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Some combinatorial properties of the Hurwitz series ring

Stefano Barbero, Umberto Cerruti, Nadir Murru

Abstract We study some properties and perspectives of the Hurwitz series ring HR[[t]], for a
commutative ring with identity R. Specifically, we provide a closed form for the invertible elements
by means of the complete ordinary Bell polynomials, we highlight some connections with well–known
transforms of sequences, and we see that the Stirling transforms are automorphisms of HR[[t]].
Moreover, we focus the attention on some special subgroups studying their properties. Finally, we
introduce a new transform of sequences that allows to see one of this subgroup as an ultrametric
dynamic space.
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1 The ring of Hurwitz series, transformations of sequences and automorphisms

Given a commutative ring with identity R, let HR[[t]] denote the Hurwitz series ring whose elements
are the formal series of the kind

A(t) :=

+∞∑
n=0

an
n!
tn,

equipped with the standard sum and the binomial convolution as product. Given two formal
series A(t) and B(t), the binomial convolution is defined as follows:

A(t) ? B(t) := C(t),

where

cn :=

n∑
h=0

(
n

h

)
ahbn−h.

The ring of Hurwitz series has been organizationally studied by Keigher [9] and in the recent
years it has been extensively studied, see, e.g., [10], [11], [7], [3], [4], [5].

The Hurwitz series ring is trivially isomorph to the ring HR whose elements are infinite sequences
of elements of R, with operations + and ?. In the following, when we consider an element a ∈ HR,
we refer to a sequence (an)+∞n=0 = (a0, a1, a2, ...), ai ∈ R for all i ≥ 0, having exponential generating
function (e.g.f.) denoted by A(t). Clearly for two sequences a, b ∈ HR with exponential generating
functions A(t) and B(t) respectively, the sequence c = a ? b has e.g.f. C(t) = A(t)B(t). Moreover,

fixed any positive integer n, we can also consider the rings H
(n)
R whose elements are sequences of

elements of R with length n.

Remark 1 The binomial convolution is a commutative product and the identity in HR is the se-
quence

(1, 0, 0, ...).
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Moreover, HR can be also viewed as an R–algebra considering the map

π : R→ HR, π(r) := (r, 0, 0, ...),

for any r ∈ R.

Proposition 1 An element a ∈ HR is invertible if and only if a0 ∈ R is invertible, i.e.,

H∗R = {a ∈ HR : a0 ∈ R∗}.

Proof The proof is straightforward.

Given a ∈ H∗R, we can recursively evaluate the terms of b = a−1. Indeed, b0 = a−10 and for all
n ≥ 1

bn = −a−10

n∑
h=1

(
n

h

)
ahbn−h,

since the equality a ? b = (1, 0, 0, ...) implies

a0b0 = 1,

n∑
h=0

(
n

h

)
anbn−h = 0,∀n ≥ 1.

On the other hand, we can find a nice closed form for the elements of b by means of the complete
ordinary Bell polynomials [2]. First of all, we recall their definition as given in [13].

Definition 1 Let us consider the sequence x = (x1, x2, . . .). The complete ordinary Bell polynomials
are defined by

B0(x) = 1, ∀n ≥ 1 Bn(x) = Bn(x1, x2, . . . , xn) =

n∑
k=1

Bn,k(x),

where Bn,k(x) are the partial ordinary Bell polynomials, with

B0,0(x) = 1, ∀n ≥ 1 Bn,0(x) = 0, ∀k ≥ 1 B0,k(x) = 0,

Bn,k(x) = Bn,k(x1, x2, . . . , xn) =
∑

i1+2i2+···+nin=n
i1+i2+···+in=k

k!

i1!i2! · · · in!
xi11 x

i2
2 · · ·xinn ,

or, equivalently,

Bn,k(x) = Bn,k(x1, x2, . . . , xn−k+1) =
∑

i1+2i2+···+(n−k+1)in−k+1=n−k+1
i1+i2+···+in−k+1=k

k!

i1!i2! · · · in−k+1!
xi11 x

i2
2 · · ·x

in−k+1

n−k+1,

satisfying the equality ∑
n≥1

xnz
n

k

=
∑
n≥k

Bn,k(x)zn.

