representation. When825

adopting a high-level of representation such as EUPont, trustfulness, privacy,

and security issues must be taken in serious consideration. This may include

warning mechanisms in the interface to alert users about possible dangerous

rules, and debug features to help people simulate and foresee rule behavior

under different conditions [30]. Debug could be even more useful in case of830

abstract trigger-action rules: based on the context, showing on which real de-

vices and services a high-level rules is mapped onto could increase the system

trustfulness.

7. Conclusions and Future Work

In this paper, we explored a new way of personalizing IoT devices and835

services. The “low level” representation adopted by contemporary Task Au-

tomation tools (e.g., IFTTT) is, in fact, not suitable to overcome the issues

brought on by the steady growth of the IoT ecosystem. The fact that devices

and services with similar capabilities but different brands are treated as sep-

arate entities (abstraction issue), and that contemporary solutions only work840

with well-known devices and services (adaptation issue) are two evident exam-

ples. This need guided us in the formal definition of EUPont, an ontological

high-level representation for End-User Development in the IoT: we chose to ex-

ploit semantic technologies and we included in the model features to support

the actual execution of the IoT applications. To evaluate the feasibility of the845

37

approach and to actually execute the abstract rules provided by EUPont, we de-

signed and implemented an EUD platform. In the platform, the EUPont model

allows the definition of IoT applications, and the selection of currently available

real devices and services able to reproduce the defined abstract behaviors.

Thanks to a user study with 30 participants, we also successfully demon-850

strate that the EUPont representation allows end-users to reduce errors and

time needed to compose their IoT applications, and introduces numerous bene-

fits in terms of understandability and ease of use. Of course, we are aware that

there are many aspects to be better explored, especially for the execution of

EUPont rules. For example, high level behaviors such as “Illuminate a place”855

or “Send a message” could be potentially reproduced in different ways, on the

basis of the current context: which is the “best” solution for a user? Finally,

it is worth noticing that trustfulness, security, and privacy issues become even

more important with a high level representation. If we imagine IoT applications

such as “if I enter a closed space, then set the temperature to 20 Celsius degree”,860

which IoT devices and services is the user authorized to control? How can end-

users be authenticated for using public and shared IoT devices and services, and

how can we taking into account the user privacy? These open questions will

guide our future works.

Appendix A. Evaluation Tasks865

Here, we report the 5 tasks used in the evaluation. T1 and T5 were carried

our with the think-aloud protocol.

T1 User scenario: Mary is a researcher in a university. She is environ-

mentally friendly, and, in particular, she is interested in saving energy.

However, she is distracted, and she often forgets to turn the lights off.870

For this reason, she started to gather information about IoT devices, and

she equipped her home with some smart lights. She installed two Philips

Hue lamps in her bedroom, and two Stack Lighting lamps in the living

room and in the kitchen. Furthermore, she used a Samsung SmartThings

38

Hub to remotely control the doors and the surveillance system. Also her875

office is equipped with smart devices: a surveillance system connected to

a SmartThings hub, and few LIFX smart lights.

Goal: Mary would like to automatically turn the lights off when she leaves

a room or her office.

T2 User scenario: John lives in the countryside, near Turin. He loves sport,880

and, in particular, cycling. When available, he always uses bike-sharing

services. John reaches his workplace, an engineering study with offices in

Turin and Milan, by train. When he arrives at the train stations of Turin

or Milan, he checks the availability of bikes with the bike-sharing services

of the 2 cities. If there are not available bikes, he has to go to work on foot,885

thus arriving late, typically. When this happens, John alerts his manager

with a phone call from your iPhone.

Goal: When the train is approaching a station, John would like a bike to

be automatically booked.

T3 User scenario: The mother of Jack is very thoughtful, and he is always890

worried when her son goes around alone. In particular, she is anxious

when Jack takes the bus, the subway, or a friend’s car, and she would

like to constantly receive update from Jack on her iPhone. Unfortunately,

Jack always forgets to warn his mother when he arrives at his destination.

Goal: When he uses a means of transport and he arrives at his destination,895

Enrico would like to automatically send a message to his mother from his

Android smartphone.

T4 User scenario: Paul is an architect that lives in Turin. He loves tech-

nology, and he has equipped his home with a Nest thermostat, that he

can control with his Android smartphone, to regulate the temperature of900

all his rooms. Paul is very satisfied, because he realized that he can save

money with heating automation. For this reason, he decided to equip his

office with a Netatmo thermostat.

Goal: Paul is always cold, and he would like to automatically set the

temperature to 22 Celsius degrees when he enters an indoor space.905

39

T5 User scenario: Mark and Andrew are managers of an important tech-

company with offices in Turin, Milan, and Rome. The offices are equipped

with many IoT technologies: doors are connected to a SmartThings hub,

and there are Nest smart cameras and Samsung air conditioners in each

room. When Mark and Andrew meet, they typically take a coffee and910

discuss their work plans for the near future. Both Mark and Andrew are

constantly moving between the various company offices, and they find it

difficult to meet each other.

