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Featured Application: Active magnetic levitation.

Abstract: This paper presents an active magnetic levitation application that exploits the measurement
of coil current and flux density to determine the displacement of the mover. To this end, the nonlinear
behavior of the plant and the physical sensing principle are modeled with a finite element approach at
different air gap lengths and coil currents. A linear dynamic model is then obtained at the operating
point as well as a linear relation for the displacement estimates. The effectiveness of the modeling
approach and the performance of the sensing and control techniques are validated experimentally on
an active magnetic levitation system. The results demonstrate that the solution is able to estimate
the displacement of the mover with a relative error below 3% with respect to the nominal air gap.
Additionally, this approach can be exploited for academic purposes and may serve as a reference to
implement simple but accurate active magnetic levitation control using low-cost, off-the-shelf sensors.

Keywords: active magnetic levitation; position estimation; finite element modeling

1. Introduction

Active magnetic levitation is found nowadays in industrial systems where contact-free operation
is advantageous. Typical applications include the support of compressors, turbines and flywheels in
vacuum, manufacturing, and oil-and-gas industrial fields [1–4]. High efficiency, low maintenance cost
and control of the hovering dynamics are some of the key benefits of this technology [1,5].

In a nutshell, active magnetic levitation systems aim to control the position of the levitating
object by varying the force imposed with an electromagnet. Their inherent nonlinear and unstable
open loop nature motivate a substantial research effort mainly focused on the investigation of more
effective actuator architectures [6,7] and the development of advanced control strategies to improve
their dynamic performance, stability and robustness [8–10]. Additionally, since the performance
of such systems is heavily influenced by the quality of the position feedback, the displacement
sensing technique represents a crucial element. Typically, the displacement measurement is performed
exploiting a variety of technologies such as optical, capacitive, magnetic, and electromagnetic
sensing [1,11]. Optical sensors are easy to use and suitable for large air gaps [12], but prone to
resolution loss due to diffraction effects [1]. Capacitive sensing features high resolution but is expensive
and sensitive to dirt and dust [11,13]. Magnetic sensors have a good resolution but are sensitive to
external magnetic fields [1]. Eddy-current and inductive sensors have good sensitivity, robustness,
and immunity to dust [14–16]. Alternative solutions are the so-called self-sensing techniques, where the
displacement sensor is not present, and the position of the levitating object is determined from
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the direct measurement of other variables, typically voltage and current in the electromagnet coil
[1,17–19]. This reduces significantly cost, weight, and hardware complexity. A significant amount of
research focuses on observer-based estimation relying on a mathematical model of the system [20–22].
Other techniques exploit the functional relationship between the magnetic circuit inductance and the
position of the levitated object [23–25].

A further position sensing solution determines the displacement through the measurement of
the flux density at the air gap along with the current flowing in the electromagnet coil. The addition
of the flux density at the air gap with respect to the afore-mentioned self-sensing solutions improves
the robustness and performance, while reducing the effects of plant-model mismatch and unmodeled
dynamics [20,26]. However, in the authors’ knowledge, the literature related to this approach is
limited. In [27], a Hall effect magnetic field sensor is installed between the electromagnet and the
levitating object. A permanent magnet (PM) is also added to the levitating object. In this configuration,
the sensed magnetic flux density is dominated by the behaviour of the PM and the displacement can
be correlated with this measurement. However, as stated by the authors, the measurement of the
magnetic flux density from the suspended object is corrupted by the magnetic behaviour of the coil,
which is neglected in the sensing technique. This deficiency is addressed in [28] with a more precise
sensing solution. The disturbance introduced by the solenoid field is evaluated numerically through a
finite element (FE) model. A sensor fusion algorithm based on the unscented Kalman filter is adopted
for the displacement estimation in real time.

