
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PAIN: A Passive Web Performance Indicator for ISPs / Trevisan, Martino; Drago, Idilio; Mellia, Marco. - In: COMPUTER
NETWORKS. - ISSN 1389-1286. - STAMPA. - 149:(2019), pp. 115-126. [10.1016/j.comnet.2018.11.024]

Original

PAIN: A Passive Web Performance Indicator for ISPs

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.comnet.2018.11.024

Terms of use:

Publisher copyright

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.comnet.2018.11.024

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2719309 since: 2019-05-06T15:55:16Z

Elsevier

PAIN: A Passive Web Performance Indicator for ISPs

Martino Trevisan, Idilio Drago, Marco Mellia
Politecnico di Torino

e-mail: {first.last}@polito.it

Abstract

Understanding the quality of web browsing enjoyed by users is key to optimize services and keep users’ loyalty. This
is crucial for both Content Providers and Internet Service Providers (ISPs). Quality is intrinsically subjective, and the
complexity of today’s websites challenges its measurement. Objective metrics like OnLoad time and SpeedIndex are
notable attempts to quantify web performance. However, these metrics can only be computed by instrumenting the
browser and, thus, are not available to ISPs.

PAIN (PAssive INdicator) is an automatic system to monitor the performance of websites from passive measurements.
It is open source and available for download. It leverages only flow-level and DNS measurements which are still possible
in the network despite the deployment of HTTPS. With unsupervised learning, PAIN automatically creates a model from
the timeline of requests issued by browsers to render web pages, and uses it to measure website performance in real-time.

We compare PAIN to objective metrics based on in-browser instrumentation and find strong correlations between the
approaches. PAIN correctly highlights worsening network conditions and provides visibility into websites performance.
We let PAIN run on an operational ISP network, and find that it is able to pinpoint performance variations across time
and groups of users.

Keywords: Passive Measurements; Web QoE; Machine Learning

1. Introduction

Objective metrics to indicate the Quality of Experi-
ence (QoE) are key to understand how users enjoy the
web. Such metrics are of prime importance to all actors
involved in the service delivery. From Content Providers,
which need to monitor users’ satisfaction to maintain or
increase their user base, to Internet Service Providers
(ISPs), which need to be aware of performance offered
by the network and factors affecting web browsing experi-
ence [26]. The idea that unsatisfied users are more prone to
switch providers is widely disseminated. More than that,
there are many anecdotal evidences that a small deterio-
ration of quality levels could result in losses of revenues to
providers.1

Given the importance of QoE, Content Providers have
developed a number of objective metrics to estimate users’
QoE. On the contrary, there are hardly any objective met-
rics to estimate users’ QoE at ISPs [7, 5, 26], even if ISPs
are equally blamed for poor users’ experience. Bad perfor-
mance in the network and, in particular, in the last-mile is
historically the first suspect when users’ quality degrades.
This has motivated major Content Providers to publicize
rankings of ISP performance.2 It is no exaggeration to

1https://www.fastcompany.com/1825005/how-one-second-could-
cost-amazon-16-billion-sales

2For an example, see https://ispspeedindex.netflix.com/

say that ISPs are evaluated based on the experience of
end-users while interacting with third-party services, with
video and web browsing being the most important. In ad-
dition, ISPs need to measure the impact of possible net-
work configuration changes on performance – e.g., to de-
cide whether the deployment of web caches or new con-
tent delivery nodes is advantageous, or to tune configura-
tion parameters of their networks.

Users’ QoE is intrinsically subjective, thus hard to be
assessed. Ideally, QoE should be estimated by means of
metrics such as the Mean Opinion Score (MOS), which
is quantified by asking users directly about their opinions
on the service. Previous works [5, 7, 11] have proposed
objective metrics that have been shown to be correlated
with users’ MOS, even if a model to predict MOS is still
hard to get [8]. These metrics however either are computed
at the server-side (i.e., available to Content Providers only)
or require ground truth from in-browser instrumentation
(i.e., not scalable for the monitoring of a large number of
sites at ISPs). Passive solutions that provide visibility into
web performance are rare, and generally complicated by
the need to analyze payload to reconstruct web pages [26].

We introduce PAIN (PAssive INdicator), a completely
unsupervised system to monitor website performance us-
ing passive traffic logs. The adoption of encryption (e.g.,
HTTPS) makes solutions that reconstruct web sessions
from payload [7, 5, 26] no longer effective. PAIN instead
relies only on L4-level statistics (e.g., Netflow), annotated

Preprint submitted to Elsevier November 30, 2018

with the original server domain3 information [6] to com-
pute a synthetic indicator of the website performance.

We validate PAIN in a testbed, in which we browse
websites while collecting also classic client-side objective
metrics. We show that PAIN is able to spot changes in
network conditions, reporting quality degradation when
the site performance effectively degrades. PAIN metrics
are strongly correlated with objective metrics obtained by
means of client instrumentation, which are in turn known
to be correlated to users’ MOS [12, 15]. Finally, PAIN out-
performs alternatives, either by avoiding expensive train-
ing or by working with encrypted traffic.

We demonstrate the practical application of PAIN in a
case study. We deploy PAIN in an ISP network for one full
year. First, we show how PAIN can help the ISP under-
stand its users’ experience, e.g., highlighting web brows-
ing performance of users connected with different Internet
access capacity. Then, we show how PAIN lets the ISP
quantify variations in web browsing performance, e.g., pin-
pointing sudden performance variations of websites.

PAIN is open-source, and it is released as a module of
the NetLytics Big Data platform [29]. It can be fed using
Tstat [32], Squid [2] and Bro [25], to extract performance
metrics directly from raw log files.

This paper extends our preliminary work [31]. In con-
trast to the workshop version, we have performed new
experiments to better validate parameter choices, added
new results comparing PAIN against supervised alterna-
tives, and deployed PAIN in a large operational network
in a case study. Finally, the presentation of the algorithms
have been extended.

In the following, Section 2 details the problem and en-
visioned deployment scenario, while Section 3 summarizes
related work. Section 4 describes PAIN design and algo-
rithms. Section 5 introduces the employed datasets. Sec-
tion 6 validates PAIN, while Section 7 describes our ex-
perience of running PAIN on an operational network. Fi-
nally, Section 8 concludes the paper.

2. The complexity of QoE estimation

2.1. Objective quality metrics

Given the intrinsic subjectiveness of QoE, measuring
it is hardly possible without involving the users directly.
Therefore, large-scale measurement campaigns are usually
infeasible. Not a surprise, several approaches exist to es-
timate QoE with objective metrics calculated without hu-
man intervention.

In this paper we focus on users’ experience while brows-
ing the web. Two of the most popular objective metrics
to estimate users’ QoE in this scenario are:

(i) OnLoad time: The time browsers fire the onLoad event
– i.e., when all elements of the page, including images, style
sheets and scripts have been downloaded and processed;

3We use the term domain informally throughout the paper, mean-
ing Fully Qualified Domain Name (FQDN).

(ii) SpeedIndex: Proposed by Google,4 it represents the
delay to render the visible portions of a page. It is com-
puted by capturing the video of the page loading in the
browser and tracking its visual progress.

Both metrics are considered a proxy to indicate users’
QoE, with some authors [7] arguing that the SpeedIndex,
along with other metrics not covered in this work, is more
representative of users’ QoE than the OnLoad time.

These metrics are computed by the web browser at
client-side. Collecting them requires the access of users’
devices. Content providers and websites usually instru-
ment services to collect such metrics from web browsers
and upload results to servers as pages are loaded.

2.2. Challenges for estimating QoE from network traffic

Objective metrics based on Deep Packet Inspection
(DPI) [26] no longer work, due to the deployment of en-
crypted protocols. Methods to compute objective quality
metrics must therefore be compatible with the data visi-
ble in the network.

ISPs can still rely on flow-level monitoring [17], which
provides coarse-grained data about the activity collected
at the network and transport layers. Moreover, ISPs usu-
ally control key Internet services, e.g., the DNS. PAIN ex-
ploits flow-level measurements and DNS information to
build models for the traffic of given websites. In the re-
mainder of the paper we assume that both flow level and
DNS measurements are available at the ISP.

Obtaining objective quality metrics from such coarse-
grained data is not trivial. The complexity of websites has
dramatically increased over the years [19], and loading a
web page requires reaching dozens of servers and fetching
hundreds of objects.

