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Measuring the magnetic axis 
alignment during solenoids working
Pasquale Arpaia1,2, Biase Celano1,2, Luca De Vito3,2, Antonio Esposito1,6, Alessandro Parrella1,4 
& Alessandro Vannozzi5

A method for monitoring the misalignment of the magnetic axis in solenoids is proposed. This method 
requires only a few measurements of the magnetic field at fixed positions inside the magnet aperture, 
and thus overcomes the main drawback of sturdy moving mechanics of other Hall sensor-based 
methods. Conversely to state-of-the-art axis determination, the proposed method can be applied also 
during magnet operations, when the axis region and almost the whole remaining magnet aperture 
are not accessible. Moreover, only a few measurements of the magnetic field at fixed positions inside 
the magnet aperture are required: thus a slow process such as the mapping of the whole aperture of a 
magnet by means of moving stages is not necessary. The mathematical formulation of the method is 
explained, and a case study on a model of a multi–layer solenoid is presented. For this case study, the 
uncertainty is assessed and the optimal placement of the Hall transducers is derived.

In the last decades, resistive and superconductive axially-symmetric magnets have been investigated and employed 
at an increasing rate in several and heterogeneous research fields1–3. As an example, in particle accelerators, magnetic 
elements such as solenoids are applied in low-energy beam transport sections4,5, and in modern radio-frequency 
(RF) linear accelerators (linacs)6, for emittance compensation, transverse focusing, and electron cooling. Examples 
of resistive solenoids employed as focusing lenses in RF linacs are Linac37 and Linac48 at CERN. Superconductive 
focusing solenoids are adopted also for the project High Intense Neutrino Source (HINS) at Fermilab9 and for the 
High Intensity and Energy (HIE) upgrade of the ISOLDE facility at CERN10. The advantage of using short solenoi-
dal lenses in high-power accelerators, instead of sequential pairs of quadrupoles, is the reduction of the emittance 
growth and the related particle losses11. However, the application of axially-symmetric magnets goes beyond the 
particle accelerator research. For instance, a low-field, large-bore High Temperature Superconductive solenoid for 
emittance compensation was designed for the superconducting radio frequency electron gun for the WiFEL at the 
University of Wisconsin12. Magnets of this type have also been employed in many different devices, such as electron 
microscopes13, particle therapy, and short-pulse radiographic diagnostics14.

An axially-symmetric magnet is based on one or a series of axially-centered coils, producing a region of 
cylindrically-symmetric, radial, and axial magnetic fields. The solenoid field consists of two components: a dominant, 
axial component, with a maximum strength at the center of the solenoid, and a weak, radial component with relevant 
effects only towards the ends of the solenoid. Charged particles moving outside the magnetic axis are azimuthally 
accelerated by the radial field component, especially in the magnet’s end regions. This leads to helical motion of the 
charged particles in the longitudinal field region of the magnet. Therefore, particle beams require a strict determination 
of the magnetic axis. Axially-symmetric magnets are hardly compatible with the standard instrumentation optimized 
for accelerator multi-pole magnets and are routinely tested with expensive and time-consuming mapping systems15. 
Recently, several methods have been developed to measure the magnetic field of axially-symmetric magnets and over-
come the use of mappers. For instance, a novel method exploiting the inherent axial symmetry of the magnetic field was 
proposed. The method in3,16 is based on an induction transducer, sensitive to the longitudinal and radial components of 
the solenoid under test, moving along the magnet axis. The voltage induced in the transducer is then acquired and inte-
grated digitally in order to yield the flux linkage as a function of the linear position, measured by a laser interferometer. 
In the literature, the methods to align solenoids can be grouped in three main categories17: (i) the single stretched-wire 
methods18,19, (ii) the vibrating-wire methods20–22 and (iii) the Hall transducer-based methods15,23.
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The single-stretched-wire method exploits the Faraday induction law: when a single conducting wire is moved 
inside a magnetic field, the integrated voltage across its connection terminals is a measurement of the magnetic 
flux linked with the surface traced out by the wire. The axis is obtained by iterating horizontal and vertical sweeps 
of the wire until symmetric start and end points, where the flux is null, are found. This is a standard method for 
finding quadrupole magnets’ magnetic axes; however, in the case of solenoids, this method has a much lower 
sensitivity, because the intercepted transversal field components are significant only at the magnet’s ends. The 
vibrating-wire method, instead, is based on the Lorentz force. When a current pulse is driven through the wire, its 
interaction with the magnetic field generates mechanical vibrations, which can be measured and put in relation 
with the surrounding field. This method is a standard to measure magnetic axis position in quadrupole magnets 
for particle accelerators. The basic idea is to find the wire position in the magnet aperture where the smallest 
oscillations at first and second resonance frequencies are observed21. This same principle was applied to sole-
noids20. When the wire position coincides with the magnetic axis, the transversal field components cancel out 
and no motion is induced on the wire. Two wire resonance frequencies are excited for co-and counter-directional 
movements of the wire stages in the process of centering and aligning a solenoid. This procedure of finding the 
minimum oscillation amplitudes has a sensitivity to the misalignment in the order of the micrometer. The main 
drawback of this method is that the procedure is applicable only if the whole solenoid’s aperture is accessible. 
Hence, these methods cannot be applied to real-time monitoring of an operational solenoid.