This paper proposes a position control approach exploiting the measurements of the coil current
and the magnetic flux density at the air gap to obtain the displacement of the mover. Unlike the
aforementioned works, the mover is ferromagnetic and does not include any PM elements. In this
case, the magnetic flux density strongly depends on both, the coil current and the mover position.
This dependency is difficult to obtain analytically due to magnetic saturation on the mover, irregular
or unknown flux paths, non-homogeneous air gap and leakage and stray flux effects. Therefore,
FE simulations are carried out to identify the resulting nonlinear behaviour of the plant parameters
(coil flux linkage and magnetic force) and the expected magnetic flux density measurement for different
current and air gap length values. Subsequently, the model is linearized for a nominal operating
point. A voltage control strategy is designed and implemented to validate the proposed solution on
a simple magnetic levitation demonstrator. From an academic perspective, the proposed approach
serves to illustrate fundamental principles of electrical and electronic engineering: electromagnetism
and electrodynamics, control design, and practical implementation issues. Furthermore, users need
to reinforce and understand the physics of the system due to the fact that the position sensor is not
installed and indirect measurements are used instead.

The paper is structured as follows: Section 2 describes the general dynamic equations of the
system and outlines the FE model. A linearized plant model and a method for displacement estimation
are also introduced. Section 3 describes the levitator test rig, its main components and defines the
design of the stabilizing controller. Section 4 presents the experimental results. Finally, Section 5
concludes the work.

2. Modeling

The magnetic levitation demonstrator consists of an electromagnet fixed to a frame and a levitated
spherical body (mover), as illustrated in Figure 1. The electromagnet is an E-shaped core made of
laminated soft iron with a coil wound on its central limb. The mover is devised with a thin soft
iron yoke to reduce its mass. Table 1 summarizes the main geometric and layout features of the
described setup.
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Figure 1. Model scheme of the magnetic levitation demonstrator.

Table 1. Geometric and layout features of the magnetic levitation demonstrator.

Subsystem Property Value Unit

Electromagnet

Height 64 mm
Depth 17 mm
Limb width 16 mm
Slot width 16 mm
Total width 80 mm

Coil
Wire gauge 0.5 mm
Number of turns 684 -

Mover
Outside diameter 92 mm
Yoke thickness 0.5 mm
Mass 67 g

The system is governed by the following dynamic equations:

u = λ̇(i, q) + Ri, (1)

mq̈ = fm(i, q)− fd. (2)

Equation (1) describes the behavior of the coil circuit, where the input voltage u is contrasted by
Ohm’s law through the coil resistance R and by Lenz’s law with the variation of the coil flux linkage λ

in time. The flux linkage λ depends on the magnetomotive force applied to the magnetic circuit and
the reluctance, which decreases with the air gap. Hence, λ is a function of the vertical displacement q
and the current i. Equation (2) defines the dynamic equilibrium of the mover body. The resultant force
includes a magnetic component fm developed by the electromagnet and an external disturbance fd
(usually the weight of the sphere). The force fm is a function of the vertical displacement coordinate q
and the supply current i.
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From the control point of view, the voltage u is the command input and the current i and
flux density Bs are the measured variables. This latter quantity is determined using an analog sensor
installed on one of the side limbs of the electromagnet. Its role is to measure the flux density component
Bs which is orthogonal to the cross section of the sensing element (see Figure 1). The relation between
λ, the current i and the vertical displacement q can be known either experimentally or from simulation.
Thus, the measurement of Bs and i allows to estimate q, provided that the magnetic hysteresis of the
ferromagnetic parts is negligible.

The behavior of λ, fm and Bs is necessary to implement any model-based control strategy on the
described system. However, the analytical determination of these terms is not trivial due to magnetic
saturation on the sphere yoke, irregular or unknown flux paths, non-homogeneous air gap, leakage
and stray flux effects.

To simplify the analysis, the model is evaluated with the aid of a 3D finite element model in
COMSOL Multiphysics. If losses in the iron domains are neglected, the electromagnetic problem
formulation in terms of the magnetic vector potential A is given by

B = ∇×A, (3)

∇×H = Je, (4)

where B and H are the magnetic flux density and field vectors, respectively, and Je is the external current
density vector. Neglecting iron losses implies that the stated problem can be solved in a magnetostatic
formulation, i.e., without the need for a computationally intensive time-stepping solution.

