On the p-adic denseness of the quotient set of a polynomial image

Original

Availability:
This version is available at: 11583/2719234 since: 2020-05-03T10:20:29Z

Publisher:
Elsevier

Published
DOI:10.1016/j.jnt.2018.08.010

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

(Article begins on next page)
ON THE p-ADIC DENSENESS OF THE QUOTIENT SET OF A POLYNOMIAL IMAGE

PIOTR MISKA, NADIR MURRU, AND CARLO SANNA

ABSTRACT. The quotient set, or ratio set, of a set of integers A is defined as

$$R(A) := \left\{ \frac{a}{b} : a, b \in A, b \neq 0 \right\}.$$

We consider the case in which A is the image of \mathbb{Z}^+ under a polynomial $f \in \mathbb{Z}[X]$, and we give some conditions under which $R(A)$ is dense in \mathbb{Q}_p. Then, we apply these results to determine when $R(S_{m}^n)$ is dense in \mathbb{Q}_p, where S_{m}^n is the set of numbers of the form $x_1^n + \cdots + x_m^n$, with $x_1, \ldots, x_m \geq 0$ integers. This allows us to answer a question posed in [Garcia et al., p-adic quotient sets, Acta Arith. 179, 163–184]. We end leaving an open question.

1. Introduction

The quotient set, also known as ratio set, of a set of integers A is defined as

$$R(A) := \left\{ \frac{a}{b} : a, b \in A, b \neq 0 \right\}.$$

The question of when $R(A)$ is dense in \mathbb{R}_+ is a classical topic and has been studied by many researchers (see, e.g., [1, 2, 3, 7, 8, 9, 11, 15]).

Recently, some authors approached the study of the denseness of $R(A)$ in the field of p-adic numbers \mathbb{Q}_p. Garcia and Luca [6] proved that the quotient set of the Fibonacci numbers is dense in \mathbb{Q}_p, and Sanna [12] extended this result to the k-generalized Fibonacci numbers. In [5], the denseness of $R(A)$ in \mathbb{Q}_p is studied when A is the set of values of a Lucas sequence, the set of positive integers which are sum of k squares, respectively k cubes, or the union of two geometric progressions. Moreover, Miska and Sanna [10] proved that, given any partition A_1, \ldots, A_k of \mathbb{Z}^+, for all prime numbers p but at most $\lfloor \log_2 k \rfloor$ exceptions at least one of $R(A_1), \ldots, R(A_k)$ is dense in \mathbb{Q}_p.

In this paper, we focus on the study of the denseness of $R(A)$ in \mathbb{Q}_p when A is the image of \mathbb{Z}^+ under a polynomial $f \in \mathbb{Z}[X]$. For the sake of notation, we put $R_f := R(f(\mathbb{Z}^+))$ for any function $f : \mathbb{Z} \to \mathbb{Q}_p$. The following easy lemma provides a necessary condition under which R_f is dense in \mathbb{Q}_p.

Lemma 1.1. Let $f : \mathbb{Z}_p \to \mathbb{Q}_p$ be a continuous function. If R_f is dense in \mathbb{Q}_p, then f has a zero in \mathbb{Z}_p.

Proof. Since R_f is dense in \mathbb{Q}_p, there exists a sequence of integers $(x_n)_{n \geq 0}$ such that $f(x_n) \to 0$ (in the p-adic topology) as $n \to \infty$. By the compactness of \mathbb{Z}_p, there exists a subsequence $(x_{n_k})_{k \geq 0}$ converging to some $x_\infty \in \mathbb{Z}_p$. Since f is continuous, we get $f(x_\infty) = 0$, as desired. \square

Our first result is a sufficient condition under which R_f is dense in \mathbb{Q}_p. We postpone its proof to Section 2.

Theorem 1.2. Let $f : \mathbb{Z}_p \to \mathbb{Q}_p$ be an analytic function and let $z_1, z_2 \in \mathbb{Z}_p$ be two (not necessarily distinct) zeros of f of multiplicities μ_1, μ_2, respectively. If μ_1, μ_2 are coprime, then R_f is dense in \mathbb{Q}_p.

As an immediate consequence we have the following corollary.