A different approach for estimating the magnetic axis consists of using Hall transducers. For example, the field 
generated by the rotation of a Hall transducer at several points along the axis of a solenoid can be recorded as a 
function of the rotation angle23. Then, the displacement of the axis of rotation from the magnetic axis is retrieved 
post-processing the solenoid field. A common way to determine the magnetic axis by means of Hall transducers 
to calculate the magnetic center is by measuring the 2D field profile of the solenoid at different positions along the 
z-axis and then estimating the magnetic axis position with a resolution of 0.01 mm15. In this case, the axial compo-
nent of the magnetic field is measured, rather than the radial component. The drawback of the Hall transducer-based 
methods is the mapping of the whole solenoid aperture, generally performed with moving stages through sturdy 
mechanics. When a magnet is in operation, its coil is constantly subjected to an electrodynamic strain. This could 
easily bring to a significant misalignment of the magnetic axis from the geometric axis. In case of a multi-coil sole-
noid this effect would be even more dramatic, because the different coils could show different misalignments. Hence, 
a system for monitoring in real time these misalignments is essential in all applications where a strict constraint on 
the coils alignment is required, giving the possibility to adjust each coil position to achieve/recover the solenoid 
design parameters. However, the standard methods to find the magnetic axis, introduced in this section, are not 
suitable for a real-time monitoring, because they require that the whole solenoid’s aperture is accessible.

In this paper, a novel Hall sensors-based method is proposed for the real-time monitoring of solenoids mag-
netic axis misalignment when the aperture is not accessible. Only a few measurements of the magnetic field at 
fixed positions inside the magnet aperture are required: thus a slow process such as the mapping of the whole 
magnet aperture by means of moving stages is not necessary. With respect to the preliminary version24 based on 
tri-axial Hall transducers, less expensive and more accurate uni-axial transducers are exploited. Moreover, a study 
on the uncertainty of the method is presented. In particular, Section 2 presents the mathematical description of 
the method, discussing the involved geometrical quantities and two different formulations for four and three 
transducers per side. In Section 3, a case study on a model of a multi–layer solenoid is illustrated, by assessing also 
the measurement uncertainty and optimizing the placement of the Hall transducers.

Proposed Method
Basic idea.  The proposed method aims at measuring the misalignment of the magnetic axis of a solenoid by 
using the difference between measurements of magnetic flux density in the actual and aligned cases. The method 
is summed up in Fig. 1. The magnetic flux density is measured by two sets of Hall transducers, placed on two 
planes orthogonal to the nominal axis at the extremities of the solenoid.