Then, we introduce the Invert transform (see, e.g., [6] for a detailed survey).

The Invert transform

The Invert transform I maps a sequence a = (an)+∞n=0 into a sequence I(a) = b = (bn)+∞n=0 whose
ordinary generating function satisfies

+∞∑
n=0

bnt
n =

+∞∑
n=0

ant
n

1− t
+∞∑
n=0

antn
.

Barbero et al. [1] highlighted the close relation between Invert transform and complete ordinary
Bell polynomials: given g ∈ HR and h = I(g), we have, for all n ≥ 0, that

hn = Bn+1(g0, g1, g2, ..., gn). (1)

Now these tools allow us to explicitly find the terms of b = a−1 for every a ∈ H∗R.
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Theorem 1 Let a, b = a−1 ∈ H∗R be sequences with e.g.f. A(t) and B(t), respectively. Then for all
n ≥ 0, we have

bn =
n!Bn(g0, g1, g2, . . . , gn)

a0
,

where

g = (gn)+∞n=0 =

(
− an+1

a0(n+ 1)!

)+∞

n=0

.

Proof The ordinary generating function of the sequence g is

Ḡ(t) =
1

t

(
1− A(t)

a0

)
since

Ḡ(t) =
1

t

(
1− 1

a0

(
a0 +

+∞∑
n=1

an
n!
tn

))
= −1

t

+∞∑
n=1

an
a0n!

tn =

+∞∑
n=0

(
− an+1

a0(n+ 1)!

)
tn.

Moreover, considering b = a−1 we have

B(t) =
1

A(t)
=

1

a0(1− tḠ(t))
=

1

a0

(
1 +

tḠ(t)

1− tḠ(t)

)
=

1

a0
(1 + tH̄(t)),

where H̄(t) is the ordinary generating function of the sequence h = I(g). Thus relation (1) holds
and, since B0(g) = 1, we obtain

B(t) =
1

a0
(1 + tH̄(t)) =

1

a0

(
1 +

+∞∑
n=0

Bn+1(g0, g1, g2, . . . , gn)tn+1

)
=

+∞∑
n=0

Bn(g0, g1, g2, . . . , gn)

a0
tn

and the thesis easily follows.

We point out that some well–studied transforms acting on sequences can be viewed in HR[[t]]
as the product (i.e., the binomial convolution) between a suitable fixed sequence and any sequence
belonging to HR. We present two enlightening and interesting examples.

The Binomial interpolated transform

The Binomial interpolated transform L(y), with parameter y ∈ R, maps any sequence a ∈ HR into
a sequence b = L(y)(a) ∈ HR, whose terms are

bn =

n∑
h=0

(
n

h

)
yn−hah.

For a survey and a detailed study of the action of L(y) on recurrence sequences we refer the reader
to [1]. The definition of this transform by means of the binomial convolution is straightforward.
Indeed, considering the sequence

λ = (yn)+∞n=0,

we have for any a ∈ HR with e.g.f. A(t)

L(y)(a) = λ ? a.

with the corresponding e.g.f. given by the product eytA(t).

The Boustrophedon transform

The Boustrophedon transform B, introduced and studied in [12], maps any sequence a ∈ HR, with
e.g.f. A(t), into a sequence b = B(a) ∈ HR with e.g.f.

B(t) = (sec t+ tan t)A(t).

This transform is closely related to the sequence β = (βn)+∞n=0 of the Euler zigzag numbers (see [12]),
with e.g.f.

+∞∑
n=0

βn
n!
tn := sec(t) + tan(t),

since for any a ∈ HR clearly
B(a) = β ? a.

The Hurwitz series ring is strictly connected to other well–known sequence transforms. We
consider another two examples, the alternating sign transform, which is a little bit trivial, and the
interesting Stirling transform. We also show that both are examples of HR–automorphisms.
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The alternating sign trasform

The alternating sign transform E maps any sequence a ∈ HR into a sequence b = E(a) ∈ HR, whose
terms are

bn = (−1)nan.