Goal: Mark would like Andrew to be automatically notified on his iPhone

when they are in the same company office.915

References

[1] D. Evans, The Internet of Things: How the Next Evolution of the Inter-

net Is Changing Everything, Tech. rep., Cisco Internet Business Solutions

Group (2011).

[2] B. Ur, E. McManus, M. Pak Yong Ho, M. L. Littman, Practical trigger-920

action programming in the smart home, in: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’14, ACM, New

York, NY, USA, 2014, pp. 803–812. doi:10.1145/2556288.2557420.

[3] J. Saunders, D. S. Syrdal, K. L. Koay, N. Burke, K. Dautenhahn, “Teach

Me - Show Me” - End-User Personalization of a Smart Home and Compan-925

ion Robot, IEEE Transactions on Human-Machine Systems 46 (1) (2016)

27–40. doi:10.1109/THMS.2015.2445105.

[4] G. Ghiani, M. Manca, F. Paternò, C. Santoro, Personalization of context-

dependent applications through trigger-action rules, ACM Transactions on

Computer-Human Interaction (TOCHI) 24 (2) (2017) 14:1–14:33. doi:930

10.1145/3057861.

[5] A. K. Dey, T. Sohn, S. Streng, J. Kodama, iCAP: Interactive prototyping of

context-aware applications, in: Proceedings of the 4th International Con-

40

http://dx.doi.org/10.1145/2556288.2557420
http://dx.doi.org/10.1109/THMS.2015.2445105
http://dx.doi.org/10.1145/3057861
http://dx.doi.org/10.1145/3057861
http://dx.doi.org/10.1145/3057861

ference on Pervasive Computing, PERVASIVE’06, Springer-Verlag, Berlin,

Heidelberg, 2006, pp. 254–271. doi:10.1007/11748625_16.935

[6] J. Lee, L. Garduño, E. Walker, W. Burleson, A tangible programming tool

for creation of context-aware applications, in: Proceedings of the 2013 ACM

International Joint Conference on Pervasive and Ubiquitous Computing,

UbiComp ’13, ACM, New York, NY, USA, 2013, pp. 391–400. doi:10.

1145/2493432.2493483.940

[7] M. Coronado, C. A. Iglesias, Task automation services: Automation for

the masses, IEEE Internet Computing 20 (1) (2016) 52–58. doi:10.1109/

MIC.2015.73.

[8] A. Zaslavsky, P. P. Jayaraman, Discovery in the internet of things: The

internet of things (ubiquity symposium), Ubiquity 2015 (October) (2015)945

2:1–2:10. doi:10.1145/2822529.

[9] B. R. Barricelli, S. Valtolina, End-User Development: 5th International

Symposium, IS-EUD 2015, Madrid, Spain, May 26-29, 2015. Proceedings,

Springer International Publishing, Cham, Germany, 2015, Ch. Designing

for End-User Development in the Internet of Things, pp. 9–24. doi:10.950

1007/978-3-319-18425-8_2.

[10] F. Corno, L. De Russis, A. Monge Roffarello, A Semantic Web Approach

to Simplifying Trigger-Action Programming in the IoT, IEEE Computer

50 (11) (2017) 18–24. doi:10.1109/MC.2017.4041355.

[11] H. Lieberman, F. Paternò, M. Klann, V. Wulf, End User Development,955

Springer Netherlands, Dordrecht, Netherlands, 2006, Ch. End-User Devel-

opment: An Emerging Paradigm, pp. 1–8. doi:10.1007/1-4020-5386-X_

1.

[12] D. Munjin, User Empowerment in the Internet of Things, Ph.D. thesis,

Université de Genève (May 2013).960

URL http://archive-ouverte.unige.ch/unige:28951

41

http://dx.doi.org/10.1007/11748625_16
http://dx.doi.org/10.1145/2493432.2493483
http://dx.doi.org/10.1145/2493432.2493483
http://dx.doi.org/10.1145/2493432.2493483
http://dx.doi.org/10.1109/MIC.2015.73
http://dx.doi.org/10.1109/MIC.2015.73
http://dx.doi.org/10.1109/MIC.2015.73
http://dx.doi.org/10.1145/2822529
http://dx.doi.org/10.1007/978-3-319-18425-8_2
http://dx.doi.org/10.1007/978-3-319-18425-8_2
http://dx.doi.org/10.1007/978-3-319-18425-8_2
http://dx.doi.org/10.1109/MC.2017.4041355
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://archive-ouverte.unige.ch/unige:28951
http://archive-ouverte.unige.ch/unige:28951

[13] I. P. Cvijikj, F. Michahelles, Architecting the Internet of Things, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2011, Ch. The Toolkit Approach for

End-user Participation in the Internet of Things, pp. 65–96. doi:10.1007/

978-3-642-19157-2_4.965

[14] J. Danado, F. Paternò, Puzzle: A mobile application development environ-

ment using a jigsaw metaphor, Journal of Visual Languages & Computing

25 (4) (2014) 297–315. doi:10.1016/j.jvlc.2014.03.005.