2010 Mathematics Subject Classification. Primary: 11B05; Secondary: 11B83.

Key words and phrases. denseness, p-adic numbers, polynomials, quotient set, sum of powers.
Corollary 1.3. If \(f : \mathbb{Z}_p \to \mathbb{Q}_p \) is an analytic function with a simple zero in \(\mathbb{Z}_p \), then \(R_f \) is dense in \(\mathbb{Q}_p \).

The above results make possible to completely characterize the linear and quadratic polynomials \(f \) for which \(R_f \) is dense in \(\mathbb{Q}_p \).

Proposition 1.4. Let \(f \in \mathbb{Z}[X] \) be a polynomial of degree 1 or 2. Then, \(R_f \) is dense in \(\mathbb{Q}_p \) if and only if \(f \) has a simple zero in \(\mathbb{Z}_p \).

Proof. When \(f \) has degree 1, the thesis follows immediately from Lemma 1.1 and Corollary 1.3. Assume \(f \) has degree 2. If \(f \) has a simple zero in \(\mathbb{Z}_p \), then \(R_f \) is dense in \(\mathbb{Q}_p \) by Corollary 1.3. On the other hand, if \(f \) has no simple zeros in \(\mathbb{Z}_p \), then we have two cases. In the first case, \(f \) has no zeros in \(\mathbb{Z}_p \). Then, by Lemma 1.1, \(R_f \) is not dense in \(\mathbb{Q}_p \). In the second case, \(f \) has a zero in \(\mathbb{Z}_p \) with multiplicity 2, i.e., \(f(x) = a(x - z)^2 \), for some \(a, z \in \mathbb{Z}_p \) with \(a \neq 0 \). Consequently, \(R_f \) is not dense in \(\mathbb{Q}_p \), since the \(p \)-adic valuation of each element of \(R_f \) is divisible by 2. \(\square \)

For polynomials of higher degrees, we cannot exploit Lemma 1.1 and Corollary 1.3 to determine if \(R_f \) is dense in \(\mathbb{Q}_p \). For instance, consider the case of a polynomial of degree 3 with a double root in \(\mathbb{Z}_p \) and the other root not in \(\mathbb{Z}_p \). However, if we consider polynomials having all their roots in \(\mathbb{Z}_p \), then we have the following result.

Proposition 1.5. Let \(f \in \mathbb{Z}[X] \) be a nonconstant polynomial splitting in \(\mathbb{Z}_p \) and of degree less than 31. Then, \(R_f \) is not dense in \(\mathbb{Q}_p \) if and only if there exists an integer \(n > 1 \) which divides the multiplicity of each root of \(f \).

Proof. Let \(\mu_1, \ldots, \mu_s \) be the multiplicities of the roots of \(f \). If there exists an integer \(n > 1 \) dividing all \(\mu_1, \ldots, \mu_s \), then \(f = ag^n \), for some \(a \in \mathbb{Z} \setminus \{0\} \) and \(g \in \mathbb{Z}[X] \). Consequently, \(R_f \) is not dense in \(\mathbb{Q}_p \), since the \(p \)-adic valuation of each element of \(R_f \) is divisible by \(n \). Now suppose that there exists no integer \(n > 1 \) dividing all \(\mu_1, \ldots, \mu_s \). We shall prove that \(\gcd(\mu_i, \mu_j) = 1 \) for some \(i, j \). In this way, by Theorem 1.2, it follows that \(R_f \) is dense in \(\mathbb{Q}_p \). For the sake of contradiction, assume \(\gcd(\mu_i, \mu_j) > 1 \) for all \(i, j \). In particular, we have \(s \geq 3 \), and that each \(\mu_i \) has at least two distinct prime factors. Also, at least one of \(\mu_1, \ldots, \mu_s \) is odd. Without loss of generality, we can assume \(\mu_1 \) odd. Thus \(\mu_1 \in \{15, 21\} \), and at least one of \(\mu_2, \ldots, \mu_s \) is not divisible by 3. Without loss of generality, we can assume \(\mu_2 \) not divisible by 3. Thus \(\mu_2 \in \{10, 14\} \). Since \(\mu_3 \) has at least two distinct prime factors, \(\mu_3 \geq 6 \) and consequently \(\deg f = \mu_1 + \cdots + \mu_s > 30 \), absurd. \(\square \)