Once users reach a website, browsers open multiple
flows to different servers to fetch HTML objects, scripts
and media content. We call the domain associated with
the first contacted server the Core Domain and the re-
maining contacted domains Support Domains.

Figure 1 provides a simplified example: arrows repre-
sent the time in which flows to support domains start while
the user is visiting the core domain www.nytimes.com. In
this example, loading the web page requires the browser
to open 16 flows to 12 different servers.

Figure 2 provides a more realistic example of the flow-
level measurements obtained during visits to a website. It
depicts all flows to support domains opened during a visit
to www.bbc.co.uk. This visit has taken around 6 seconds
to load all objects. The browser has contacted 94 (unique)
support domains. Black lines in the picture represent no-
table browser events. The browser starts rendering the
page at 0.7s and finishes parsing the HTML document
at time 1.6s, when the browser has downloaded mainly
HTML objects and JavaScripts. Then, it starts to down-
load other page objects (e.g., images and style sheets), fir-
ing the onLoad event only at 5.4s. After this, the browser

4https://developers.google.com/speed/docs/insights/about

2

t0
Time

(20s)

Support Domains

Figure 1: Sample of flows in a visit to www.nytimes.com. We use
the time to contact support domains to monitor performance.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

Su
pp

or
t

D
om

ai
ns

Time [s]

Rendering
Starts

HTML
Parsed

OnLoad
Event

Figure 2: Support domain flows for a visit to www.bbc.co.uk. The
browser contacted 94 support domains (y-axis) during 6 seconds (x-
axis). Notable browser events are reported as vertical lines.

continues to download elements from other servers (and
opening new flows). In this example, the page triggers 27
additional connections to domains hosting analytics, ad-
vertisements, etc.

The goal of PAIN is to calculate a performance indi-
cator from this kind of traces, which are influenced by
browser configurations, website designs, network configu-
ration, etc. PAIN profits from support domains to esti-
mate the performance of the website from flow timings. It
is an unsupervised system that automatically learns typi-
cally contacted support domains after a core domain visit,
and creates models describing the typical order in which
support flows appear after the core domain visit. PAIN
then considers the delay to observe support flows as per-
formance indicators.

3. Related Work

Previous work focuses on estimating QoE-related met-
rics from passive network measurements. Authors of [11]
show that indirect metrics can serve as indicators for the
users’ MOS. According to [13], packet losses are strongly
correlated with users’ session abandonment, thus suggest-
ing that even some low-level network parameters may serve
as indicators for users’ QoE.

Considering web browsing QoE, past works have shown
the difficulties for its estimation, proposing multiple objec-
tive metrics to this end. Egger et al. [14] show that user-
perceived page load times may deviate from common tech-
nical metrics used to estimate page load times. Wang et

al. [34] claim that in-browser computation and blocking
Javascripts are significant factors affecting perceived QoE.
Metrics such as the onLoad time or SpeedIndex have
been shown to be correlated with QoE metrics, such as
users’ MOS [12, 15]. Authors of [7] propose ByteIndex

and ObjectIndex – metrics based on the bytes delivered
to the client to render a page. Authors of [9] propose
the Above-The-Fold metric to overcome the limitations of
the naive onLoad approach. This latter metric is used in
combination with classical metrics to predict users’ MOS
in [12]. In the same direction as these previous works,
PAIN provides a new metric to monitor the performance
of websites that we will show to correlate well with estab-
lished objective metrics, but without requiring any client-
side instrumentation.

Past works targeting the ISP scenario require either
DPI or ground truth from client browsers to train machine
learning classifiers. Ibarrola et al. [18] build a network em-
ulation system that estimates QoE-related metrics when
varying network conditions, based on data collected from
volunteers. Shaikh et al. [27] study the correlation between
physical layer metrics and QoE. The authors however use
a page formed by a single object on an in-lab testbed.
A similar approach is used by Aggarwal et al. [4], where
carefully instrumented mobile devices provide the ground
truth to train models for predicting QoE parameters.

Other works rely on DPI of the HTTP transactions
to gather knowledge about QoE-related metrics [16]. Bal-
achandran et al. [5] create models to predict web QoE from
passive measurements on cellular networks examining the
sequence of HTTP requests. Similarly, some Sandvine’s
products [26] build dependency graph of web pages ex-
tracted from HTTP traffic traces to assess PLT, but they
are limited to non-encrypted traffic. All these works are
however outdated, since encryption is already the norm in
the Internet [33].

Differently from past works, we follow an unsuper-
vised approach, avoiding the need of a resource-consuming
testbed to gather client-side metrics. Moreover, PAIN au-
tomatically builds models from flow-level traces, with no
need to access traffic payloads, thus seamlessly operating
with encrypted data carried over HTTPS.

4. The PAIN system

PAIN is an unsupervised system composed by two
blocks (see Figure 3). The Model Learning module ana-
lyzes flow records exported by monitoring devices and cre-
ates a model for each core domain of interest, i.e., it dis-
covers and clusters support domains associated to specific
websites. It must be continuously updated to cope with
changes in website structures. The PAIN Index Compu-
tation module extracts the actual performance index us-
ing the previously built models. All algorithms scale lin-
early with respect to the input size (i.e., number of flow
records), and support scalable processing using big data
approaches offered by Apache Spark.

3

PAIN Index Computation (Sec 4.3)
Model Learning (Sec 4.2)

Flow

Records

Core Domain: abc.com

 Group 1:

- opq.rs.com

- tuv.vz.net

 Group 2:

- def.gh.org

- lmn.op.com

 Time Core Domain P1 P2 …

 14256 abc.com 1.45 2.89 ..

 14357 zxy.net 1.92 3.25 ..

 12486 ijk.com 0.65 1.21 ..

 . . .

Models

New

Traffic

PAIN Index

Core Domains

Discard old

models

SD

learning

SD

scoring

SD

grouping

Figure 3: Architecture of PAIN. It learns and clusters support domains using flow records and a list of target core domains. The resulting
groups are used to estimate performance.

4.1. Input data

PAIN expects two inputs: (i) Flow records from traffic,
and (ii) the list of Core Domains of interest.

Flow records are annotated with time and domain in-
formation: Given a flow f , identified by client and server
IP addresses, client and server port numbers and the
transport-layer protocol, tsf , tef are the start and end
timestamps, i.e., the time of the first and last packet of
the flow. Each flow record must be enriched with informa-
tion about the server domain d requested by the client.

Flow meters typically export information from the net-
work and transport layers, missing the association between
server IP addresses and domain names. To get the server
domain, different methods can be used. For example, DNS
logs can be employed to extract queries/responses and an-
notate records in a post-processing phase [6]. Equally,
some flow meters export such information on-the-fly di-
rectly from the measurement point for popular proto-
cols [17]. For instance, Deep Packet Inspection allows one
to extract the Server Name Identification (SNI) from en-
crypted TLS flows, or the server Host: header from plain-
text HTTP flows.

The list of Core Domains is a user-defined list contain-
ing the set of websites the ISP is interested in monitoring.
Since PAIN operates with L4-level measurements and do-
mains names, the analyst must specify only the domain
names to be monitored, and not full URLs. This allows
PAIN to deal with encrypted traffic. Clearly, PAIN cannot
monitor the performance of a single visit to specific web
pages. PAIN gains importance when monitoring popular
websites accessed by large numbers of users in the network.

4.2. Model learning

The Learning Module observes the timings of flows as
seen in the network traffic after a Core Domain. The first
task is to learn which support domains are triggered by
the core domain visit. PAIN learns that by focusing on the
flows commonly occurring after core domains appearance
in the network.

Given that downloaded HTTP objects while rendering
pages vary from visit to visit (e.g., because of caching, per-
sistent connections, modification in the content, personal-
ized content etc.), PAIN analyzes the order in which groups
of support domains typically appear. The rationale is that
some support domains may be missing in a visit, while
others may not be relevant for indicating the website per-
formance (see Figure 2). PAIN uses groups of support do-
mains to build models that are robust to such variations.

The combination of these building blocks lets PAIN
model the typical behavior of the websites hosted in a core
domain.

4.2.1. Support domains learning

PAIN learns support domains based on the methodol-
ogy we introduced in [30]. Let C be the set of core do-
mains of interest provided as input. PAIN training con-
sists of learning the set of support domains Sc, for each
core domain c ∈ C. One possible solution could be using
active crawling, e.g., artificially visiting the pages hosted
at c and collecting domains being contacted. Unfortu-
nately, this does not work in practice because (i) the same
service/website changes when accessed from different loca-
tion, time, browser, device etc., (ii) c may require authen-
tication, or the usage of a specific application, which com-
plicates the crawling, and (iii) the approach poses scala-
bility issues. PAIN leverages instead data collected from
the network traffic itself to build and update the Sc.