Air domains surrounding the actuator and inside the sphere are characterized by a unitary relative
permeability with respect to vacuum. Soft iron domains, on the other hand, are represented with a
nonlinear relation to account for saturation:

H = fFe (|B|)
B
|B| (5)

The coil domain has the same magnetic properties as air. However, a specific feature of the
software allows to define a homogenized multi-turn coil with external current density

Je =
Nci
Ac

ec, (6)

where Nc is the number of turns of the coil, Ac is its total cross section and ec is a vector field
representing the local direction of the coil wires. This latter term is determined by a coil geometry
analysis study step embedded in COMSOL Multiphysics.

The symmetry of the model allows reducing the geometry size to one quarter, provided that
the mover is perfectly centered with respect to the electromagnet. To decrease the computational
overhead, this symmetry is exploited by imposing a Dirichlet’s boundary condition on all the surfaces
of the model:

n×A = 0 (7)

where n is the unit vector normal to the surface where the condition is applied. The resulting FE model
is shown in Figure 2. It is simulated for a matrix of current and vertical displacement input values
ranging from 0.1 to 1 A and 1 to 10 mm, respectively. The coordinate q is assumed null when the mover
is in contact with the central limb of the electromagnet and positive as the mover goes downwards.

Figures 3–5 illustrate the behavior of the analyzed terms for the working set of (i, q) input
pairs. It is observed that the variables exhibit nonlinear behavior with respect to the inputs. This is
particularly emphasized for the magnetic force developed by the actuator. In addition, the coil flux
linkage λ and the measured magnetic flux density Bs exhibit similar behaviors. Discrepancies are
found when the mover is very close to the electromagnet because the flux on the side limb tends to
change direction, while Bs takes only the flux density component orthogonal to the cross section of the
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sensing element. Please note that the behavior of Bs(i, q) is numerically defined in the examined range.
Therefore, the measurements of Bs and i can be used to determine indirectly the vertical position of
the mover.

Figure 2. Finite-element 3D model of the levitation system: (a) geometry and domains; (b) mesh
consisting of 109,210 elements; (c) magnetic flux density norm distribution for i = 650 mA and
q = 5 mm, where the geometry is mirrored and the air domains are omitted for display purposes.

0
1

20

10

C
oi

l f
lu

x 
lin

ka
ge

 (
m

W
b)

40

Current (A)

0.5

Air gap length (mm)

60

5

0 0

Figure 3. Numerical behavior of the coil flux linkage λ as a function of current i and displacement q.
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Figure 4. Numerical behavior of the magnetic force fm as a function of current i and displacement q.
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Figure 5. Numerical behavior of the measured flux density Bs as a function of current i and
displacement q.

As an alternative to the numerical approach proposed here, the relation Bs(i, q) (see Figure 5)
could be characterized experimentally by adding a position sensor. However, a suitable position
control is needed a priori to stabilize the plant and obtain reliable measurements. When applying
a feedback control law, the flux density and the coil current values are prone to corruption due to
feedback noise propagation.

2.1. Plant Model

Since the most important nonlinear dependencies of the plant have been numerically identified,
the plant can be stabilized with any control technique. However, linearized models are usually
preferred for control designers to exploit all the advantages of linear control theory. At any desired
operating point, Equations (1) and (2) can be linearized and rewritten in terms of states x = [q v i]T as
a linear continuous-time state space representation q̇

v̇
i̇

 =

 0 1 0
kq
m 0 ki

m
0 − kv

L0
− R

L0


 q

v
i


+

 0
0
1
L0

0
1
m
0

 [ u
fd

]
, (8)

where

ki = kv =
∂ fm

∂i

∣∣∣∣
x0

, kq =
∂ fm

∂q

∣∣∣∣
x0

, L0 =
∂λ

∂i

∣∣∣∣
x0

.

The states x = [q v i]T are hereinafter the deviation variables of the mover displacement, its speed
and the coil current, respectively. The coefficients kq and ki are the well-known force-displacement
and force-current factors [1,29], L0 stands for the inductance and kv is the back-electromotive force
coefficient. The coefficient kv is considered equal to ki due to energy conservation. All these
parameters are numerically evaluated at the operating point x0 from the FE simulations presented in
the previous Section.