[15] D. Le-Phuoc, A. Polleres, M. Hauswirth, G. Tummarello, C. Morbidoni,

Rapid prototyping of semantic mash-ups through semantic web pipes, in:970

Proceedings of the 18th International Conference on World Wide Web,

WWW ’09, ACM, New York, NY, USA, 2009, pp. 581–590. doi:10.1145/

1526709.1526788.

[16] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard,

D. Schulze, M. L. Littman, Trigger-action programming in the wild: An975

analysis of 200,000 IFTTT recipes, in: Proceedings of the 34rd Annual

ACM Conference on Human Factors in Computing Systems, CHI ’16,

ACM, New York, NY, USA, 2016, pp. 3227–3231. doi:10.1145/2858036.

2858556.

[17] J. Huang, M. Cakmak, Supporting mental model accuracy in trigger-action980

programming, in: Proceedings of the 2015 ACM International Joint Con-

ference on Pervasive and Ubiquitous Computing, UbiComp ’15, ACM, New

York, NY, USA, 2015, pp. 215–225. doi:10.1145/2750858.2805830.

[18] L. Atzori, A. Iera, G. Morabito, The Internet of Things: A Survey, Com-

puter Networks: The International Journal of Computer and Telecommu-985

nications Networking 54 (2010) 2787–2805. doi:10.1016/j.comnet.2010.

05.010.

[19] P. Barnaghi, W. Wang, C. Henson, K. Taylor, Semantics for the internet

of things: Early progress and back to the future, International Journal on

42

http://dx.doi.org/10.1007/978-3-642-19157-2_4
http://dx.doi.org/10.1007/978-3-642-19157-2_4
http://dx.doi.org/10.1007/978-3-642-19157-2_4
http://dx.doi.org/10.1016/j.jvlc.2014.03.005
http://dx.doi.org/10.1145/1526709.1526788
http://dx.doi.org/10.1145/1526709.1526788
http://dx.doi.org/10.1145/1526709.1526788
http://dx.doi.org/10.1145/2858036.2858556
http://dx.doi.org/10.1145/2858036.2858556
http://dx.doi.org/10.1145/2858036.2858556
http://dx.doi.org/10.1145/2750858.2805830
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010

Semantic Web and Information Systems 8 (1) (2012) 1–21. doi:10.4018/990

jswis.2012010101.

[20] M. Compton, P. Barnaghi, L. Bermudez, R. Garc̀ıa-Castro, O. Corcho,

S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang,

K. Janowicz, W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri,

H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, K. Taylor, The995

SSN ontology of the W3C semantic sensor network incubator group, Web

Semantics: Science, Services and Agents on the World Wide Web 17 (2012)

25–32. doi:10.1016/j.websem.2012.05.003.

[21] M. Botts, G. Percivall, C. Reed, J. Davidson, OGC sensor web enablement:

Overview and high level architecture, in: S. Nittel, A. Labrinidis, A. Ste-1000

fanidis (Eds.), GeoSensor Networks, Springer-Verlag, 2008, pp. 175–190.

doi:10.1007/978-3-540-79996-2_10.

[22] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, K. Taylor, Iot-lite: A

lightweight semantic model for the internet of things, in: Proceedings of

13th International Conference on Ubiquitous Intelligence and Computing,1005

2016, (in press).

[23] S. De, T. Elsaleh, P. Barnaghi, S. Meissner, An internet of things platform

for real-world and digital objects, Scalable Computing: Practice and Ex-

perience 13 (1) (2012) 45–57.

URL http://epubs.surrey.ac.uk/531903/1010

[24] W. Wang, S. De, G. Cassar, K. Moessner, Knowledge representation in the

internet of things: Semantic modelling and its applications, Automatika -

Journal for Control, Measurement, Electronics, Computing and Communi-

cations 54 (4) (2013) 388–400.

URL http://epubs.surrey.ac.uk/794745/1015

[25] D. Bonino, L. De Russis, DogOnt as a viable seed for semantic modeling of

AEC/FM, Semantic Web 9 (6) (2018) 763–780. doi:10.3233/SW-180295.