The transform E often appears in studying properties of integer sequences combined with other
transforms. Clearly we have E = E−1 and it is straightforward to see that, given any a ∈ HR with
e.g.f. A(t), then E(a) has e.g.f. A(−t). Moreover it is easy to verify that for all sequences a, b ∈ HR

E(a+ b) = E(a) + E(b),

and

E(a ? b) = E(a) ? E(b),

showing that E is an authomorphism of HR.

The Stirling transform

The Stirling transform S maps any sequence a ∈ HR into a sequence b = S(a) ∈ HR, whose terms
are

bn =

n∑
h=0

{
n

h

}
ah,

where
{
n
h

}
are the Stirling numbers of the second kind (see e.g. [8], chapter 6, for definition and

properties of Stirling numbers of first and second kind). Some properties of this transform are
exsposed in [6], here we observe that S is a bijection from HR to itself. The inverse S−1 maps any
sequence a ∈ HR into a sequence b = S−1(a) ∈ HR, whose terms are

bn =

n∑
h=0

(−1)n−h
[
n

h

]
ah,

where
[
n
h

]
are the (unsigned) Stirling numbers of the first kind. Moreover, we recall that for all

a ∈ HR with e.g.f. A(t), then b = S(a) has e.g.f. B(t) = A(et − 1). It is very interesting to observe
that, for all a, b ∈ HR, S obviously satisfies

S(a+ b) = S(a) + S(b),

but also

S(a ? b) = S(a) ? S(b).

Indeed, remembering that, by definition,
{
n
h

}
= 0 when n < k, and that the e.g.f. of the Stirling

number of the second kind is (et−1)n
n! (see [8]) , if we consider the e.g.f. S(t) of S(a ? b), we have

S(t) =

+∞∑
n=0

 n∑
h=0

{
n

h

} h∑
j=0

(
h

j

)
ajbh−j

 tn

n!
=

+∞∑
h=0

 h∑
j=0

(
h

j

)
ajbh−j

 +∞∑
h=0

{
n

h

}
tn

n!
=

=

+∞∑
h=0

 h∑
j=0

(
h

j

)
ajbh−j

 (et − 1)
n

n!
= A

(
et − 1

)
B
(
et − 1

)
and A (et − 1)B (et − 1) clearly is the e.g.f. of S(a) ? S(b). Hence S is an authomorphism of HR.

2 Special subgroups of H∗
R

The purpose of this section is to highlight some properties of two interesting subgroups of H∗R, with
respect to the binomial convolution product ? operation. We also study their relationship with the
transforms presented in the previous section and with other transforms which we will define in the
next.

Definition 2 Let us denote UR and BR the subgroups of H∗R defined as

UR = {a ∈ H∗R : a0 = 1}, BR = {a ∈ UR : E(a) = a−1}.
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We start considering the subgroup UR and observing that, for all a ∈ HR, we can find sequences
in UR closely related with a, obtained by prepending to a a finite sequence of 1. So it is natural to
consider these sequences as the images of a under the iteration of the following transform.

The 1–prepending transform V maps a sequence a = (a0, a1, a2, . . .) ∈ HR into the sequence
b = V(a) = (1, a0, a1, a2, . . .) ∈ UR. We denote Vk as the k–times iteration of V and obviously
Vk(a) ∈ UR, for all k ≥ 1. We observe that the action of Vk on a sequence a ∈ H∗R corresponds to
the k–th iteration of the integral operator

J (·)(t) := 1 +

∫ t

0

(·)du

on the e.g.f. A(t) of a. In particular,

J k(A)(t) = J ◦ ... ◦ J︸ ︷︷ ︸
k−times

(A)(t) =

k−1∑
h=0

th

h!
+

+∞∑
h=k

ah−k
th

h!
= V (t),

where V (t) is the e.g.f. of Vk(a), and clearly

V (0) = V ′(0) = ... = V (k−1)(0) = 1, V (k)(t) = A(t),

being V (k)(t) the k–th derivative of V (t).
Now, we explore some interesting properties related to the subgroup BR. First of all we charac-

terize all the elements in BR.