The intuition is simple: When a client is observed open-
ing a flow to the core domain c, the domains of flows that
follow shall be considered within Sc. However, not all flows
are truly linked to c, because the user may access multiple
services at the same time (e.g., multiple browser tabs), or
because the user terminal may contact unrelated services
automatically (e.g., background software updates). In ad-
dition, a single support domain may be shared by multiple
core domains, while a core domain itself may act as sup-
port domain for another services.5

5Recall Figure 1: www.google.com is support domain for
www.nytimes.com. However, it is a core domain for Google’s services.

4

Figure 4 reports a timeline of flows for a given client,
and depicts the intuition behind PAIN learning. PAIN
considers a flow f to be a learning sample if its domain
c ∈ C. In Figure 4, tall arrows are identified as valid
learning samples.

ΔT ΔT

Time

ΔT

Figure 4: Support domain learning: a flow to a core domain triggers
a new observation window, used to learn the support domain set Sc.

When a flow to a core domain is observed, PAIN opens
an Observation Window (OW) of duration ∆T . Domains
of all flows observed in ∆T become part of S′c, the candi-
dates for forming Sc. In Figure 4, they are represented by
short arrows sharing colors with core domain flows. The
longer ∆T , the more information is collected, with chances
of polluting S′c with false support domains. Eventual core
domains observed during ∆T will be considered candidate
support domains too. PAIN keeps open a single observa-
tion window per client during learning.

PAIN avoids polluting Sc by pruning candidate sup-
port domains in S′c based on the frequency Fd,c the do-
main d appears in observation windows of c, leveraging a
large number of OWs to get rid of noise. Algorithm 1 de-
scribes the procedure for updating Fd,c and maintaining
the observation window as flows of a client are processed
during learning.

Algorithm 1 Process flows of a client updating Fd,c and
maintaining the observation window.

Require:
f . The current flow
C = {c1, ...} . The core domains
S′ = {S′c1 , ...} . Candidate support domains for domains in C

F = {Fd,c1
...} . Frequency of candidate support domains

1: t = GetTime() . Get current flow time
2: d← parse(f) . Get the domain of f
3: (tc, c)← ow . Retrieve current ow if any
4: if ow 6= ∅ ∧ t− tc ≥ ∆T then
5: ow ← ∅ . Remove the ow if expired

6: if ow 6= ∅ then . If an ow is open
7: S′c ← S′c ∪ {d} . Insert d in S′c
8: Fd,c+ = 1 . Update Fd,c

9: else
10: if d ∈ C then
11: ow ← (t, d) . Open a new ow if d is a core domain

Pruning of S′c is then performed: Actual support do-
mains should consistently appear in multiple observation
windows, whereas domains related to background traffic,
being present by chance, should be less frequent than sup-
port domains. PAIN gets the final set of support domains
Sc based on Fd,c and a threshold MinFreq as follows:

Sc = {d | d ∈ S′
c ∧ Fd,c > MinFreq}. (1)

MinFreq is calculated by PAIN directly from the data,
observing that Fd,c should approach 1 for actual support
domains and 0 for domains present in S′c by chance. PAIN
searches for the MinFreq in the interval [0− 1] that min-
imizes the following error function:

Err(MinFreq) =

{∑
d∈S′c

|Fd,c − 1| if Fd,c ≥MinFreq∑
d∈S′c

|Fd,c − 0| if Fd,c < MinFreq
(2)

In our experiments MinFreq results in the [0.4, 0.5] range.
Traffic from all clients contributes to Sc, so that infor-

mation is accumulated over time and in different condi-
tions, i.e., identities, browsers, devices, configurations etc.

4.2.2. Support domain scores

Intuitively, the timeline of support flows reflects the
speed at which a website is loaded (recall Figure 2). Page
elements hosted by third-party sites (e.g., images and ad-
vertisements) are requested after other components of the
page (e.g., scripts) are processed. PAIN leverages this be-
havior to calculate a score for d ∈ Sc. The score is higher
for support domains appearing further away in time from
the core domain c (e.g., right-most points in Figure 2).

However, support domains varies from visit to visit or
even among pages hosted in the website. Sc is constructed
from many observation windows and not all support do-
mains appear in every observation window, e.g., due to
caching and persistent connections. Equally, nothing pre-
vents browsers or mobile apps from opening flows to third-
parties in a different order while rendering pages.

To determine the score for each di ∈ Sc, PAIN com-
putes a dependency matrix Mc of order |Sc| for each core
domain c. Each cellMci,j represents the number of obser-
vations windows OWc in which the support domain di has
appeared after the support domain dj in time. Note that
Mci,i = 0. Similarly,Mci,j = |OWc| only if di appears al-
ways after dj , and both di and dj are in all observation win-
dows for the core domain c. The score of di is calculated as:

score(c, di) =
∑
j

Mci,j (3)

Note that score(c, di) is high if di appears often later in
time than other domains in the observations windows of c.
Similarly, it is lower if di usually appear close in time to
the core domain. Algorithm 2 reports a pseudocode for the
score calculation function. It processes one core domain at
a time. PAIN computes the dependency matrix M (lines
1-6), and, then, uses it to provide the scores (lines 7-8).6

4.2.3. Support domain grouping

After scoring, PAIN identifies groups of support do-
mains. By clustering the support domains in some few

6In PAIN implementation, Algorithms 1 and 2 are both executed
on-the-fly as new traffic comes into the system.

5

Algorithm 2 Compute the scores of support domains for
the core domain c.
Require:

c . Core domain to be processed
Sc . Support domains of c
OWc . Observation windows for c

1: M ∈ R|Sc|×|Sc| . Define the dependency matrix
2: for ow in OWc do . For each observation window
3: for di in ow do . For each support domain in ow
4: for dj before di in ow do . Supports before di in time
5: if di ∈ Sc ∧ dj ∈ Sc then
6: Mi,j+ = 1 . Increment Mi,j if supports are in Sc

7: for di in Sc do . Compute score for each support domain
8: score(c, di) =

∑
jMi,j . Sum the row of M

groups, we filter out the noise caused by missing sup-
port domains, besides creating groups of domains that are
strongly correlated to web performance.

More precisely, we sort di ∈ Sc in increasing order of
score(c, di) and split the domains in n groups in Gc, where

groups have at least |Gck | =
⌊
|Sc|
n

⌋
support domains. Gc1

will contain those support domains that often appear the
closest to the core domain flow, wheres Gcn will have the
support domains that often appear the furthest to the core
domain. n is a parameter to be investigated.

The set G – i.e., groups of support domains for core
domains C – is the output of the Model Learning module.

4.3. PAIN index computation

The index computation module analyzes live traffic
to provide a performance index. Like in the training
phase, PAIN analyzes the traffic flows on a per-client ba-
sis, chronologically sorted by time. When it encounters a
flow to a core domain c, it opens an observation window
∆T long. PAIN considers all support domain flows gener-
ated by the client within the OW, and accounts them to
the corresponding group.

We measure the time at which flows in each group are
observed. A visit to a group is considered complete when
the last flow in the group is observed. For each group Gci

with i ∈ 1, . . . , n, PAIN calculates the index Pi, equals to
the time difference between the starting of the last flow
in the group i and the starting time of the core domains
c. Note that groups can be absent if none of its support
domains is in OW . This can be typically caused by two
phenomena: (i) the browser cache contains all the objects
that are hosted on a particular domain and (ii) the browser
already opened a persistent connection toward the target
domains. In this case, we do not consider the sample.

We tested different criteria in place of last per group
(e.g., average and median) and all lead to worse results.
The intuition is that the website performance is mainly
driven by the ability of the browser to obtain objects to
render the pages, which correlates well with the time late
flows are observed in the network. Using the last flow
per group also highlights possible degradation of specific
servers involved in serving the content.

The tuple P = {P1, . . . , Pn} represents the perfor-
mance index for a given visit to the core domain c. By con-
sidering all visits from all clients to c, PAIN builds statis-
tics on the performance faced by clients. Due to the in-
trinsic noisiness of flow-level measurements, PAIN assumes
relevance when multiple measures are aggregated to con-
trast different users, time periods or locations.