Remark 1.6. Proposition 1.5 is optimal in the sense that there exists a polynomial \(f \in \mathbb{Z}[X] \) of degree 31, splitting in \(\mathbb{Z}_p \), with the greatest common divisor of the multiplicities of its roots equal to 1, but such that \(R_f \) is not dense in \(\mathbb{Q}_p \). Indeed, consider

\[
 f(X) = (X + 1)^5(X + 2)^{10}(X + 3)^{15}.
\]

Then, for \(p > 2 \) (respectively \(p = 2 \)) the \(p \)-adic valuation of each element of \(f(\mathbb{Z}^+) \) is of the form \(6n \), \(10n \), or \(15n \) (respectively \(10n, 6n + 15 \), or \(15n + 6 \)), for some integer \(n \geq 0 \). Therefore, no element of \(R_f \) has \(p \)-adic valuation equal to 1 (respectively 2), and \(R_f \) is not dense in \(\mathbb{Q}_p \).

Remark 1.7. Using the same reasonings as in the proof of Proposition 1.5, one can prove a slightly more general statement: Given \(f = gh \), where \(g, h \in \mathbb{Z}[X] \) are such that \(g \) splits in \(\mathbb{Z}_p \), \(1 \leq \deg g \leq 30 \), and the \(p \)-adic valuation of \(h \) is constant, we have that \(R_f \) is not dense in \(\mathbb{Q}_p \) if and only if there does not exist an integer \(n > 1 \) dividing all the multiplicities of the roots of \(g \).

For integers \(m, n \geq 2 \), define the set

\[
 S^m_n := \{x^m_1 + \cdots + x^m_n : x_1, \ldots, x_m \in \mathbb{Z}_{\geq 0}\}.
\]

The authors of [5] considered \(n = 2, 3 \) and proved the following results [5, Theorems 4.1 and 4.2]. (Actually, there is a small error, here corrected, in [5, Theorem 4.2], see Remark 1.15 below.)
Theorem 1.8. For all prime numbers p, we have:
(a) $R(S^2_p)$ is dense in \mathbb{Q}_p if and only if $p \equiv 1 \pmod{4}$.
(b) $R(S^2_m)$ is dense in \mathbb{Q}_p for all integers $m \geq 3$.
(c) $R(S^4_m)$ is dense in \mathbb{Q}_p for all integers $m \geq 2$.

For all integers $n,b \geq 2$, let $\gamma(n,b)$ denote the smallest positive integer g such that for every $a \in \mathbb{Z}$ the equation
\[X_1^n + \cdots + X_g^n \equiv a \pmod{b} \]
has a solution. Furthermore, let $\theta(n,b)$ be the smallest positive integer g such that for $a = 0$ the equation (1) has a solution with at least one of X_1, \ldots, X_g coprime with b. The quantities $\gamma(n,b)$, $\theta(n,b)$ have been studied in regard to analogs of Waring’s problem modulo p (see, e.g., [13, 14]).

We give an effective criterion to establish if $R(S^m_n)$ is dense in \mathbb{Q}_p. We postpone its proof to Section 3.

Theorem 1.9. Let $m,n \geq 2$ be integers, let p be a prime number, and put $k := \nu_p(n)$.

(a) If $m \geq \theta(n,p^{2k+1})$, then $R(S^m_n)$ is dense in \mathbb{Q}_p.
(b) If $m < \theta(n,p^{2k+1})$ and $(n,p) \notin \{(2,2), (4,2), (8,2), (16,2)\}$, then $R(S^m_n)$ is not dense in \mathbb{Q}_p.
(c) $R(S^4_n)$ is dense in \mathbb{Q}_2 if and only if $m \geq 3$.
(d) $R(S^4_m)$ is dense in \mathbb{Q}_2 if and only if $m \geq 8$.
(e) $R(S^8_m)$ is dense in \mathbb{Q}_2 if and only if $m \geq 16$.
(f) $R(S^{16}_m)$ is dense in \mathbb{Q}_2 if and only if $m \geq 64$.