The measured values Bm(Hhk) at each position Hhk of the transducers are exploited to identify an inverse local 
field model, defined by linearizing the magnetic flux density around the positions where the transducers would 
move, due to the axis misalignment. The model allows to compute the displacements Δz′ and Δr′ of the trans-
ducer coordinates in the solenoid frame from the combination of the magnetic flux densities measured by the 
transducers. The displacements Δz′ and Δr′ are then transformed to the transducer frame and related to the 
Cartesian displacements Δx, Δy of the magnetic axis interception with the transducers planes. Finally, these 
displacements are used to get the parametric equation of the magnetic axis.

Analytical statement of the method.  The proposed method assumes that:

•	 From the solenoid point of view, the magnetic flux density preserves its axisymmetry even when the coil is 
misaligned with respect to the desired position.

Figure 1.  Main steps of the measurement method.



www.nature.com/scientificreports/

3SCIENTIFIC REPOrTS |  (2018) 8:11426  | DOI:10.1038/s41598-018-29667-1

•	 The displacements of the interceptions of the magnetic axis with the planes of the transducers are small with 
respect to the radial position of the transducers. This assumption will be better clarified within the discussion.

•	 The Hall transducers are not subject to movements.
•	 There is no longitudinal shift for the solenoid.

For an axially-symmetric magnet, the magnetic flux density B expressed in the cylindrical coordinate system 
(r, ϕ, z) is independent from the angle ϕ. This means that the components of the field, namely Br, Bz, and Bϕ, are 
all independent of ϕ. Furthermore, for a solenoid, it is also Bϕ = 0, because B is obtained as the curl of a vector 
potential A =  ϕϕ ˆA , which has only a component along ϕ̂. Due to the axisymmetry, considering a circle with 
radius R0 centered on the solenoid axis and contained in a plane orthogonal to this same axis, the two components 
of B will have a constant magnitude for all the points of the circle. This implies that also the field module B is 
constant on such a circle.

When the solenoid is in its nominal position (aligned solenoid, Fig. 2a), a Cartesian reference system with the 
origin at the center of the solenoid (O), and the z axis along the solenoid magnetic axis can be employed. Let us 
assume that eight Hall transducers are placed at the coordinates (−R0, 0), (+R0, 0), (0, −R0), (0, +R0) of the planes 
π1 and π2. Such planes are orthogonal to the z axis, and at positions z = ±d/2, with d the distance between them. 
The solenoid magnetic axis passes through the points O1 and O2, representing the intersection of the planes π1 
and π2 with the z axis. Meanwhile, the Hall transducers will be subjected to magnetic flux densities with same 
amplitude, but with different orientation, because they are placed at the same distance from the magnetic axis.

When the solenoid is out from its nominal position (misaligned solenoid, Fig. 2b), the magnetic flux densities B 
measured by the transducers are different not only in the orientation but also in the magnitude, owing to the lack 
of symmetry (the transducers are assumed as not subject to movements). The above mentioned solenoid reference 
system is defined as a coordinate system coinciding with the transducers reference when the solenoid is aligned.

In the solenoid reference (Fig. 2b), the coordinates are pointed out with an apostrophe (′), the origin is the center 
of the misaligned solenoid (O′), and the magnetic axis corresponds to the z’ axis. The magnetic axis is uniquely 
determined by the coordinates of the solenoid center O′ ≡ (xO′, yO′, zO′), and by its slope parameters v1, v2, v3:

Figure 2.  (a) Aligned solenoid: the magnetic axis matches with the z axis of the transducers reference system 
(reference axis). (b) Misaligned solenoid: the magnetic axis (z’) differs from the reference axis (z), but it can be 
identified through ′O1 and ′O2.
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Indicating with ′O 1 and ′O 2 the intersections of the magnetic axis with the planes π1 and π2, respectively, the 
slope parameters are obtained as:
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Then, according to the assumption of lack of longitudinal shift, the solenoid center is constrained to the plane 
πo: z = 0 (Fig. 2b). Therefore, only radial displacements and tilt are considered; thus, the solenoid does not move 
along the z-axis. In this case, eqs (1) and (2) are simplified as:
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Local field model.  According to the above assumption of small solenoid axis misalignment, the distance 
between O1 ≡ (0, 0, −d/2) and ′O 1 and the distance between O2 ≡ (0, 0, d/2) and ′O 2 are small with respect to R0:
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Under this assumption, the field flux density is approximated with its first-order Taylor expansion around the 
position ′H hk, corresponding to the point where the transducer would move, owing to the misalignment. Then, 
using such an expansion, the magnetic flux density is assessed in Hhk (the position where the transducer actually 
lies). Here the subscript “h” identifies the plane where the transducer is located (h = 1 for π1, h = 2 for π2), while 
“k” identifies the exact transducer of the plane.