4.4. Design decisions, caveats and limitations

The decision of making PAIN a completely unsuper-
vised system is motivated by our goal to monitor a vast
range of websites. The system is expected to receive only
the list of core domains of interest. It learns models di-
rectly from traffic, without requiring human intervention
or any information collected at the client-side.

Due to this design, PAIN does not directly provide
MOS figures, as reporting the MOS would require involv-
ing users directly. However, Section 6 will show that
PAIN indexes have strong positive correlations with ob-
jective metrics (e.g., SpeedIndex). These metrics, in turn,
present strong positive correlations to users’ MOS [12].
Even if these results do not prove PAIN is strongly corre-
lated to the MOS, they are a strong evidence that PAIN
is also positively correlated with the MOS [22].7

Other designs would be possible too, such as by us-
ing supervised algorithms. The system could train mod-
els from network traffic assuming client-side metrics are
present. Such a supervised design would result in a sys-
tem that requires ground truth data captured at client-side
for each core domain of interest. The supervised approach
would allow one to predict the actual values for objective
metrics, e.g., estimating OnLoad and SpeedIndex from the
traffic. We however argue that the absolute values of such
metrics are far less useful than contrasting and monitor-
ing the metrics across different users, conditions and time
frames. PAIN is fully able to pinpoint variations in ob-
jective metrics (see Section 6.4) despite not being able to
estimate their absolute values.

Moreover, the deployment of supervised alternatives
requires a resource-consuming test-bed, in which training
should be performed periodically for each monitored web-
site. We have decided to follow the unsupervised approach,
since it broaden the PAIN deployability and dramatically
enhances training scalability. In Section 6.6 we consider a
simple supervised approach and compare it to PAIN. We
show that it brings limited benefits.

5. Datasets

In this section we describe our validation datasets. We
employ both synthetic datasets generated using a testbed,
and real world traces collected in an operational network.
They are summarized in Table 1.

7Given ρX,Y and ρY,Z , it possible to demonstrate that ρX,Z > 0
if ρ2X,Y + ρ2Y,Z > 1 . This is condition is largely satisfied in our case.

6

Table 1: Description of datasets.

Dataset Size Collected on Collection environment

SynthTypical 11 GB Testbed 10 websites, 4 (emulated) devices, 8 emulated typical access links

SynthDegraded 11.4 GB Testbed 2 websites, 4 (emulated) devices, manually degraded access link conditions

RealWorld 495 GB ISP network > 100 K websites, 10,000 ADSL installations, 1 year

5.1. Synthetic traces

5.1.1. Testbed

Synthetic traces produced in a testbed allow us to com-
pare PAIN to objective metrics directly collected in the
browser. We instrument a PC with WebPageTest [3], a
tool for web performance assessment. WebPageTest emu-
lates networks based on DummyNet [10], a network emula-
tion tool. Given a list of URLs, it automatically navigates
through each page while saving detailed statistics. Many
options are available, including the choice of client browser
(Chrome and Firefox), device (PCs, tablets and smart-
phones) and network emulation (e.g., 3G, DSL and Ca-
ble). It thus provides the means to emulate users’ brows-
ing considering realistic clients and network conditions.

WebPageTest exports the HTTP Archive (HAR) [1]
for each page visit. It contains information about the visit
as well as statistics for each object: from HTTP-headers,
to network-level statistics that describe the TCP connec-
tions opened to download objects, including the time in
which the TCP connection starts, and the domain associ-
ated with it.

Additionally, WebPageTest computes many objective
quality metrics. Here, we consider the OnLoad and the
SpeedIndex (see Section 2).

5.1.2. Synthetic datasets

We build two datasets to validate PAIN, namely
SynthTypical and SynthDegraded, with respectively
typical and degraded network conditions.

The SynthTypical dataset is built by letting
WebPageTest visit 10 popular domains in Italy (listed in
Table 4). For each domain, WebPageTest visits the home-
page and 9 internal pages for a total of 100 pages.

Since PAIN must work seamlessly regardless of client
configurations, we consider 4 different browser and device
combinations, which we summarize in Table 2. We con-
sider both Firefox and Chrome running on PCs and we
leverage Chrome’s features to emulate its use on a smart-
phone and on a tablet.8

Table 2: Browsers and emulated devices in the testbed.

Browser Device Operating System
Mozilla Firefox PC Windows 10
Google Chrome PC Windows 10
Google Chrome Nexus 7 Android
Google Chrome iPad Mini iOS

8We skip other browsers such as Edge or Safari, as they are not
available in the Linux version of WebPageTest.

Table 3: Settings in the SynthTypical dataset. Native corresponds
to a scenario with no traffic shaping.

Name Down Link Up Link RTT
Native 1 Gbit/s 1 Gbit/s native
FIOS 20 Mbit/s 5 Mbit/s 4 ms
Cable 5 Mbit/s 1 Mbit/s 28 ms
DSL 1.5 Mbit/s 1 Mbit/s 50 ms
LTE 12 Mbit/s 12 Mbit/s 70 ms

3G Fast 1.6 Mbit/s 768 Kbit/s 150 ms
3G 1.6 Mbit/s 768 Kbit/s 200 ms

3G Slow 780 Kbit/s 330 Kbit/s 200 ms

We consider 8 access network technologies summarized
in Table 3. These are emulated by WebPageTest by im-
posing traffic shaping policies that mimic actual param-
eters of the technologies. The Native case has no shap-
ing – i.e., the 1 Gbps Ethernet network connecting the
testbed is used without changes. For other cases, Dum-
myNet enforces typical bandwidth and Round Trip Time
(RTT) faced by users of a given technology.

We visit each page twice for each setup: (i) with
empty browser cache; and (ii) few seconds later for profit-
ing from caching. The traffic is expected to vary strongly,
since many objects are cached in the second case, com-
plicating the identification of support domains. In total,
WebPageTest recorded 6 400 visits while building this first
dataset (all visits have been completed in about 48 h).

The second dataset, SynthDegraded, represents ar-
tificial conditions, in which we enforce link delay or band-
width limits. We simulate scenarios in which website
performance decreases due to worsening network condi-
tions. We simulate 10 cases: (i) adding from 100 ms to
500 ms extra per-packet delay and (ii) imposing a limit
from 2.5 Mbit/s to 312.5 kbit/s on uplink and down-
link access bandwidth. Again, we visit each page twice
(cold and warm cache) and with 4 browsers. For the sake
of brevity, we performed these experiments for 2 web-
sites only, namely www.repubblica.it and www.subito.it.
WebPageTest has performed 8 000 visits for building this
second dataset (completed in about 60 h).

5.2. ISP flow traces

This dataset includes flow summaries exported by
Tstat [32] in a real deployment. Tstat is a passive mon-
itor able to collect rich flow summaries. It exposes more
than 100 metrics, including the typical ones exported by
popular flow meters, such as server IP addresses contacted
by clients, timestamps of the first packet in each flow and
bytes counters per flow. Tstat associates flow records to

7

Table 4: Support domains for websites in SynthTypical dataset,
and frequency they appear after onLoad.

Core domain
Support domains After

OnLoadMin Median Max

www.corriere.it 30 57 137 2.2 %
www.ebay.it 2 50 223 40.5 %

www.gazzetta.it 25 58 138 6.5 %
www.ilmeteo.it 17 56 185 18.5 %

www.lastampa.it 14 34 81 8.7 %
www.meteo.it 27 52 91 6.6 %

www.mymovies.it 24 45 147 11.0 %
www.repubblica.it 27 53 216 23.0 %

www.subito.it 26 52 119 7.0 %
www.wordreference.com 2 14 68 6.0 %

domain names requested by clients using the SNI informa-
tion from TLS handshakes and by exploiting DNS traffic
also observed in the network [6].

We have instrumented a Point of Presence (PoP) of a
European ISP, where ≈ 10, 000 ADSL customers are ag-
gregated. The ISP provides us the access link speed of each
ADSL customer. Moreover, each customer is provided a
fixed IP address and, thus, by inspecting the (anonymized)
client IP addresses in our dataset, PAIN isolates flows per
ADSL installation and use them as the per-client traces.
Each trace includes information about traffic of all users’
devices connected at home.

We here consider data from the whole year 2017. Con-
sidering only HTTP and HTTPS flows, we obtain 15 bil-
lion flows related to around 100, 000 websites. This trace
represents a realistic scenario of a possible PAIN deploy-
ment. No ground truth about associations of support and
core domains is available in the dataset.