Theorem 2 All the elements in BR corresponds to the sequences of UR whose e.g.f. A(t) is the
solution of {

A′(t) = g(t)A(t)

A(0) = 1
(2)

where g(t) is any fixed even function. Hence, if we consider the formal exponential operator exp

such that exp(f(t)) =
+∞∑
n=0

(f(t))n

n! , the e.g.f. of a ∈ BR is A(t) = exp(h(t)) where h(t) is an odd

function.

Proof It is immediate to see that a ∈ BR if and only if A(t)A(−t) = 1. If we differentiate this
relation with respect to t we obtain

A′(t)A(−t)−A(t)A′(−t) = 0

which is equivalent to
A′(t)

A(t)
=
A′(−t)
A(−t)

.

Thus we have g(t) = A′(t)
A(t) where, from the previous relation, g(t) = g(−t), i.e. g(t) is an even

function, and, obviously, we must have A(0) = 1, since for all sequences a ∈ UR A(0) = a0 = 1. It
is straightforward to verify that, given g(t), a formal integration term by term of its power series
corresponds to the series of an odd function h(t), and clearly A(t) = exp(h(t)) satisfies (2).

The transforms Ly,B, and E act on BR preserving the closure, as we point out in the following
proposition.

Proposition 2 The group BR is closed with respect to the transforms E, B and L(y), for any y ∈ R.

Proof By definition of BR, it is immediate to check that E(BR) = BR (with this notation, we say
that given any a ∈ BR, then E(a) is still in BR). Given any a ∈ BR, with e.g.f. A(t), we have that
b = L(y)(a) has e.g.f. e(yt)A(t), and clearly b ∈ BR since(

eytA(t)
) (
e−ytA(−t)

)
= A(t)A(−t) = 1.

Finally, let us recall that the Euler zig–zag numbers β have e.g.f. B(t) = sec(t) + tan(t) which
satisfies B(t)B(−t) = 1 as a simple calculation shows

B(t)− 1

B(−t)
=

1 + sin(t)

cos(t)
− cos(−t)

1 + sin(−t)
=

1− sin2(t)− cos2(t)

cos(t)(1− sin(t))
= 0,

i.e., β ∈ BR. Hence, given any a ∈ BR, B(a) = β ? a ∈ BR.
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Remark 2 The group BR is not closed with respect to the transform S. Indeed, if A(t) is the e.g.f.
of a ∈ BR, the e.g.f. of S(a) is A(et − 1), while the e.g.f. of ε(S(a)) is A(e−t − 1) and in general
A(e−t − 1)A(et − 1) 6= 1. It would be interesting to characterize the group S(BR).

Let us examine in depth the structure of a sequence a ∈ BR. From the definition of BR and from
Theorem 2, we observe that the elements of a sequence a ∈ BR are constrained to severe restrictions,
since the equality E(a) = a−1 must hold. If we pose b = a−1 and c = E(a), we have, for instance,

b0 = 1, b1 = −a1, b2 = 2a21 − a2

and
c0 = 1, c1 = −a1, c2 = a2,

i.e., the element a1 of the sequence a can be arbitrary, while a2 must satisfy

a2 = 2a21 − a2,

i.e., a2 = a21. By continuing in this way, we can also see, e.g., that a3 can be arbitrary, while
a4 = −3a41 + 4a1a3. Thus, any sequence a ∈ BR is completely determined when we fix the values of
a2k−1, k = 1, 2, · · · . Indeed, the following theorem shows how to evaluate the terms with even positive
index as functions of the ones with odd index, by means of the partial ordinary Bell polynomials
described in Definition 1.