The geometry suggests to adopt cylindrical coordinates, and, in the solenoid reference system, the magnetic 
flux density only depends on the radial (r′) and axial (z′) coordinates, but not upon the angle (ϕ′), owing to the 
axisymmetry. As an example, the case of one of the transducers is highlighted in Fig. 3. The transducer lies on the 
H11 position, moving to ′H 11 owing to the misalignment. In this case, the expansion will be around the point ′H 11, 
having coordinates r′ = R0, z′ = −d/2 in the solenoid reference system.

In the case of a generic transducer, located at Hhk, the magnetic flux density is expanded as:

r z R z
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r R
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hk hk h
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where, zh = ±d/2, depending on the side of the solenoid where the transducer is placed. The first member of the 
equation is the quantity to be measured. In particular, uni-axial Hall transducers can be adopted, positioned along 
either the radial or the longitudinal direction of the transducer reference system. 1D Hall transducers placed 
radially are first considered.

A radial transducer measures only the radial component of B when the solenoid is aligned. Instead, when the 
solenoid is misaligned, also a contribution from the axial component of the field will appear. The measured value 

Figure 3.  The position of the transducer H11 in both the transducer and the solenoid reference systems. The 
magnetic flux density is expanded in Taylor series around the position ′H 11, corresponding to the point where 
H11 would move due to the misalignment.
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is then composed by the superposition of the projections of Br and Bz onto the radial direction of the transducer 
reference system. It will then depend on the magnitudes Br, Bz, and on the angles α and β, between the vectors Br 
and Bz and the radial direction of the transducer reference system, respectively (Fig. 4), again for a single trans-
ducer. The measured value is then expressed by:

α β= + = +B B B B Bcos sin (6)m mr mz r z

where the projections assume negative values when directed towards the z-axis and vice versa. As an example, in 
the case of Fig. 4, Bmz has a positive value, while Bmr a negative value.

Under the assumption of small misalignment, eq. (6) can be simplified by assuming cos α ≈ 1. Then, the sign 
of Bmr and Br coincide. Instead, the sign of Bmz coincides with the sign of sin β because Bz is always positive. Here, 
Br and Bz can be expressed by Taylor expansion, as shown in (5). Such an expansion depends on the coordinates 

′ ′r z( , )hk hk  of the transducer positions in the solenoid reference system. The derivation of the geometrical quanti-
ties as well as of sin β for the different transducers is reported in the next subsection.

Geometrical quantities.  The coordinates ′ ′r z( , )hk hk  of Hhk in the solenoid reference system (Fig. 5) can be 
expressed in terms of the points Hhk, Ihk, and ′O 1 (or ′O 2), in the transducers reference. Hhk is the point where a 
transducer is located, Ihk its projection on the magnetic axis, and ′O 1 the intersection between the magnetic axis 
and the plane π1 considered in the figure.

′r hk is the distance of the transducer position from the solenoid axis, namely the distance between Hhk and 
≡I x y z( , , )hk I I Ihk hk hk

. For example, considering H11 ≡ (0, +R0, −d/2), eq. (7) holds under the hypothesis of small 
axis misalignment:
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Figure 4.  Br and Bz orientation with respect to the radial direction on which the considered transducer is 
placed.