Example 1.10. Let us consider the denseness of $R(S^6_m)$ in \mathbb{Q}_{11}. In order to apply Theorem 1.9, we have to compute $\theta(6,11)$. The nonzero sixth powers modulo 11 are 1, 3, 4, 5, and 9. Hence, the minimum positive integer g such that the equation $X_1^6 + \cdots + X_g^6 \equiv 0 \pmod{11}$ has a solution, with at least one of X_1, \ldots, X_g not divisible by 11, is $\theta(6,11) = 3$. Consequently, by points (a) and (b) of Theorem 1.9, we have that $R(S^6_m)$ is dense in \mathbb{Q}_{11} if and only if $m \geq 3$.

Example 1.11. Let us consider the denseness of $R(S^{10}_m)$ in \mathbb{Q}_2. In order to apply Theorem 1.9, we have to compute $\theta(10,8)$. We have $x^{10} \equiv 1 \pmod{8}$ for each odd integer x. Hence, it follows easily that $\theta(10,8) = 8$. Consequently, by points (a) and (b) of Theorem 1.9, we have that $R(S^{10}_m)$ is dense in \mathbb{Q}_2 if and only if $m \geq 8$.

For $m = 2$, we have the following corollary.

Corollary 1.12. Let $n \geq 2$ be an integer, let p be a prime number, and put $k = \nu_p(n)$. Then $R(S^2_n)$ is dense in \mathbb{Q}_p if and only if -1 is an nth power modulo p^{2k+1}. In particular, $R(S^2_n)$ is dense in \mathbb{Q}_p whenever n is odd.

Proof. First, assume $p = 2$ and $n \in \{2,4,8,16\}$. Then, it can be easily checked that -1 is not an nth power modulo p^{2k+1}. By Theorem 1.8, $R(S^2_2)$ is not dense in \mathbb{Q}_2 and, since $S^2_2 \subseteq S^2_4$, we get that $R(S^2_2)$ is not dense in \mathbb{Q}_p. Now assume $(n,p) \notin \{(2,2),(4,2),(8,2),(16,2)\}$. By Theorem 1.9, we have that $R(S^2_n)$ is dense in \mathbb{Q}_p if and only if there exist integers $0 \leq x_1, x_2 < p^{2k+1}$, not both divisible by p, such that $x_1^n + x_2^n$ is divisible by p^{2k+1}. It easy to see that this last condition is equivalent to the -1 being an nth power modulo p^{2k+1}. \qed

In [5, Problem 4.3] it is asked about the denseness in \mathbb{Q}_p of $R(S^4_m)$ and $R(S^5_m)$. From Corollary 1.12, we have that $R(S^5_m)$ is dense in \mathbb{Q}_p for all integers $m \geq 2$ and prime numbers p. Regarding $R(S^5_m)$, the situation is more complicated. Theorem 1.9(d) already covers the case $p = 2$. For $p > 2$ we have the following result.
Theorem 1.13. For all prime numbers $p > 2$, we have:

(a) $R(S^4_1)$ is dense in \mathbb{Q}_p if and only if $p \equiv 1 \pmod{8}$.

(b) $R(S^4_2)$ is dense in \mathbb{Q}_p if and only if $p \not\equiv 5, 29$.

(c) $R(S^4_3)$ is dense in \mathbb{Q}_p if and only if $p \not\equiv 5$.

(d) $R(S^4_m)$ is dense in \mathbb{Q}_p for all integers $m \geq 5$.

Proof. By Corollary 1.12, $R(S^4_2)$ is dense in \mathbb{Q}_p if and only if -1 is a fourth power modulo p. In turn, this is well known to be equivalent to $p \equiv 1 \pmod{8}$. Hence, (a) is proved. Substituting $a = -1$ into (1), the bound $\theta(n, b) \leq \gamma(n, b) + 1$ follows. From [13, Theorem 3'], we have that $\gamma(4, p) = 2$ for all prime numbers $p > 41$. Hence, $\theta(4, p) \leq 3$ for all prime numbers $p > 41$. Then, a computation shows that $\theta(4, p) \leq 3$ for all prime numbers $p \not\equiv 5, 29$. Precisely, $\theta(4, 5) = 5$ and $\theta(4, 29) = 4$. Now the claims (b), (c), and (d) follow from Theorem 1.9. \hfill \square

We leave the following general question to the readers.