2.2. Displacement Estimation

As previously stated, a position sensor is not used and a combination of flux density and coil
current measurements is proposed instead to calculate the mover displacement. To this end, the relation



Appl. Sci. 2018, 8, 2545 7 of 13

Bs(i, q) (see Figure 5) can be linearized at the desired operating point x0 = [q0 v0 i0]T from the Taylor
series first order approximation:

B̂s ≈ B0 +
∂Bs

∂i

∣∣∣∣
x0

(î− i0) +
∂Bs

∂q

∣∣∣∣
x0

(q̂− q0)

≈ B0 + kbi(î− i0) + kbq(q̂− q0). (9)

where B̂s and î are the measurements of the flux density and the coil current, respectively. The term
q̂ stands for the unmeasured position of the mover. When transforming (9) into the corresponding
deviation variables at the operating point (i.e., B = B̂s− B0, i = î− i0 and q = q̂− q0), the displacement
can be directly calculated as

q =
1

kbq
B− kbi

kbq
i. (10)

The absolute values of the coefficients kbq and kbi are hereinafter named sensing coefficients.
It is worth mentioning that any other more accurate displacement estimation based on, for instance,
lookup tables or polynomial approximations derived from Figure 5 can be applied. However, for the
sake of clarity, the linear relation (10) of the displacement estimates with the current and flux density
sensors is proposed here. It makes sense as long as the mover does not deviate significantly from the
nominal position.

3. Experimental Setup

3.1. Test Rig

The experiments are conducted with the test rig shown in Figure 6. The current in the
electromagnet coil is measured by an Amploc AMP25 Hall sensor (sensitivity 37 mV/A). An Allegro
A1325 linear Hall-effect sensor (sensitivity 31.25 mV/mT) measures the flux density component Bs.
The sensitivity of the current sensor is increased by winding the coil conductor through the sensor
core ten turns. The power stage consists of a Pololu G2 High-Power Motor Driver 24v13 with a fixed
PWM carrier set at 20 kHz and a 24-V DC voltage.

Figure 6. Magnetic levitation demonstrator constituted by (1) frame, (2) base, (3) coil, (4) core,
(5) magnetic flux density sensor, (6) mover, (7) power stage, (8) DSP development board, (9) current
sensor, (10) power supply, (11) personal computer.

The control strategy is implemented in a Texas Instruments TMS320F28335 digital signal processor
(DSP). The resolution of the analog-to-digital converter (ADC) module of the DSP and the PWM output
is 12 bits in both cases. The sampling frequency of the ADC module is triggered by the PWM carrier at
20 kHz. All the DSP peripherals are configured via MATLAB/Simulink using the embedded coder
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support package for Texas Instruments C2000 processors and Simulink Coder. These packages allow
fast prototyping because the C code is generated from a high level graphical Simulink environment.
The fundamental time step of the position control loop is set at 1 ms, and data acquisition through
Simulink matches this time step.

3.2. Control Design

Any linear or nonlinear control technique could be applied and tested in the demonstrator since
the plant is numerically identified by the FE simulations and the mover displacement is also known
from current and flux density measurements. However, this work is intended only to assess the
feasibility of applying an indirect sensing technique for an active magnetic levitation system. Hence,
a linear, computationally inexpensive voltage control strategy is proposed as shown in Figure 7.

-

-

+

+

q

u

bi

bq

k

k

p
G

df

refq
cG

B

i

1

bqk

Figure 7. Control and sensing scheme. Gp represents the plant and Gc stands for the controller. The coil
voltage u is manipulated to control the position of the mover.

When using voltage control, the control requirements are hardly achievable if a conventional PID
controller is used. According to [30], a convenient controller is a PD2 (i.e., two phase-lead compensator
in series). However, since zero tracking error at steady state is desired, a small integral action is added
and the resulting controller is the combination of a PID with a phase-lead compensator as

Gc = Kc

(
1 +

1
τis

+
τd

τf s + 1

)
τ1s + 1
τ2s + 1

. (11)

The control requirements for the design are a phase margin between 30 and 60◦, and the gain
margin greater than 6 dB to guarantee stability even if the parameters of the plant model vary to
a certain extent [31]. To this end, a linear model (8) is first obtained at x0 and hence, the control
parameters are selected accordingly.