Figure 5.  Coordinates ′ ′r z( , )11 11  of the transducer position in the solenoid reference system.
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Analogously, in the case of H13 ≡ (0, −R0, −d/2):
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The points Ihk can be described with the parametrization of the magnetic axis introduced in eq. (3). The equa-
tion of the z′ axis must be combined with the equation describing a plane orthogonal to z′ and passing through 
the transducer ≡ ( )H x y z, ,hk H H Hhk hk hk

, namely the expression (9).
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′z hk is instead the distance of Ihk from the solenoid center. Actually, in the Taylor expansion, the term ′ −z zhk h 
is needed, and this can be obtained from the third equation of (10), by considering that for z1 and z2, is t = −1/2 
and t = 1/2, respectively. Therefore, the following equations apply:
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In conclusion, the expressions of Br and Bz can be written with the Taylor expansion thanks to the previous 
geometrical considerations. As an example, for the transducers in positions H11 and H13 it results that:
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The last term to be determined is sin β. For transducers lying on a straight line parallel to the y-axis, such as 
H11 and H13, β is the elevation angle of the z′-axis from the xz plane:
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Similarly, for transducers lying on a straight line parallel to x-axis, such as H12 and H14, β12 is the azimuth angle 
z′-axis from the yz plane, and β14 = −β12. In the latter case, the following equations apply:
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Four transducers per side.  Let’s consider the case of four uniaxial Hall transducers per solenoid side, 
placed in the following points:
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In such positions, some symmetries of the magnetic field can be exploited. In the aligned case, indeed, both 
the radial and the axial components of the magnetic flux density have the same magnitude in the eight considered 
positions. In particular, the following relations apply:
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The magnetic axis misalignment is sensed by taking into account the difference in the measurements of trans-
ducers lying on the same plane and on the same axis (x or y). As an example, the equation obtained by subtracting 
the values measured by the couple (H13, H11) is shown. Similar equations are then valid for the couples (H14, H12), 
(H23, H21), and (H24, H22).
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Substituting (13) in (17) and neglecting the quadratic terms of v2:
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Repeating the same reasoning for the other transducers couples, the following system of equations is obtained:
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Simulated Field integral
[T·mm]

Measured Field integral
[T·mm]

Δ Field Integral
[%]

R = 0 mm 287.7348 284.3833 1.2

R = 30 mm 287.7259 284.3843 1.2

R = 60 mm 287.7341 284.3871 1.2

R = 90 mm 287.8302 284.3914 1.2

R = 120 mm 287.9348 284.4397 1.2

Table 1.  Comparison between Simulated and Measured Field Integral.
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This linear system can be easily solved to obtain xO′, yO′, v1, and v2:
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Similar considerations can be done for transducers placed along the axial direction, leading to a slightly dif-
ferent set of equations:
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Thus, it can be easily derived that:
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A further realization of the method can be obtained by only three transducers per solenoid side in order to 
minimize the system complexity. This is discussed in the appendix A. However, a more complex analytical model, 
and a higher uncertainty, both deriving from the lack of symmetry introduced removing one of the transducers 
per side, are involved.

Proof of Principle and Method Optimization
The proposed method for monitoring the solenoid axis misalignment is summarized by (19) and (21) when 
employing radially- or axially-placed uniaxial Hall transducers, respectively. The measurement procedure is 
summed up as follows:
At installation:

•	 Place the transducers by defining R0 and d;
•	 Obtain the needed field components and derivatives at (R0, −d/2) and (R0, +d/2) in the solenoid reference 

system;

In operation:

•	 Measure Bm at the Hall transducers points;
•	 Compute xO′, yO′, v1, and v2;
•	 Compute the related uncertainties.
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The parameters defining the magnetic axis misalignment depend on the longitudinal and radial positions of 
the transducers (R0 and d), as well as on the specific longitudinal and radial field profile of the solenoid (repre-
sented by the field derivatives). Therefore, the transducers must be placed by taking into account that different 
positions can lead to a different uncertainty of the final result. Moreover, the misalignment parameters depend 
on the field profile, therefore, in general, an optimal placement of the transducers cannot be found. Instead, the 
optimization must be carried out by evaluating the uncertainty for the specific solenoid according its field.

This optimization procedure is highlighted by two case studies presented in this section, referring to two dif-
ferent models of a single coil of the multi-coil magnet to be employed in the ELI-NP project25. First, an analytical 
model for the single solenoid is considered, obtained on the basis of the geometries of a single coil of the ELI-NP 
magnet. Then, a FE model of the coil was obtained from the FEM of the multi-coil solenoid as a whole, by extract-
ing the field of one of the coils.