Question 1.14. Given a prime number p and a polynomial $f \in \mathbb{Z}[X]$, is there an effective criterion to establish if R_f is dense in \mathbb{Q}_p? What about multivariate polynomials?

Remark 1.15. In [5, Theorem 4.2] it is stated that $R(S^3_2)$ is not dense in \mathbb{Q}_3. This is not correct, since $R(S^3_2)$ is dense in \mathbb{Q}_3 in light of Corollary 1.12. The mistake in the proof of [5, Theorems 4.2] is when, at point (b2), it is asserted that: “If $x/y \in R(S^3_2)$ is sufficiently close to 3 in \mathbb{Q}_3, then $\nu_3(x) = \nu_3(y) + 1$. Without loss of generality, we may suppose that $\nu_3(x) = 1$ and $\nu_3(y) = 0$.” This is not true, because if y is the sum of two cubes, then there is no guarantee that $y/3^{\nu_3(y)}$ is still the sum of two cubes. For instance, if $y = 1^3 + 5^3$ then $y/3^{\nu_3(y)} = 14$ is not the sum of two cubes.

Notation. For each prime number p, let ν_p denote the usual p-adic valuation, with the convention $\nu_p(0) := +\infty$. For integers a and $m > 0$, we write $(a \pmod{m})$ for the unique integer $r \in [-b/2, b/2]$ such that $a - r$ is divisible by m.

2. PROOF OF THEOREM 1.2

We have to prove that for all $r \in \mathbb{Q}_p$ and $u > 0$ there exist $x_1, x_2 \in \mathbb{Z}^+$ such that $f(x_2) \neq 0$ and

$$\nu_p\left(\frac{f(x_1)}{f(x_2)} - r\right) > u.$$

Clearly, since \mathbb{Q}_p^* is dense in \mathbb{Q}_p, it is enough to consider $r \neq 0$. Furthermore, since \mathbb{Z}^+ is dense in \mathbb{Z}_p and f is continuous, for sufficiently large $x_1, x_2 \in \mathbb{Z}_p$. By hypothesis, for $i = 1, 2$, we have $f(X) = (X - z_i)^{\mu_i}g_i(X)$, where $g_i : \mathbb{Z}_p \to \mathbb{Q}_p$ is an analytic function such that $g_i(z_i) \neq 0$. Put $x_i := y_1^{k_i} + z_i$, for $i = 1, 2$, where $y_1, y_2 \in \mathbb{Z}_p \setminus \{0\}$ and $k_1, k_2 \in \mathbb{Z}^+$ will be chosen later. Without loss of generality, we can assume $\nu_p(g_1(z_1)) \leq \nu_p(g_2(z_2))$. Thus, setting $G := g_2(z_2)/g_1(z_1)$, we have $G \in \mathbb{Z}_p \setminus \{0\}$. Since g_1, g_2 are continuous, for sufficiently large k_1, k_2 we have

$$\nu_p\left(G \cdot \frac{g_1(x_1)}{g_2(x_2)} - 1\right) > u - \nu_p(r),$$

In particular, it is implicit that $g(x_2) \neq 0$ and consequently $f(x_2) \neq 0$. We fix k_1, k_2 such that

$$k_1 \mu_1 - k_2 \mu_2 = \nu_p(r),$$

and (2) holds. This is possible thanks to the condition $\gcd(\mu_1, \mu_2) = 1$. Indeed, by Bézout’s lemma, the quantity $k_1 \mu_1 - k_2 \mu_2$ can be equal to any integer with k_1 and k_2 arbitrarily large (if $k_1 \mu_1 - k_2 \mu_2 = a$, then $(k_1 + K \mu_2) \mu_1 - (k_2 + K \mu_1) \mu_2 = a$, for any integer K).

