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If the primes are finite, then all of them divide the number one

We propose a novel proof of the infinitude of the primes based on elementary
considerations of Legendre’s function φ, defined in [1, p. 153] as

φ(x, y) = |{1 ≤ n ≤ x : integer n has no prime factors ≤ y}|,

where x and y are positive integers. The reader can see that

π(x) = π(
√
x) + φ(x,

√
x)− 1,

where π(·) is the prime-counting function. Let p1, ..., ps be the prime numbers
less than or equal to y. Using the inclusion-exclusion principle, it can be proved
that

φ(x, y) = x−
∑

1≤i≤s

[
x

pi

]
+

∑
1≤i,j≤s

[
x

pipj

]
+ ...+ (−1)s

[
x

p1 · · · ps

]
,

where [·] is the floor function. Pinasco [2] also used this principle for proving the
infinitude of the primes, but his proof is remarkably different from ours.

Suppose that {p1, ..., ps} is the set of all prime numbers. Consider N =
p1 · · · ps. Then φ(N2, N) = 1. On the other hand, we have

φ(N2, N) = N2 −
∑

1≤i≤s

[
N2

pi

]
+

∑
1≤i,j≤s

[
N2

pipj

]
+ ...+ (−1)sN.

Hence, φ(N2, N) = mN for some integer m, i.e., every prime number divides
1. This means that all primes, and, consequently, all non–zero natural numbers,
are invertible in N, i.e., we find that N is a field. This completes the proof.
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