Details about the employed field models are discussed in the next subsection. Then, the uncertainty is assessed 
and the optimal placement of the transducers is determined. Finally, simulations proving the effectiveness of the 
method in identifying the misalignment axis are reported.

Solenoid field models.  Analytical model.  A multi–solenoid made of 12 identical coils (the ELI-NP sole-
noid type B) was tested at the manufacturer (Danfysik) facility in 2015. In this paper, an analytical model of one 
of the coils of the magnet is considered. Among the models proposed in the scientific literature, a model of 2009 
from MIT and the Community College of Vermont26 is taken into account. This model is based on a generalized 
elliptic integral that is easily computable with a fast numerical algorithm, and it allows to calculate the magnetic 
flux density of a single layer solenoid. In particular, the solenoid was modeled in MATLAB with geometrical 
parameters such as the number of turns (N), the length (L), the aperture radius (R), and the operating current 
(Iop). The field of a multi-layer solenoid can be also simulated as a superposition of single layer solenoids with 
increasing aperture radius. Figure 6 shows Br and Bz at the plane y = 0 for x ∈ [−R; +R] and z ∈ [−L; +L]. Due to 
the axisymmetry, the field for half a plane would be enough, but the entire plane is shown for clarity. The solenoid 
model has 12 layers, 9 turns per layer, length equal to 93 mm, aperture radius equal to 153,1 mm, and operating 
current Iop = 177 A. Such parameters were chosen according to the characteristics of a single coil of the ELI-NP 
type B solenoid. In the figure, the section at y = 0 of the solenoid is also shown as a rectangle under the surface 
representing the field components, to better highlight the solenoid dimensions.

Finite Element Model.  During the factory acceptance test (F.A.T.) of the ELI-NP multi-solenoid Type B, sev-
eral magnetic, electrical, and hydraulic measurements have been performed, including a magnetic flux density 
mapping along several paths for two configurations: (i) by powering all the coils with the same current polarity 
(+ + + + configuration), and (ii) by alternating the current polarity for each coil triplet (+ + − − configuration). 
However, for both the configurations, only the longitudinal component of the flux density (Bz) was measured, 
so such measurements were not used directly to assess the derivatives needed for the measurement methods, 
because also the radial flux density would be required. Conversely, a FEM model was exploited and the longitudi-
nal component output from the FEM was compared with the measured data.

A finite element analysis (F.E.A.) of the ELI-NP multi-solenoid type B was performed using Poisson Superfish 
software, in order to map the flux density generated by the twelve solenoid coils operating in DC. The simula-
tion is a 2D model of the magnet with cylindrical symmetry, where all the coils and iron yoke dimensions were 
obtained by mechanical drawings and dimensional tests supplied by Danfysik. Each coil, composed by 108 turns, 
was powered with the nominal current of 177 A reaching an Ampere·Turns value of 19.116 A. The iron yoke 
material was modeled with a 17-4 ph stainless steel first magnetization curve. It is a mild steel, approximating 
the original iron yoke material (steel 37) satisfyingly. The output of the simulation is a field map of the radial and 
axial flux density components Br and Bz, assessed in the inner aperture coil air region, with a corresponding step 
of 2 mm and 1 mm, respectively. Also all the derivatives of Bz and Br in radial and longitudinal direction were 
included in the output files.

Figure 6.  Radial (a) and axial (b) components of B for a multilayer solenoid at the plane y = 0 calculated with 
an analytical model based on a generalized elliptic integral.
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The measured Bz component measured during the F.A.T. was compared with the Bz calculated through the 
simulations. As shown in Fig. 7, excluding the ends part of the fringe fields, the curves matched significantly 
within 2%. This error is negligible with respect to the measured and the simulated total integral field, over several 
trajectories at different radius from the mechanical axis (Table 1).

By relying on the same magnet model, only one coil per time can be supplied in order to obtain the field irra-
diated by a single solenoid. In Fig. 8, the coil considered for the FEM model is highlighted. This is the third of the 
first triplet and the field was simulated in the spatial region also highlighted in a lighter gray. The results of this 
simulation were employed for optimizing the transducers placement and validating the method.