6. Validation

6.1. Support domains at a glance

We first provide high-level statistics about support do-
mains (see Table 4). We aim at complementing Fig-
ure 2, illustrating the challenges to extract knowledge
from support domains and their complex relations with
the page loading process. Table 4 lists the websites in
SynthTypical dataset. The 3rd column reports the me-
dian number of support domains across all visits: They
vary from less than 20 to more than 50. The number
and order at which support domain flows are opened vary
across visits (see 2nd and 4th columns of Table 4). More
than that, support domains are often contacted after the
OnLoad event has fired, e.g., due to browser pre-fetching or
the presence of analytics scripts programmed to run after
the page is loaded. We quantify the percentage of these
cases in the 5th column of the table. Extreme is the case
of www.ebay.it : More than 40% of connections are issued
after the browser completed loading the page.

These results already hint for the importance of PAIN
grouping step. For example, if one would naively take the
delay of the last support flow as a performance indicator,
the obtained metric would likely have very low correlation

Table 5: Similarity of support domain across different sub-pages and
devices (SynthTypical dataset).

Core domain
Support domains similarity
Subpages Devices

www.corriere.it 0.69 0.78
www.ebay.it 0.16 0.68
www.gazzetta.it 0.67 0.81
www.ilmeteo.it 0.90 0.68
www.lastampa.it 0.61 0.79
www.meteo.it 0.87 0.66
www.mymovies.it 0.69 0.59
www.repubblica.it 0.56 0.74
www.subito.it 0.82 0.58
www.wordreference.com 0.89 0.41

with objective quality metrics observed at the client-side,
as such metrics represent events happening much earlier
in time than late flows.

6.2. Support domains across sub-pages and devices

PAIN aims at monitoring whole websites, represented
by a core domain. However, websites host many web
pages, which may rely on completely different support do-
mains. Moreover, it is unclear to what extent the set
of support domains remain similar when websites are ac-
cessed from different devices. We now quantify these ef-
fects to verify whether PAIN could be applied in such di-
verse scenarios.

We perform an analysis aiming at quantifying the vari-
ability of support domains in different scenarios. First, we
compare the list of support domains obtained when consid-
ering each sub-page of the websites in the SynthTypical
dataset. For each website, we compute the Jaccard index
similarity coefficient [21] for the sets of support domains
contacted for each pair of sub-pages. Table 5 reports the
median values obtained for each websites.

If the Jaccard index is equal to one, the sets of sup-
port domains are equal. We can see in the table that
median values are indeed high for the evaluated websites.
That is, sub-pages of these sites usually share most sup-
port domains, e.g., with www.ilmeteo.it reaching a 0.9 me-
dian similarity coefficient. Low values are observed for
www.ebay.it (0.16), where manual inspection reveals that
some sub-pages have a simpler structure, relying on a lower
number of support domains. PAIN would fail to identify
the groups of support domains when people visit these sim-
pler pages. It will thus ignore these samples when calcu-
lating the performance metric.

We repeat the operation for the 4 emulated devices
in the SynthTypical dataset (recall Table 2). Overall,
varying the device used for accessing the web page does not
affect the contacted support domains. The lowest value
is observed for www.wordreference.com, where the median
similarity coefficient is 0.41. As above, these results show
that the set of contacted support domains is rather stable
when varying devices, allowing PAIN to operate even if
different devices are connected to the monitored network.

8

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35 40 45 50 55 60

C
or

re
la

ti
on

∆T [s]

onLoad
speedIndex

Figure 5: Spearman Correlation of P3 with onLoad and SpeedIndex

when varying ∆T (SynthTypical dataset).

6.3. Tuning of parameters ∆T and n

We now tune the parameters ∆T and n. We rely on
the SynthTypical dataset. We vary each parameter while
comparing the PAIN index to the metrics exposed by our
testbed, i.e., onLoad and SpeedIndex. Indeed, we want
the PAIN index to be correlated with the objective met-
rics, since a high correlation with these metrics would sug-
gest that PAIN is also correlated to the users’ MOS. We
quantify correlation using the Spearman’s rank correlation
coefficient between PAIN index and objective metrics [28].
A Spearman coefficient higher than 0.5 is usually consid-
ered a strong correlation indication.

We first observe the impact of the observation window
choice (∆T) in Figure 5. Only the correlations between
objective metrics and the 3rd group of support flows (i.e.,
P3) are shown to improve visualization. Notice in the fig-
ure that PAIN achieves high correlation coefficients when
∆T increases. When ∆T value is larger than 30s, re-
sults do not improve further. In a nutshell, PAIN is not
very sensitive to ∆T . Provided that support domains are
grouped, and each group is used to extract Pi, PAIN index
remains mostly unaffected, even if some support domains
are not associated to the respective core domain because
∆T is expired. In the following, we set ∆T = 30s.

We next perform a similar analysis for n, the number of
groups. We report results for the SynthTypical dataset
for onLoad and SpeedIndex separately in Figure 6a and
Figure 6b, respectively. Each row j represents an experi-
ment with a different n ∈ [1, 6]. The column i reports the
correlation of Pi when using n = j. For example, the left-
most cell on the last row represents the correlation of P1

with onLoad when using n = 6.
PAIN is not very sensitive to n either, i.e., results al-

ways show high correlation values. Some other interesting
observations can be extracted from the figures too.

First, notice that for both onLoad and SpeedIndex the
highest correlation is usually not achieved with the latest
group for n > 1. This result confirms our intuition from
Figure 2, that flows opened after the page has finished
loading would decrease the correlation between late groups
of flows and the objective metrics. Remind that we always
take the arrival time of the last observed flow in each group
as performance metric. Using a small value of n provides

1 2 3 4 5 6

i

1

2

3

4

5

6

n

0.76

0.74 0.74

0.69 0.77 0.73

0.65 0.74 0.78 0.73

0.62 0.72 0.77 0.77 0.73

0.60 0.71 0.76 0.77 0.76 0.72

(a) OnLoad

1 2 3 4 5 6

i

1

2

3

4

5

6

n

0.71

0.70 0.69

0.66 0.69 0.68

0.62 0.70 0.67 0.68

0.59 0.67 0.69 0.67 0.68

0.58 0.66 0.69 0.67 0.67 0.67

0.5

0.6

0.7

0.8

0.9

1.0

C
o
r
r
e
la
t
io
n

(b) SpeedIndex

Figure 6: Correlation of PAIN index with onLoad and SpeedIndex

when varying the number of groups n (SynthTypical dataset).

poor information. Considering multiple groups, on the
other hand, makes PAIN more robust to outliers.

Second, comparing correlations with onLoad and
SpeedIndex for a single n, notice how the best correla-
tion is achieved with earlier groups (i.e., smaller i) for the
SpeedIndex, in particular for large n. This is due to the
fact that the SpeedIndex is computed based on the visual
progress of the page, which is usually achieved earlier than
the onLoad event. Different PAIN groups correlate better
with each metric.

Finally, n = 4 seems to be a good trade-off for both
metrics. P2 and P3 are the groups correlated the most
with objective quality metrics when n = 4, and in general,
Pi assumes more significance when i is close to n. We take
P3 with n = 4 for the remaining experiments. However,
Figure 6 shows that small variations of n and Pi do not
affect the results, and our experiments reinforce this claim.

6.4. Effects of network conditions

We check whether PAIN can reflect worsening on net-
work conditions using the SynthDegraded dataset. Fig-
ure 7 illustrates PAIN index values when varying delay and
bandwidth to reach the two websites in the dataset. Each
point in the figure depicts the median value for the PAIN
index over all tests with the given setup. Each point is the
result of 80 runs, i.e., 10 pages × 4 browsers/OS × 2 rep-
etitions, thus covering experiments for different browsers,
sub-pages, etc. Even if omitted for improve visualization,
results show low variability (computed as the interquartile
range), always lower than 15% from the median.