Theorem 3 Given any a ∈ BR, we have

a2n = (2n)!
n∑

k=0

( 1
2

k

)
Bn+k,2k(x1, ..., xn−k+1), ∀n ≥ 1,

where xi = a2i−1

(2i−1)! ,
( 1

2
k

)
=

∏k−1
j=0 ( 1

2−j)
k! .

Proof Let A(t) be the e.g.f. of a. Clearly A(t) = P (t) +D(t), where

P (t) =

+∞∑
n=0

a2n
(2n)!

t2n (3)

and

D(t) =

+∞∑
n=1

a2n−1
(2n− 1)!

t2n−1 =
1

t

+∞∑
n=1

a2n−1
(2n− 1)!

t2n. (4)

Moreover, we have

1 = A(t)A(−t) = (P (t) +D(t))(P (t)−D(t)) = (P (t))2 − (D(t))2,

since A(−t) = P (−t) +D(−t) = P (t)−D(t) and E(a) = a−1. Now, observing that P (0) = a0 = 1

and D(0) = 0, we obtain from the formal Maclaurin power series of (1 +X)
1
2 that

P (t) =
(

1 + (D(t))
2
) 1

2

=

+∞∑
k=0

( 1
2

k

)
(D(t))

2k
.

By definition of partial ordinary Bell polynomials we have

(D(t))
2k

=

+∞∑
m=2k

Bm,2k(x1, ..., xm−2k+1)t2m−2k.

If we set n = m− k, we get

P (t) =

+∞∑
k=0

( 1
2

k

) +∞∑
n=k

Bn+k,2k(x1, ..., xn−k+1)t2n =

+∞∑
n=0

(
n∑

k=0

( 1
2

k

)
Bn+k,2k(x1, ..., xn−k+1)

)
t2n.

From this equality, comparing the coefficients of the respective even powers of t in (3) we finally
obtain

a2n = (2n)!

n∑
k=0

( 1
2

k

)
Bn+k,2k(x1, ..., xn−k+1), ∀n ≥ 1.

By Definition 1 and observing that B0,0 = 1, Bh,0 = 0 for h ≥ 1, we immediately have the following
corollary.
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Corollary 1 Given a ∈ BR, we have

a2n = (2n)!

n∑
k=1

( 1
2

k

) ∑
i1+i2+···+in−k+1=2k

i1+2i2+···+(n−k+1)in−k+1=n+k

(2k)!

n−k+1∏
j=1

1

ij ! ((2j − 1)!)
ij

n−k+1∏
j=1

a
ij
2j−1.

On the other hand, it is also possible to determine the sequences a ∈ BR, with a2 ∈ R∗ and such
that a2 is a square in R, by fixing the terms a2k, k = 1, 2, · · · and finding the terms with odd index
as functions of the ones with even index.

Theorem 4 Given a ∈ BR such that a2 ∈ R∗ and x2 = a2 is solvable in R, we have

a2n+1 = (2n+ 1)!

n∑
k=0

a
1
2−k
2

( 1
2

k

)
Bn,k(x1, ..., xn−k+1), ∀n ≥ 0,

where xi = 1
(2i+2)!

i+1∑
k=0

(
2i+2
k

)
a2ka2(n−k+1), and a

1
2
2 ∈ R is a solution of x2 = a2.

Proof Let A(t) be the e.g.f. of a, with the same notations used in the proof of Theorem 3, we have
(D(t))2 = 1 + (P (t))2, where D(t) and P (t) as in (4) and in (3) respectively. Since the product
P (t) · P (t) is equal to

(P (t))
2

= 1 + a2t
2 +

+∞∑
n=2

(
n∑

k=0

(
2n

2k

)
a2ka2n−2k

)
t2n

(2n)!
,

we find

D(t) = ta
1
2
2

(
1 +

+∞∑
n=2

a−12

(2n)!

(
k∑

n=0

(
2n

2k

)
a2ka2n−2k

)
t2n−2

) 1
2

=

= ta
1
2
2

(
1 +

+∞∑
n=1

a−12

(2n+ 2)!