43

http://dx.doi.org/10.4018/jswis.2012010101
http://dx.doi.org/10.4018/jswis.2012010101
http://dx.doi.org/10.4018/jswis.2012010101
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.1007/978-3-540-79996-2_10
http://epubs.surrey.ac.uk/531903/
http://epubs.surrey.ac.uk/531903/
http://epubs.surrey.ac.uk/531903/
http://epubs.surrey.ac.uk/531903/
http://epubs.surrey.ac.uk/794745/
http://epubs.surrey.ac.uk/794745/
http://epubs.surrey.ac.uk/794745/
http://epubs.surrey.ac.uk/794745/
http://dx.doi.org/10.3233/SW-180295

[26] J. Kramer, O. Hazzan, The role of abstraction in software engineering,

SIGSOFT Softw. Eng. Notes 31 (6) (2006) 38–39. doi:10.1145/1218776.

1226833.1020

[27] C. Ardito, P. Buono, G. Desolda, M. Matera, From smart objects to smart

experiences: An end-user development approach, International Journal of

Human-Computer Studies 114 (2018) 51 – 68, advanced User Interfaces

for Cultural Heritage. doi:https://doi.org/10.1016/j.ijhcs.2017.

12.002.1025

[28] D. Salber, A. K. Dey, G. D. Abowd, The context toolkit: Aiding the de-

velopment of context-enabled applications, in: Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’99, ACM, New

York, NY, USA, 1999, pp. 434–441. doi:10.1145/302979.303126.

[29] T. Gu, H. K. Pung, D. Q. Zhang, A service-oriented middleware for building1030

context-aware services, Journal of Network and Computer Applications

28 (1) (2005) 1 – 18. doi:10.1016/j.jnca.2004.06.002.

[30] G. Desolda, C. Ardito, M. Matera, Empowering end users to customize their

smart environments: Model, composition paradigms, and domain-specific

tools, ACM Transaction on Computer-Human Interaction (TOCHI) 24 (2)1035

(2017) 12:1–12:52. doi:10.1145/3057859.

[31] P. Hu, J. Indulska, R. Robinson, An autonomic context management sys-

tem for pervasive computing, in: 2008 Sixth Annual IEEE International

Conference on Pervasive Computing and Communications (PerCom), 2008,

pp. 213–223. doi:10.1109/PERCOM.2008.56.1040

[32] D. Bonino, E. Castellina, F. Corno, The DOG gateway: enabling ontology-

based intelligent domotic environments, IEEE Transactions on Consumer

Electronics 54 (4) (2008) 1656–1664. doi:10.1109/TCE.2008.4711217.

[33] D. Bonino, F. Corno, L. De Russis, A semantics-rich information technology

44

http://dx.doi.org/10.1145/1218776.1226833
http://dx.doi.org/10.1145/1218776.1226833
http://dx.doi.org/10.1145/1218776.1226833
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2017.12.002
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2017.12.002
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2017.12.002
http://dx.doi.org/10.1145/302979.303126
http://dx.doi.org/10.1016/j.jnca.2004.06.002
http://dx.doi.org/10.1145/3057859
http://dx.doi.org/10.1109/PERCOM.2008.56
http://dx.doi.org/10.1109/TCE.2008.4711217

architecture for smart buildings, Buildings 4 (4) (2014) 880–910. doi:1045

10.3390/buildings4040880.

[34] K. N. Truong, E. M. Huang, G. D. Abowd, UbiComp 2004: Ubiqui-

tous Computing: 6th International Conference, Nottingham, UK, Septem-

ber 7-10, 2004. Proceedings, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2004, Ch. CAMP: A Magnetic Poetry Interface for End-User Pro-1050

gramming of Capture Applications for the Home, pp. 143–160. doi:

10.1007/978-3-540-30119-6_9.

45

http://dx.doi.org/10.3390/buildings4040880
http://dx.doi.org/10.3390/buildings4040880
http://dx.doi.org/10.3390/buildings4040880
http://dx.doi.org/10.1007/978-3-540-30119-6_9
http://dx.doi.org/10.1007/978-3-540-30119-6_9
http://dx.doi.org/10.1007/978-3-540-30119-6_9

	Introduction and Problem Definition
	Related Works
	End-User Development in the Internet of Things
	Modeling the IoT Ecosystem Through Ontologies
	Tools and Models for Context-Dependent Applications

	The EUPont Ontology
	EUPont structure

	Architecture of an EUPont-powered Platform
	Platform Architecture

	Evaluation
	Methodology
	Participants
	Procedure
	Tasks

	Measures
	Quantitative Results
	Effectiveness Results
	Efficiency Results

	Qualitative Results
	Understanding Low Level Limits
	Avoiding Mistakes and Confusion
	Advantages and Disadvantages

	Discussion
	Conclusions and Future Work
	Evaluation Tasks