4. Results and Discussion

Different tests are conducted to evaluate the plant-model mismatch, the correctness of the
displacement estimation and the resolution of the sensing approach. The experimental results are
obtained by selecting an air gap of 5 mm and the corresponding bias current i0 = 0.7 A to compensate
the weight force. The measured coil resistance R = 3.4 Ω is considered constant during the experiments
and hence, a bias voltage u0 = 2.21 V is applied. As a result, there exists also a measured steady state
flux density B0 = 12.88 mT which can be also corroborated from Fig 5.

For safety purposes, the coil voltage is bounded to [0, 2u0] throughout the experiments to work
only in the proximity of the nominal operating point x0. This action avoids impulsive coil currents if
the mover is manually removed. The resulting parameters of the plant model, the controller and the
involved sensing coefficients at x0 are presented in Table 2.
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Table 2. Plant Model, Controller and Sensing Parameters

Subsystem Parameter Value Unit

Plant Model kq 216.30 N/m
ki 2.17 N/A
L0 41.21 mH
kv 2.17 Vs/m

Controller Kc 1000 V/m
τi 0.20 s
τd 0.0125 s
τf 0.0021 s
τ1 0.0125 s
τ2 0.0021 s

Sensing coefficients kbi 18.4 mT/A
kbq 0.8753 mT/mm

Transient responses of the system are presented in Figure 8 by varying the position reference qre f .
The obtained results prove the feasibility of applying the indirect sensing solution and the proposed
control technique. The resulting linear model is sufficient to replicate the dynamics of the plant with a
slight deterioration near the overshoots. This discrepancy is expected due to the nonlinear nature of
the plant. Figure 8 also presents the unfiltered behavior of current and flux density measurements.
However, a low-pass filter with a cut-off frequency at 300 Hz is applied before using them for the
displacement estimation. This filter is accounted for the controller synthesis.
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Figure 8. Step response of the controlled plant for current i, flux density Bs measurements.
The displacement q is estimated from the former signals and compared to the control reference and the
output of the numerical model.
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The correctness of the position estimates has been corroborated with a Micro-Epsilon optical
displacement sensor LD1605-4 (sensitivity 5 V/mm, resolution 1 µm). Figure 9 shows both,
the estimates and the sensor measurements when a reference step change is applied. Similarly, Figure 10
shows a quasi-static estimation behaviour around the nominal air gap. The position estimates match
the sensor measurements with enough precision. The linear approximation (10) proved sufficient
to estimate the mover displacement in the vicinity of the operating point. A slight but acceptable
degradation of the position estimate is advisable when the sphere moves downwards and beyond the
nominal operating point.
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Figure 9. Comparison of the mover displacement estimates with an accurate optical displacement
sensor. The estimates are obtained from (10).
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Figure 10. Quasi-static comparison of the mover displacement estimates with an accurate optical
displacement sensor in the range ±1 mm around the nominal air gap (5 mm).

Figure 11 shows the open loop steady state behavior of the measurements from both sensors
and the resulting displacement estimates. The data is obtained in a ten-second sampling window by
fixing manually the mover at the nominal air gap while keeping the bias constant (i.e., the steady
state condition at the operating point with the control voltage u set to u0). The aim of this test is to
inspect the resolution of the estimates from the measurements without the effect of the controller.
The errors of the measurements are ±6 mA and ±69.8 µT for the current and flux density sensors,
respectively. These errors are amplified by the sensing gain blocks (see Figure 7) and propagated
through the feedback loop. All in all, the displacement estimate error is bounded to ±0.15 mm which
is around 3% of the nominal air gap. Please note that the uncertainty propagation is also affected by
the resolution of the ADC module of the DSP. Nevertheless, since the system is inherently unstable,
a stabilizing controller is mandatory for the levitation and therefore, the actual error under normal
operation (i.e., controlled system) can differ according to the sensitivity of the control loop.
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Figure 11. Current and flux density measurements, and estimated displacement at steady state in
open loop.

5. Conclusions

A simple, low-cost position control strategy on an active magnetic levitation demonstrator has
been presented. The quasi-static nonlinear behavior of the magnetic force and flux linkage obtained
from finite element simulations served to obtain a linear dynamic plant model once the operating point
is selected. Furthermore, the numerical simulation of the measured flux density at different air gaps
and coil currents allowed to identify the sensing coefficients involved in the displacement estimation.
The nonlinear behavior of the plant is known a priori from numerical simulations, favoring significantly
the synthesis of the control strategy. The proposed indirect sensing solution is able to estimate the
displacement of the mover with a relative error below 3% with respect to the nominal air gap.