Uncertainty Assessment.  The uncertainties of the O′ coordinates, v1, and v2 were assessed by considering 
their explicit expressions, obtained by exploiting the symmetries of the magnetic flux density irradiated by the 
solenoid. In particular, for radial transducers, the (20) and (22) have to be considered, for radial and axial Hall 
transducers, respectively. The uncertainty was computed by using the “law of propagation of the uncertainties” 
(LPU) for each equation. For the sake of brevity, only xO′ and v1 for radial transducers are here considered, but the 
same reasoning can be applied for yo′ and v2, and for axial transducers. The squared standard uncertainties are:
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where, uB is the uncertainty of the values measured by the transducers, supposed equal for all the transducers 
outputs; ug is the uncertainty related to the transducers placing, supposed equal for both geometrical parameters, 
R0 and d; u∂ is the uncertainty of the derivatives of Br, and uf is the uncertainty of the Bz0 value. The last contribu-
tions arise from the field model, and they express the goodness of fitting with respect to the measured field. Once 
the above uncertainties are known, 

′
uxO

 and uv1
 are expressed as a function of (R0, d) in order to find the optimal 

placement.
Assuming typical values of uB ≈ 10−4 T for Hall transducers and uR0 ≈ ud = ug ≈ 10−5 m, in a placement by laser 

tracking. Moreover, considerations about the field model suggest that derivatives and field components uncer-
tainties are in the order of percent of their respective values.

To have a better understanding of the contributions to the total uncertainty, it is possible to demonstrate that 
the uncertainty related to the placement parameters is negligible with respect to that of the field measurements, 
under the above assumptions. This can be understood by noticing that:

Figure 7.  Simulated and Measured Longitudinal Component of the Magnetic Field along the magnet axis.
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According to the adopted field values, in fact, the derivatives values are of the order of 1 T/m, Bz0 is about 
0.06 T in the points of interest, and ug ≈ 10−5 m. For the considered solenoid, therefore, the second term is in the 
order of 10−4 m. Given the values of the derivatives and Bz0, u∂ ≈ 10−2 T/m, while uf ≈ 10−3 T, when the relative 
uncertainties arising from the field model are within the order of percent. Moreover, the contribution related to 
u∂ is dominant at the first member, because uf is an order of magnitude below, while their coefficients are of the 
same order. Finally, the coordinates of O′ and the values of v1 (and v2) are below 1 mm for a small misalignment. 
Thus, considering only the uncertainty contributions of uB and u∂, (23) can be rewritten as:
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The uncertainty minimization is hence limited by the Hall transducers technology, even if this can be miti-
gated by the transducers placement (minimization of the denominators).

As an example, when monitoring the solenoid magnetic axis, there could be interest in the point 
=′ ′ ′x y z( , , )O O O2 2 2

 + + +′ ′x v y v d( /2, /2, /2)O O1 2 , and one of the uncertainties of interest would be:

= +
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u u u
4 (26)x x
v2 1
2

O O2

The values of this uncertainty as a function of (R0, d) are shown in Fig. 9, when employing the analytical model 
or the FEM. The minimum is obtained when R0 is the 90% of the aperture, and d equals about the 90% of the 
solenoid length for both cases, thus the transducers have to be placed slightly inside the magnet aperture to min-
imize 

′
ux O2

. Similar considerations stand for 
′

u y O2
 and the optimal placement could aim to minimize both the 

uncertainties separately, or their combination.
Additional considerations are needed for the three transducers case, as reported in the appendix A.

Method validation through simulations.  Once fixed R0 and d, the effectiveness of the proposed method 
can be proved by simulation, through either the analytical or FE field model. A known misalignment is imposed 
in order to calculate the reference quantities identifying the magnetic axis (reference values of O′, v1, and v2). 
Then, these quantities are estimated by the equations of the method, and a corresponding uncertainty can be 
assessed. In the simulation, the misalignment is implemented with a rotation and then a translation of the sole-
noid. When employing the analytical field model, simulation results show that the estimated error is always below 
10−7 m. when the misaligned magnetic axis is rotated of angles up to π/1000 and translated of 1/1000 times the 
solenoid length. These are reasonable maximum misalignments in the cases of interest. Taking into account the 
same misalignment, the uncertainty is higher but always below 10−6 m, when employing the FE model.