Consider Figure 7a, which refers to www.repubblica.it
and www.subito.it, when RTT ∈ [0, 500] ms. PAIN in-
dex increases alongside the delay, starting from around
0.5 s and up to almost 10 s when RTT is 500 ms for
www.repubblica.it. That is, Pi reflects the network condi-
tions and increases in case of degradation. Actual PAIN
index values are sometimes inverted from their original or-
der for extreme values of RTT (e.g., P3 larger than P4).
This happens because the order at which a browser opens
connections towards support domains is subject to varia-
tions. Similarly, in Figure 7a, P1 has a slightly lower value

9

 0
 2
 4
 6
 8

 10

0 100 200 300 400 500

P
A

IN
 in

de
x

[s
]

RTT [ms]

P1
P2

P3
P4

(a1) www.repubblica.it

 0

 2

 4

 6

 8

0 100 200 300 400 500

P
A

IN
 in

de
x

[s
]

RTT [ms]

P1
P2

P3
P4

(a2) www.subito.it

(a) Delay

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Native 2.5 1.25 0.62 0.31

P
A

IN
 in

de
x

[s
]

Bandwidth [MBit/s]

P1
P2

P3
P4

(b1) www.repubblica.it

 0

 2

 4

 6

 8

Native 2.5 1.25 0.62 0.31

P
A

IN
 in

de
x

[s
]

Bandwidth [MBit/s]

P1
P2

P3
P4

(b2) www.subito.it

(b) Bandwidth

Figure 7: Median value of PAIN index when varying delay and bandwidth (SynthDegraded dataset).

 0

 20

 40

 60

 80

Native
100 200 300 400 500

 0

 4

 8

 12

 16

T
im

e
[s

]

P
A

IN
 in

de
x

[s
]

RTT [ms]

onLoad
speedIndex

P3

(a) Delay

 0
 20
 40
 60
 80

 100

Native
5 2.5 1.25 0.625

0.3125

 0

 5

 10

 15

 20

T
im

e
[s

]

P
A

IN
 in

de
x

[s
]

Traffic Shaping Rate [Mbit/s]

onLoad
speedIndex

P3

(b) Bandwidth

 0

 10

 20

 30

 40

Native

FIOS
LTE

Cable
3GFast

DSL
3G 3GSlow

 0

 2

 4

 6

 8

T
im

e
[s

]

P
A

IN
 in

de
x

[s
]

Network Profile

onLoad
speedIndex

P3

(c) Profile

Figure 8: www.repubblica.it onLoad, SpeedIndex and P3 for various setups (SynthTypical and SynthDegraded datasets).

for 500 ms than for 400 ms. Indeed, this confirms that P1

and P2 are not as good as P3 and P4 as indicators of the
website conditions, reinforcing results of Figure 6.

Similar considerations hold for Figure 7b, which shows
the impact of download link capacity. When the avail-
able bandwidth is reduced, PAIN index increases. Observe
that a bandwidth of 1.25 Mbit/s already implicates per-
formance degradation for www.repubblica.it, while still no
penalty is suffered by www.subito.it.

In summary, results show that Pi reflects the network
conditions, allowing ISPs to track degradation on the net-
work that impacts website performance.

6.5. Comparison to objective metrics

We have seen in Figure 6 that PAIN index is correlated
to objective quality metrics. We now detail that analysis,
by directly comparing the values of P3 to the SpeedIndex

and onLoad. We set n = 4 and ∆T = 30s. Figure 8 reports
results obtained for a single website in different scenarios.
Similar figures are obtained for other cases. Again, the
figure reports median values over 80 runs. Figure 8a also
reports error bars that span over 25th and 75th percentiles.
We use this figure to illustrate the variability of our results,
which we recall to be always limited to less than 15% of the
median value. Similar results are obtained for the other
two figures, but they are not reported as the error bars
would overlap and compromise readability.

Each point in Figure 8 represents the median value
for all visits with the given network condition. Since the
metrics have different absolute values, we use the y-axis

in the left-hand side to report SpeedIndex and onLoad

times, and the y-axis in the right-hand side to report values
of the PAIN index. Thus, the figure shows whether the
metrics present similar rate of variation given changes in
the network conditions.

Focusing on Figure 8a notice how the three metrics
grow almost linearly with the RTT. The rate of variation
in PAIN (see blue line) is similar for SpeedIndex (green)
and onLoad (red) ones. When varying the bandwidth in
the degraded scenario (Fig. 8b), the values of PAIN index
change similarly to the rate observed for onLoad time, but
faster than SpeedIndex. PAIN is more sensitive to dete-
rioration on the available capacity. Yet, results show that
the PAIN index is directly related to the website perfor-
mance. Observe also that all three metrics are basically
constant when the bandwidth is larger than 2.5 Mbit/s
(see points in the left part of the figure). That is, the web
page performance is not affected when a minimum band-
width is available, and all three metrics reflect such behav-
ior. Finally, Figure 8c reports the values for typical net-
work scenarios. Again, we see similar patterns among the
metrics, with the rate of variation of PAIN index in be-
tween the other metrics.

In summary, results reinforce that the metrics are cor-
related, and they vary according to the network conditions
similarly. Absolute values are in different ranges, but they
all reflect degradation in quality.

6.6. Comparison to alternative approaches

We validate PAIN against two possible alternatives:

10

w
w
w
.e
ba
y.
it

w
w
w
.c
or
ri
er
e.
it

w
w
w
.il
m
et
eo
.it

w
w
w
.g
az
ze
tt
a.
it

w
w
w
.m
et
eo
.it

w
w
w
.r
ep
ub
bl
ic
a.
it

w
w
w
.m
ym
ov
ie
s.
it

w
w
w
.s
ub
it
o.
it

w
w
w
.la
st
am
pa
.it

w
w
w
.w
or
dr
ef
er
en
ce
.c
om

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr
el
a
ti
o
n

P3 BestCheckpoint BeaconCheckpoint

(a) OnLoad (b) SpeedIndex

Figure 9: Correlation of PAIN, BestCheckpoint and BeaconCheckpoint with objective metrics (SynthTypical dataset).

(i) BestCheckpoint: We use a supervised mecha-
nism to extract a performance metric that tries to maxi-
mizes the correlation with objective metrics. Considering
a training dataset and a core domain c, we extract the de-
lay to observe each support domain s ∈ Sc after all vis-
its to c. Then, we compute the correlation coefficient be-
tween the delays for each s ∈ Sc and the objective metrics
(SpeedIndex and onLoad). We select the most correlated
support domain to serve as landmark.

When evaluating new traffic, the delay to observe the
landmark is considered as the performance metric for the
core domain. Note that this supervised approach requires
per-site objective metrics at training time.

(ii) BeaconCheckpoint: This approach has been pro-
posed by authors of [20]. It consists in leveraging the an-
alytics objects typically present in web pages to identify
when page loading is complete. The intuition comes from
the fact that analytics services wait for the browser to fin-
ish rendering the page before sending back statistics to
the server. Here, we consider the Google Analytics script
that uploads statistics to Google servers after the onLoad

event is fired by the browser. After finding a flow to the
core domain of interest, we search the HTTP requests to
Google Analytics URL. Note that such an approach re-
quires non-encrypted traffic and works only for sites em-
bedding analytics scripts (e.g., only present in 4 websites
in SynthTypical).

The delay between the core domain flow and Google
Analytics request is reported as performance metric.

Figure 9 shows the correlation of PAIN, BestCheck-
point and BeaconCheckpoint with SpeedIndex and
OnLoad. BeaconCheckpoint can be computed only for 4
websites. As we have seen before, PAIN correlation coef-
ficients are positive and very high. Considering onLoad in
Figure 9a, they range from 0.67 for www.ebay.it to 0.90 for
www.gazzetta.it. Most values are close to 0.8 for both met-
rics. BestCheckpoint and BeaconCheckpoint are also
positively correlated to the objective metrics. For exam-
ple, for www.gazzetta.it, they achieve 0.92 and 0.88, respec-
tively. BestCheckpoint is more strongly correlated to
onLoad than PAIN. This is expected because of the super-

vised approach. Yet, absolute differences are small, show-
ing that PAIN can achieve similar performance without the
burdens of building ground truth for training the models.

Similar conclusions hold for SpeedIndex in Fig-
ure 9b. PAIN correlations coefficient span from 0.55 for
www.ilmeteo.it to 0.86 for www.gazzetta.it, with other met-
rics in similar ranges.

Summarizing, PAIN index is strongly correlated with
both objective metrics for different sites. PAIN achieves
similar performance than other approaches, which are
however hardly feasible in real deployments.

6.7. Learning duration and periodicity

Next we investigate the number of observation needed
to learn support domains, and for how long the models
remain valid. This information defines the duration and
periodicity of PAIN learning. Since PAIN is unsupervised,
it learns models directly from live traffic. Large learning
periods should help creating robust models. On the other
hand, sites may change over time invalidating the models.

We first evaluate how the size of the learning sam-
ple impacts PAIN. We perform experiments with the
RealWorld dataset. Since we aim at checking how the
models behave in large samples and long periods, we focus
on the top-100 ranked sites in Italy by Alexa.