(
n+1∑
k=0

(
2n+ 2

2k

)
a2ka2n−2k+2

)
t2n

) 1
2

Then, considering the formal Maclaurin series expansion of (1+X)
1
2 and by Definition 1, we obtain

D(t) =

+∞∑
n=0

(
n∑

k=0

a
1/2−k
2

( 1
2

k

)
Bn,k(x1, ..., xn−k+1)

)
t2n+1.

Now the thesis esily follows by a simple comparison of the corresponding coefficients of the odd
powers of t in the expansion (4) of D(t).

Remark 3 When R = Z, BZ contains many well–known and important integer sequences. We men-
tion here some of them as interesting examples. We have seen that the Euler zigzag numbers belong
to BZ. They are listed in OEIS [15] as A000111. Thus, all the sequences having as e.g.f. a power of
sec(t) + tan(t) are in BZ.
For instance the sequence A001250 in OEIS, whose n–th element is the number of alternating per-
mutations of order n, has e.g.f. (sec(t) + tan(t))2.
Moreover, the sequence A000667, which is the Boustrophedon transform of all–1’s sequence, has
e.g.f. et(sec(t) + tan(t)) and belongs to BZ.

Another sequence in BZ is A000831, with e.g.f. 1+tan(t)
1−tan(t) .

The sequences A006229 and A002017 also belong BZ since they have exponential generating func-
tions of the shape exp(f(t)), with f(t) odd function. Indeed, they have e.g.f. etan(t) and esin(t),
respectively.
Thanks to Theorem 3 and Corollary 1, we have new interesting identities connecting many sequences
in OEIS. Furthermore, it is quite surprising that all these (very different) sequences satisfy the same
limiting conditions.

In the following, we will introduce a new transform of sequences that arises from the study of
BR, which will allow us to consider UR as a dynamic ultrametric space.
Given a, b = a−1 ∈ UR, we know that

n∑
h=0

(
n

h

)
ahbn−h = 0, ∀n ≥ 1,
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from which it follows that

an = −
n−1∑
h=0

(
n

h

)
ahbn−h, bn = −

n−1∑
h=0

(
n

h

)
bhan−h.

If a ∈ BR, i.e. A(−t) = A(t)−1, then, for all n ≥ 1, we have

−
n−1∑
h=0

(
n

h

)
(−1)hahan−h =

{
0 if n odd

2an if n even
.

Thus it is natural to define the following transform.

Definition 3 The autoconvolution transform A maps a sequence a ∈ HR into a sequence b =
A(a) ∈ HR, where 

b0 = a0

b2n+1 = a2n+1, ∀n ≥ 0

b2n = − 1
2

n−1∑
h=1

(
n
h

)
(−1)hahan−h, ∀n ≥ 1

.

The following proposition is a straightforward consequence.

Proposition 3 Given any a ∈ HR, we have a ∈ BR ⇔ A(a) = a.

Finally, we introduce another transform strictly related to A.

Definition 4 The transform U maps a sequence a ∈ HR into a sequence U(a) = b ∈ HR as follows:
b0 = a0

b2n+1 = a2n+1, ∀n ≥ 0

b2n = (2n)!
n∑

k=0

( 1
2
k

)
Bn+k,2k(x1, ..., xn−k+1), ∀n ≥ 1

,

where xi = a2i−1

(2i−1)! .

Remark 4 Given any sequence a ∈ UR, the transform U produces a sequence in BR where the terms
with odd index are the corresponding terms of a. Clearly, we have that a sequence a ∈ UR is in BR

if and only if a = U(a).

Proposition 4 Given a ∈ HR, with e.g.f. A(t), then U(a) has e.g.f.

U(t) =

(
1 +

(
A(t)−A(−t)

2

)2
) 1

2

+
A(t)−A(−t)

2
.

Proof We can write A(t) = P (t) +D(t), where P (t) and D(t) as in (3) and in (4) respectively. We

have A(−t) = P (t) − D(t) and consequently D(t) = A(t)−A(−t)
2 . By Theorem 3, the terms in the

even places of U(a) have e.g.f P (t) =
(
1 + (D(t))2

) 1
2 . Thus, we have

U(t) =
(
1 + (D(t))2

) 1
2 +D(t).