Again by Bézout’s lemma, there exist integers $h_1, h_2 \geq 0$ such that $h_1 \mu_1 - h_2 \mu_2 = 1$. We set $y_i = s^{k_i}$, for $i = 1, 2$, where $s := \exp(-\nu_p(r)^2 G)$. Note that $y_1, y_2 \in \mathbb{Z}_p \setminus \{0\}$, as required.
Hence, we have
\[
\frac{f(x_1)}{f(x_2)} = \frac{(x_1 - z_1)^{\mu_1}}{(x_2 - z_2)^{\mu_2}} \frac{g_1(x_1)}{g_2(x_2)} = p^{k_1 \mu_1 - k_2 \mu_2} \frac{g_1(x_1)}{g_2(x_2)}
\]
\[
= p^{\nu_p(r)} s^{h_1 \mu_1 - h_2 \mu_2} \frac{g_1(x_1)}{g_2(x_2)} = p^{\nu_p(r)} s \frac{g_1(x_1)}{g_2(x_2)} = rG \cdot \frac{g_1(x_1)}{g_2(x_2)},
\]
so that, recalling (2), we get
\[
\nu_p \left(\frac{f(x_1)}{f(x_2)} - r \right) = \nu_p \left(r \left(G \cdot \frac{g_1(x_1)}{g_2(x_2)} - 1 \right) \right) > u,
\]
as desired.

3. Proof of Theorem 1.9

(a) Suppose that there exist integers 0 ≤ x_1, ..., x_m < p^{2k+1}, not all divisible by p, such that x_1^n + ... + x_m^n is divisible by p^{2k+1}. Up to reordering x_1, ..., x_m, we can assume that p \nmid x_1. Put f(X) = X^n + x_2^n + ... + x_m^n, so that f'(X) = nX^{n-1}. In particular, all the roots of f are simple. Since p \nmid x_1, we have
\[
\nu_p(f(x_1)) ≥ 2k + 1 > 2k = 2\nu_p(f'(x_1)),
\]
so that, by Hensel’s lemma [4, Ch. 4, Lemma 3.1], f has a simple root in \(\mathbb{Z}_p \). Hence, by Corollary 1.3, \(R_f \) is dense in \(\mathbb{Q}_p \). Clearly, \(R_f \subseteq R(S_m^n) \), so that \(R(S_m^n) \) is dense in \(\mathbb{Q}_p \).

(b) Suppose that there are no integers x_1, ..., x_m as before, and that
\[
(n, p) \notin \{(2, 2), (4, 2), (8, 2), (16, 2)\}.
\]
We shall prove that 4k+1 < n. For the sake of contradiction, suppose 4k+1 ≥ n. Since n ≥ 2, we have k ≥ 1. Also, we have 4k+1 ≥ p^k, which implies p ≤ 5. Now, taking into account (3), it can be readily checked that
\[
(n, p) \in \{(3, 3), (9, 3), (5, 5)\}.
\]
But 3^3 | (1^3 + 3^3), 3^5 | (1^9 + 26^9), and 5^3 | (1^5 + 4^5), contradicting the nonexistence of x_1, ..., x_m.

Let y_1, ..., y_m ≥ 0 be integers, not all equal to zero. Put \(\mu := \min \{ \nu_p(y_i) : i = 1, ..., m \} \), \(I := \{ i : \nu_p(y_i) = \mu \} \), and \(J := \{ 1, ..., m \} \setminus I \). Also, put \(z_i := y_i/p^n \) for \(i \in I \), so that \(z_i \) is an integer not divisible by p. The nonexistence of x_1, ..., x_m implies that
\[
\nu_p \left(\sum_{i \in I} z_i^n \right) ≤ 2k.
\]
Therefore, since 2k < n, we have
\[
\nu_p \left(\sum_{i \in I} y_i^n \right) = \mu n + \nu_p \left(\sum_{i \in I} z_i^n \right) ≤ \mu n + 2k < (\mu + 1)n ≤ \nu_p \left(\sum_{j \in J} y_j^n \right),
\]
and consequently
\[
\nu_p(y_1^n + ... + y_m^n) = \nu_p \left(\sum_{i \in I} y_i^n \right) = \mu n + \nu_p \left(\sum_{i \in I} z_i^n \right),
\]
which in turn, by (4), implies that
\[
(\nu_p(y_1^n + ... + y_m^n) \mod n) \in \{0, ..., 2k\}.
\]
Thus, for each \(a \in R(S_m^n) \setminus \{0\} \) we have
\[
(\nu_p(a) \mod n) \in \{-2k, ..., 2k\},
\]
that is, the p-adic valuations of the nonzero elements of \(R(S_m^n) \) belong to at most 4k+1 residue classes modulo n. Since 4k+1 < n, at least one residue class modulo n is missing and, a fortiori, \(R(S_m^n) \) is not dense in \(\mathbb{Q}_p \).
(c) The claim follows immediately from Theorem 1.8.