In Figure 10, we let PAIN learn support domains with
an increasing number of observations per core domain. We
then compare the selected support domains with the set
obtained with the largest observation period – i.e., when
all core domains have been observed at least 10, 000 times.
The y-axis reports how similar the two sets are using the
Jaccard similarity coefficient [21]. Clearly, the right-most
point has value 1 (perfect similarity). Other points con-
firm that the larger the observation period is, the more
stable the sets become. Indeed, after some thousand ob-
servations the similarity reaches almost a plateau, with the
Jaccard coefficient at around 0.80 with 5, 000 observations.
This figure suggests that some thousand observations are
sufficient to learn stable sets of support domains.

A question still remains: How often should PAIN learn-
ing be performed? Performing learning sporadically may

11

0.0

0.2

0.4

0.6

0.8

1.0

10 20 50 100 200 500 1000 2000 5000 10000

Ja
cc

ar
d

si
m

ila
ri

ty
co

ef
fic

ie
nt

Observations per core domain

Figure 10: Support domains for increasing number of observations
per core domain, compared to 10, 000 observations (RealWorld).

0.0

0.2

0.4

0.6

0.8

1.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Ja
cc

ar
d

si
m

ila
ri

ty
co

ef
fic

ie
nt

Month

Figure 11: Support domains over the months of a year (RealWorld).

let models get outdated and reduce the metrics precision.
We quantify this phenomenon in Figure 11. We let PAIN
run on the RealWorld dataset using the previous subset
of domains, learning support domains separately for each
month. Then, we compare the learned sets at each month
with those learned during the January 2017. Again, we
use the Jaccard coefficient as similarity metric.

The figure shows that support domains learned on
February have a 0.77 similarity coefficient with those
learned on January. The similarity decreases to 0.69 on
March, and finally to 0.36 on November. It is clear that
even in short periods, e.g., a couple of months, the learned
support domains diverge significantly. While PAIN group-
ing approach partly compensates for such variations, these
results suggest that continuously updating support do-
mains is advisable to retain PAIN performance.

In summary, PAIN benefits from a large number of
observations to learn models of support domains for the
websites. Few thousands of samples per core domain seem
sufficient to bootstrap the system. On the other hand,
learning must be continuous, with models being updated
to avoid using outdated sets of support domains.

7. Case studies

We now report our experience when using PAIN in a
real deployment. We exploit the RealWorld dataset, con-
taining flow-level measurements of around 10,000 ADSL
customers over one year. More concretely, we run PAIN to
understand (i) whether web browsing performance changes

for different ADSL installations; (ii) the impact of large
server-side events on users’ experience.

PAIN learns the models on the RealWorld dataset on
a per-month basis. We focus on the top-100 Alexa rank
for Italy. PAIN is set with n = 4, ∆T = 30s.

7.1. Performance per ADSL capacity

For ISPs, it is important to understand the impact of
access link capacity on web browsing. For example, ISPs
are interested in knowing whether users with poor con-
nectivity are significantly impaired while surfing the Web,
e.g., to propose upgrades to such users. PAIN allows
ISPs to estimate how objective metrics (i.e., OnLoad and
SpeedIndex) vary across users, even if these metrics are
not measurable with passive monitoring.

We know the download access link capacity of each
ADSL installation in the RealWorld dataset. We thus
divide users in three categories: (i) slow (< 4 MBit/s), (ii)
medium (4–12 Mbit/s) and (iii) fast (> 12 Mbit/s). We
then compute PAIN P3 for users of each group.

Results for two news websites in Italy are reported Fig-
ure 12. For www.lastampa.it (Figure 12a), distributions
are clearly not overlapping. PAIN index decreases signif-
icantly when the access capacity increases. Indeed, the
median value moves from 9.6s for slow users to 4.3s for
fast users. For www.repubblica.it (Figure 12b), differences
across users are even more pronounced. PAIN index me-
dian value is 12.3s for slow users and 5.1s for fast users.

These results allow quantifying the role of access ca-
pacity on page load time in the real world, where previous
experiments relied only on testbeds [24, 23].

7.2. Impairments due to server-side events

ISPs can rely on PAIN index to monitor anomalies
causing real impact on users’ performance. To this end,
we illustrate some noticeable episodes emerging from the
RealWorld dataset. We let PAIN run on the entire
dataset for the top-100 Alexa services. We then manu-
ally went through the obtained time series to find episodes
worth of attention, such as abrupt changes in PAIN in-
dex. Prominent cases have been further investigated, to
uncover possible reasons behind the sudden changes.

Figure 13 reports an episode related to www.poste.it,
the website of the Italian national mail service. On Jan-
uary 18th 2017, the median PAIN index incurs sudden in-
crease: The median value for P3 grows from the [4, 6]s
range to the [8, 10]s range, while median P4 increases from
[8, 10]s to [10, 12]s ranges (see y-axis the figure).

Investigating the root-cause for this change in behav-
ior, we discovered that the website switched all services to
HTTPS on that date. As such, the additional load im-
posed to both servers and clients is likely causing a per-
formance impairment.

Figure 14 depicts a second prominent episode uncov-
ered by PAIN, related to www.repubblica.it. Recall that
this site hosts a major Italian news portal. The website

12

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30

C
D

F

P3 [s]

<4 Mb/s
4-12 Mb/s
>12 Mb/s

(a) www.lastampa.it

0.0
0.2
0.4
0.6
0.8
1.0

 0 5 10 15 20 25 30

C
D

F

P3 [s]

<4 Mb/s
4-12 Mb/s
>12 Mb/s

(b) www.repubblica.it

Figure 12: Distribution of PAIN P3 index according to the access-link capacity for all visits in RealWorld dataset

 0
 2
 4
 6
 8

 10
 12
 14

Jan 1 Jan 10 Jan 20 Jan 30

P
A

IN
 in

de
x

[s
]

Day

P3
P4

HTTPS migration

Figure 13: PAIN index for www.poste.it over 1 month (RealWorld).

 0
 2
 4
 6
 8

 10
 12

Feb 1 Feb 10 Feb 20 Mar 1 Mar 10 Mar 20 Mar 31

P
A

IN
 in

de
x

[s
]

Day

P3
P4 Website

restructuring

Figure 14: PAIN index trend for www.repubblica.it before and after
website restructuring (RealWorld).

passed a major reorganization of layout and content on
27th February 2017. The portal claimed at the time that
the reorganization would lead to performance improve-
ments for its users.

PAIN is able to measure the website performance be-
fore and after the restructuring. Figure 14 depicts P3 and
P4 evolution in time. The median values computed per
day are reported with thin lines, with thick lines marking
the exponentially weighted moving average (EWMA) of
the values. The performance of the website has improved
after the migration day. P3 decreases from ≈ 8s to ≈ 6s,
while P4 from ≈ 11s to ≈ 9s.9

In summary, these case studies illustrate how PAIN can
be used to spot changes in websites performance, due to

9A one-tailed T-Test confirms that differences for values before
and after the migration are statistically significant.

intrinsic characteristics of the network or external events
(e.g., websites modifications). PAIN can be used to trigger
alerts in case of sudden changes in performance, driving
ISPs to further investigate the problems that are relevant
to users’ experience.

8. Conclusions

We presented PAIN, an automatic and unsupervised
system to monitor website performance using flow-level
measurements, and release it as open source. PAIN builds
a behavioral model for the websites’ traffic, leveraging
flows automatically opened by browsers to retrieve images,
scripts etc. The model is used for assessing performance.

We validated PAIN by showing that it can high-
light sudden performance deterioration due to changes
on network conditions. We showed that PAIN metrics
are strongly correlated with well-known objective metrics
used as indication of users’ QoE, i.e., onLoad time and
SpeedIndex. Moreover, we showed that PAIN perfor-
mance is similar to supervised alternatives, which are how-
ever harder to be deployed in practical scenarios.

Finally, we deployed PAIN in an ISP network for one
full year. PAIN allowed us to quantify website perfor-
mance differences across customers with different access
link capacities. Moreover, PAIN pinpointed sudden perfor-
mance variations for websites that incurred restructuring.

Acknowledgements

The research leading to these results has been funded
by the Vienna Science and Technology Fund (WWTF)
through project ICT15-129 (BigDAMA) and the Smart-
Data@PoliTO center for Big Data technologies.

References

[1] (2012). HAR 1.2 Spec. https://dvcs.w3.org/hg/webperf/raw-file/

tip/specs/HAR/Overview.html.