Conclusions
In this work, a novel method for monitoring in real time the magnetic axis misalignment in solenoids has been 
presented. Relying on few measurements of the magnetic flux density, this method is especially intended for 
applications where the magnet aperture is not accessible. The magnetic axis is determined calculating the solenoid 
center and slope parameters. To this aim, a field model of the solenoid must also be employed to extract useful 
data for the calculations.

Figure 8.  Geometry of the ELI-NP multi-coil magnet. The coil supplied for the single solenoid model 
simulation is highlighted (gray) together with the spatial region of interest for the FEM (light gray).
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The mathematical model of the method was derived for the case of radial or axial placement of the Hall trans-
ducers, and for the case of four or three transducers per solenoid side.

A case study, based on the ELI-NP type B multi-coil solenoid, was considered. In particular, an analytical and 
a FE model of a single coil of the ELI-NP type B solenoid were employed to assess the uncertainty of the method 
and to obtain the optimal placement of the Hall transducers. Moreover, simulations were carried out with both 
the models, to verify the capability of the method of estimating an imposed misalignment. Further work will be 
directed toward an experimental evaluation of the method on a actual solenoid, as well as to its extension to the 
case of a multi–coil solenoid.

A Three Transducers Per Solenoid Side
Adopting only three Hall transducers per solenoid side, as shown in Fig. 10, it is still possible to obtain a system 
of equation to calculate O′, v1, and v2. The position of the transducers are:
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= − − = −

H R d H R d
H R d H R d
H R d H R d

(0, , /2) (0, , /2)
( , 0, /2) ( , 0, /2)
( , 0, /2) ( , 0, /2)

11 0 21 0

12 0 22 0

14 0 24 0

In this case, the couples are (H14, H12), (H24, H22), (H14, H11), and (H24, H21). For radial transducers, the equa-
tions of interest are:
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These equations can be better re-arranged neglecting the quadratic terms of v1 and v2, and defining:
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This also means that the first two equations have to be solved before in order to obtain xO′ and v1, which are 
needed to calculate K1 and K2. Thanks to that, (29) hold:

Figure 9.  Uncertainty of the “x” coordinate of ′O 2 for the case of radially placed Hall transducers, calculated 
with the analytical model (a) and with the FEM model (b).
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Eq. (29) allow to obtain more explicit expressions for xO′, yO′, v1, and v2:
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Analogous equations hold for axial transducers:
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obtained defining:

Figure 10.  Monitoring the magnetic axis misalignments with three Hall transducers per solenoid side.
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The expressions of interest in this case are:
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Regarding the uncertainties, while for xO′ and v1 the expressions are the same of the four transducers case, for yO′ and 
v2 the expressions are different. Applying the LPU to (30), which are valid for radially placed transducers, eq. (34) hold:
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In these expressions, −uK K2 1
2  and +uK K2 1

2  have to be computed by applying the LPU to the expression of K2 − K1 
and K2 + K1, which can be obtained through (28). The following equations hold:
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In (35), the contribution from u∂ in the first equation is negligible with respect to the other terms noticing that 
the coefficient of this term is small, and remembering that u∂ ≈ 10−2 T/m. Recalling eq. (25), in conclusion it is 
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In conclusion, owing to the lack of symmetry in the transducer placement, the uncertainties of yO′ and v2 are 
slightly higher than those of xO′ and v1. This difference can be seen referring to the uncertainty of ′yO2

, which is 
shown in Fig. 11. Instead, the uncertainty of ′xO2

 is still the one of Fig. 9.
The figure highlights that the uncertainty of ′yO2

 is higher than the one of ′xO2
, but the optimal placement is 

almost the same as the previous case, namely R0 equal about the 90% of the aperture and d equal about the 90% of 
the solenoid length.
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