Given a, b ∈ HR, let us define

δ(a, b) := 2−k,

if ai = bi, for any 0 ≤ i ≤ k − 1. It is well–known that δ is an ultrametric in HR. Indeed,

– δ(a, b) = 0⇔ a = b,
– δ(a, b) = δ(b, a),
– δ(a, c) ≤ max(δ(a, b), δ(b, c)),

for any a, b, c ∈ HR. Thus, (HR, δ) is an ultrametric space.

Let us recall that we denote H
(n)
R the ring whose elements are sequences of elements of R with

length n. Similarly, U
(n)
R and B

(n)
R are the subgroups of H

(n)∗
R corresponding to the subgroups UR

and BR of H∗R, respectively.
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Theorem 5 Given any a ∈ UR, we have

δ(An(a),U(a)) ≤ 1

22(n+1)
,

where An = A ◦ ... ◦ A︸ ︷︷ ︸
n−times

.

Proof We prove the thesis by induction.
Let us denote a′ = U(a) and b = A(a). It is straightforward to check that

a′ = (1, a1, a
2
1, a3, ...), b = (1, a1, a

2
1, a3, ...).

Thus, a′ and b coincide at least in the first 4 terms, i.e.,

δ(A(a),U(a)) ≤ 1

24
.

Now, let us suppose that given b = An(a), we have δ(An(a),U(a)) ≤ 1
22(n+1) , i.e. bi = a′i for all

i ≤ 2n+ 1 and consider c = A(b). Since a′ ∈ BR, we remember that for all n ≥ 1 we have

−
n−1∑
h=0

(
n

h

)
(−1)ha′ha

′
n−h =

{
0 if n odd

2a′n if n even
.

Thus, by Definition 3, we obtain ci = a′i for all i ≤ 2n + 3, since (b0, ..., b2n+1) = (a′0, ..., a
′
2n+1) ∈

B
(2n+2)
R by inductive hypothesis. Hence, we have proved that

δ(An+1(a),U(a)) ≤ 1

22(n+2)
.

As a consequence of Theorem 5, we can observe that A can be considered as an approximation
of U . Indeed, given a sequence a ∈ UR, sequences An(a) have more elements equal to elements of
U(a) for increasing values of n.

Example 1 Given a = (a0, a1, a2, a3, a4, a5) ∈ U (6)
R , then

U(a) = (1, a1, a
2
1, a3, 4a1a3 − 3a41, a5)

and
A(a) = (1, a1, a

2
1, a3, 4a1a3 − 3a22, a5).

Considering A2, we obtain

A2(a) = (1, a1, a
2
1, a3, 4a1a3 − 3a41, a5) = U(a).

In other words, given any sequence a ∈ U (6)
R , A2(a) = U(a) ∈ B(6)

R , i.e., in U
(6)
R the transforms A2

and U are identical.

Frow Theorem 5 easily follows the next corollary.

Corollary 2 Given any a ∈ U (2n)
R , we have

U(a) = An−1(a).

Moreover, for any a ∈ UR, we have

U(a) = lim
n→+∞

An(a).

Clearly, if two sequences a, b ∈ HR coincide in the first k terms, then A(a) and A(b) coincide at
least in the first k terms. Thus, we have the following proposition.

Proposition 5 Given any a, b ∈ HR, then

δ(A(a),A(b)) ≤ δ(a, b).

By the previous proposition, we have that A is a contraction mapping on the ultrametric space
(HR, δ). As a first interesting consequence, we can observe thatA is a continuous function. Moreover,
we have that the ultrametric group (UR, ?, δ) with the contraction mapping A is an ultrametric
dynamic space, where the set of fixed points is the subgroup BR. In this way, we have found a very
interesting example of ultrametric dynamic space. Ultrametric dynamics are very studied in several
fields, see [14] for a good reference about dynamics on ultrametric spaces.
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