[2] (n.d.). Squid-Cache. http://www.squid-cache.org/.

[3] (n.d.). WebPageTest. https://www.webpagetest.org/.

13

[4] Aggarwal, V., Halepovic, E., Pang, J., Venkataraman, S., and Yan,

H. (2014). Prometheus: Toward Quality-of-experience Estimation for

Mobile Apps from Passive Network Measurements. In Proceedings of

the HotMobile, pages 18:1–18:6.

[5] Balachandran, A., Aggarwal, V., Halepovic, E., Pang, J., Seshan,

S., Venkataraman, S., and Yan, H. (2014). Modeling Web Quality-

of-experience on Cellular Networks. In Proceedings of the MobiCom,

pages 213–224.

[6] Bermudez, I., Mellia, M., Munafò, M. M., Keralapura, R., and Nucci,

A. (2012). DNS to the Rescue: Discerning Content and Services in a

Tangled Web. In Proceedings of the IMC , pages 413–426.

[7] Bocchi, E., Cicco, L. D., and Rossi, D. (2016). Measuring the Quality

of Experience of Web Users. In Proceedings of the Internet-QoE ,

pages 37–42.

[8] Bocchi, E., Cicco, L. D., Mellia, M., and Rossi, D. (2017). The Web,

the Users, and the MOS: Influence of HTTP/2 on User Experience.

In Proceedings of the PAM , pages 47–59.

[9] Brutlag, J., Abrams, Z., and Meenan, P. (2011). Above the

fold time: Measuring web page performance visually. https:

//conferences.oreilly.com/velocity/velocity-mar2011/public/

schedule/detail/18692.

[10] Carbone, M. and Rizzo, L. (2010). Dummynet revisited. SIGCOMM

Comput. Commun. Rev., 40(2), 12–20.

[11] Casas, P., Seufert, M., Wamser, F., Gardlo, B., Sackl, A., and

Schatz, R. (2016). Next to You: Monitoring Quality of Experience in

Cellular Networks From the End-Devices. IEEE Trans. Netw. Ser-

vice Manag., 13(2), 181–196.

[12] Da Hora, D., Asrese, A. S., Christophides, V., Teixeira, R., and

Rossi, D. (2018). Narrowing the gap between QoS metrics and Web

QoE using Above-the-fold metrics. In PAM 2018 - International Con-

ference on Passive and Active Network Measurement, pages 1–13,

Berlin, Germany.

[13] Din, I., Saqib, N. A., and Baig, A. (2008). Passive analysis of web

traffic characteristics for estimating quality of experience. In 2008

IEEE Globecom Workshops, pages 1–5. IEEE.

[14] Egger, S., Reichl, P., Hoßfeld, T., and Schatz, R. (2012). “time is

bandwidth”? narrowing the gap between subjective time perception

and quality of experience. In Communications (ICC), 2012 IEEE

International Conference on, pages 1325–1330. IEEE.

[15] Gao, Q., Dey, P., and Ahammad, P. (2017). Perceived performance

of top retail webpages in the wild: Insights from large-scale crowd-

sourcing of above-the-fold qoe. In Proceedings of the Workshop on

QoE-based Analysis and Management of Data Communication Net-

works, pages 13–18. ACM.

[16] Gonzalez, R., Soriente, C., and Laoutaris, N. (2016). User profiling

in the time of https. In Proceedings of the 2016 Internet Measurement

Conference, IMC ’16, pages 373–379, New York, NY, USA. ACM.

[17] Hofstede, R., Čeleda, P., Trammell, B., Drago, I., Sadre, R., Sper-

otto, A., and Pras, A. (2014). Flow Monitoring Explained: From

Packet Capture to Data Analysis with NetFlow and IPFIX. Commun.

Surveys Tuts., 16(4), 2037–2064.

[18] Ibarrola, E., Taboada, I., Ortega, R., et al. (2009). Web qoe eval-

uation in multi-agent networks: Validation of itu-t g. 1030. In Au-

tonomic and Autonomous Systems, 2009. ICAS’09. Fifth Interna-

tional Conference on, pages 289–294. IEEE.

[19] Ihm, S. and Pai, V. S. (2011a). Towards understanding modern web

traffic. volume 39, pages 335–336, New York, NY, USA. ACM.

[20] Ihm, S. and Pai, V. S. (2011b). Towards understanding modern

web traffic. In Proceedings of the 2011 ACM SIGCOMM Conference

on Internet Measurement Conference, IMC ’11, pages 295–312, New

York, NY, USA. ACM.

[21] Jaccard, P. (1912). The distribution of the flora in the alpine zone.

New phytologist, 11(2), 37–50.

[22] Langford, E., Schwertman, N., and Owens, M. (2001). Is the prop-

erty of being positively correlated transitive? The American Statis-

tician, 55(4), 322–325.

[23] Liu, Y. (2017). Demystifying mobile web browsing under multiple

protocols. arXiv preprint arXiv:1712.00237 .

[24] Meenan, P. (2013). How fast is your website? Communications of

the ACM , 56(4), 49–55.

[25] Paxson, V. (1999). Bro: a System for Detecting Network Intruders

in Real-Time. Computer Networks, 31(23-24), 2435–2463.

[26] Sandvine (2015). Measuring Web Browsing Quality of Ex-

perience. https://www.sandvine.com/hubfs/downloads/archive/

whitepaper-web-browsing-qoe.pdf.
[27] Shaikh, J., Fiedler, M., and Collange, D. (2010). Quality

of experience from user and network perspectives. annals of

telecommunications-annales des telecommunications, 65(1-2), 47–

57.

[28] Spearman, C. (1904). The proof and measurement of association

between two things. The American journal of psychology, 15(1), 72–

101.

[29] Trevisan, M. (2017). NetLytics. https://github.com/marty90/

netlytics.

[30] Trevisan, M., Drago, I., Mellia, M., Song, H. H., and Baldi, M.

(2016). WHAT: A Big Data Approach for Accounting of Modern Web

Services. In Proceedings of the BigData, pages 2740–2745.

[31] Trevisan, M., Drago, I., and Mellia, M. (2017a). Pain: A passive

web speed indicator for isps. In Proceedings of the Workshop on QoE-

based Analysis and Management of Data Communication Networks,

Internet QoE ’17, pages 7–12, New York, NY, USA. ACM.

[32] Trevisan, M., Finamore, A., Mellia, M., Munafo, M., and Rossi, D.

(2017b). Traffic analysis with off-the-shelf hardware: Challenges and

lessons learned. IEEE Communications Magazine, 55(3), 163–169.

[33] Trevisan, M., Giordano, D., Drago, I., Mellia, M., and Munafò,

M. (2018). Five years at the edge: Watching internet from the isp

network. In Proceedings of CoNEXT’18 , Heraklion, Greece.

[34] Wang, X. S., Balasubramanian, A., Krishnamurthy, A., and Wether-

all, D. (2013). Demystifying page load performance with wprof. In

NSDI , pages 473–485.

Authors

Martino Trevisan received his B.Sc.
(2012) and his M.Sc. (2015) in Com-
puter Science, both from Politecnico di
Torino, Italy. He is currently a PhD stu-
dent in Electrical, Electronics and Com-
munications Engineering in the same
university, where he joined the Telecom-
munication Networks Group (TNG). He
has been collaborating in both Industry

and European projects. His research interest areas include Net-
work Measurements and Traffic Monitoring, while he is also
particularly interested in leveraging Big Data and Machine
Learning techniques in such fields.

Idilio Drago is an Assistant Profes-
sor at the Politecnico di Torino, Italy,
in the Department of Electronics and
Telecommunications. His research in-
terests include Internet measurements,
Big Data analysis, and network secu-
rity. Drago has a PhD in computer sci-
ence from the University of Twente. He
was awarded an Applied Networking Re-

search Prize in 2013 by the IETF/IRTF for his work on cloud
storage traffic analysis.

Marco Mellia is Associate Profes-
sor at the Politecnico di Torino, Italy.
His research interests are in the in the
area of traffic monitoring and analysis,
in cyber monitoring, and Big Data an-
alytics. Marco Mellia has co-authored
over 250 papers published in interna-
tional journals and conferences. He won
the IRTF ANR Prize at IETF-88, and
best paper award at IEEE P2P’12, ACM
CoNEXT’13, IEEE ICDCS’15. He is

part of the editorial board of ACM/IEEE Transactions on Net-
working, IEEE Transactions on Network and Service Manage-
ment, and ACM Computer Communication Review.

14