Author Contributions: Conceptualization, L.M.C.M.; Investigation, L.M.C.M., R.G. and A.B.; Methodology,
A.T. and N.A.; Supervision, A.T. and N.A.; Writing—original draft, L.M.C.M.; Writing—review & editing,
R.G. and A.B.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bleuler, H.; Cole, M.; Keogh, P.; Larsonneur, R.; Maslen, E.; Okada, Y.; Schweitzer, G.; Traxler, A.;
Nordmann, R. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery; Springer Science &
Business Media: Berlin, Germmany, 2009.

2. Yoon, S.Y.; Lin, Z.; Allaire, P.E. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings: Theory
and Implementation; Springer Science & Business Media: Berlin, Germmany, 2012.



Appl. Sci. 2018, 8, 2545 12 of 13

3. Hutterer, M.; Schrödl, M. Control of Active Magnetic Bearings in Turbomolecular Pumps for Rotors with
Low Resonance Frequencies of the Blade Wheel. Lubricants 2017, 5, 26. [CrossRef]

4. Li, X.; Anvari, B.; Palazzolo, A.; Wang, Z.; Toliyat, H. A Utility-Scale Flywheel Energy Storage System with a
Shaftless, Hubless, High-Strength Steel Rotor. IEEE Trans. Ind. Electron. 2018, 65, 6667–6675. [CrossRef]

5. Chiba, A.; Fukao, T.; Ichikawa, O.; Oshima, M.; Takemoto, M.; Dorrell, D.G. Magnetic Bearings and Bearingless
Drives; Elsevier: Amsterdam, The Netherlands, 2005.

6. Filatov, A.; Hawkins, L.; McMullen, P. Homopolar Permanent-Magnet-Biased Actuators and Their
Application in Rotational Active Magnetic Bearing Systems. Actuators 2016, 5, 26. [CrossRef]

7. Chen, S.L.; Weng, C.C. Robust control of a voltage-controlled three-pole active magnetic bearing system.
IEEE/ASME Trans. Mechatron. 2010, 15, 381–388. [CrossRef]

8. Maslen, E.; Montie, D. Sliding mode control of magnetic bearings: A hardware perspective. J. Eng. Gas
Turbines Power 2001, 123, 878–885. [CrossRef]

9. Bonfitto, A.; Castellanos Molina, L.; Tonoli, A.; Amati, N. Offset-Free Model Predictive Control for Active
Magnetic Bearing Systems. Actuators 2018, 7, 46. [CrossRef]

10. Javed, A.; Mizuno, T.; Takasaki, M.; Ishino, Y.; Hara, M.; Yamaguchi, D. Lateral Vibration Suppression by
Varying Stiffness Control in a Vertically Active Magnetic Suspension System. Actuators 2018, 7, 21. [CrossRef]

11. Boehm, J.; Gerber, R.; Kiley, N. Sensors for magnetic bearings. IEEE Trans. Magn. 1993, 29, 2962–2964.
[CrossRef]

12. Fama, R.C.; Lopes, R.V.; Milhan, A.; Galvão, R.; Lastra, B. Predictive control of a magnetic levitation system
with explicit treatment of operational constraints. In Proceedings of the 18th International Congress of
Mechanical Engineering, Ouro Preto, Brazil, 6–11 November 2005.

13. Salazar, A.O.; Dunford, W.; Stephan, R.; Watanabe, E. A magnetic bearing system using capacitive sensors
for position measurement. IEEE Trans. Magn. 1990, 26, 2541–2543. [CrossRef]

14. Recheis, M.; Nicolics, J.; Wegleiter, H.; Schweighofer, B.; Fulmek, P. Evaluation of inductive displacement
sensors for a basic active magnetic bearing test rig. In Proceedings of the 2011 34th International Spring
Seminar on Electronics Technology (ISSE), Tratanska Lomnica, Slovakia, 11–15 May 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 626–631.
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