From now on, assume \(n = 2^k \), with \(k \in \{2, 3, 4\} \). Let \(T^m_n \) be the topological closure of \(S^m_n \) in \(\mathbb{Q}_2 \). Clearly, we have

\[
T^m_n = \{ x^n_0 + \cdots + x^n_m : x_1, \ldots, x_m \in \mathbb{Z}_2 \}.
\]

It is a standard exercise showing that the nonzero \(n \)th powers of \(\mathbb{Z}_2^* \) are exactly the elements of the form \(1 + 4ny \), with \(y \in \mathbb{Z}_2 \). As a consequence,

\[
T^1_n = \{ 2^{nv}(1 + 4ny) : v \in \mathbb{Z}_{\geq 0}, y \in \mathbb{Z}_2 \} \cup \{0\}.
\]

Let \(v_1, v_2 \geq 0 \), \(j \geq 1 \) be integers and \(y_1, y_2 \in \mathbb{Z}_2 \). If \(v_1 = v_2 \), then

\[
2^{nv_1}(j + 4ny_1) + 2^{nv_2}(1 + 4ny_2) = 2^{nv_1}(j + 1 + 4nz),
\]

where \(z := y_1 + y_2 \in \mathbb{Z}_2 \). If \(v_1 < v_2 \), then

\[
2^{nv_1}(j + 4ny_1) + 2^{nv_2}(1 + 4ny_2) = 2^{nv_1}(j + n),
\]

where \(z := y_1 + 2^{(v_2 - v_1) - k - 2}(1 + 4ny_2) \in \mathbb{Z}_2 \), since \(n = 2^k \geq k + 2 \). If \(v_1 > v_2 \), then

\[
2^{nv_1}(j + 4ny_1) + 2^{nv_2}(1 + 4ny_2) = 2^{nv_2}(1 + 4nz),
\]

where \(z := 2^{(v_1 - v_2) - k - 2}(j + 4ny_1) + y_2 \in \mathbb{Z}_2 \), again since \(n \geq k + 2 \).

Therefore, it follows easily by induction on \(m \) that

\[
T^m_n = \{ 2^{nv}(j + 4ny) : v \in \mathbb{Z}_{\geq 0}, j \in \{1, \ldots, m\}, y \in \mathbb{Z}_2 \} \cup \{0\}.
\]

(d) On the one hand, using (5), it can be checked quickly that \(15 \notin R(T^4_8) \). Hence, \(R(S^4_8) \) is not dense in \(\mathbb{Q}_2 \). On the other hand, we have

\[
2^{4v+7}(1 + 2y) = \frac{2^{4v}(8 + 16y)}{2^{4v} (2^{3-r} + 16 \cdot 0)} \in R(T^4_8),
\]

for all \(v \in \mathbb{Z}_{\geq 0} \), \(r \in \{0, 1, 2, 3\} \), and \(y \in \mathbb{Z}_2 \). Hence, \(\mathbb{Z}_p \subseteq R(T^4_8) \) and, since \(R(T^4_8) \) is closed by inversion, we get that \(R(T^4_8) = \mathbb{Q}_p \). Thus \(R(S^8_8) \) is dense in \(\mathbb{Q}_p \).

(e) On the one hand, by (5), the 2-adic valuation of each nonzero element of \(T^8_{15} \) is congruent to 0, 1, 2, or 3 modulo 8. Hence, \(R(T^8_{15}) \) contains no element with 2-adic valuation equal to 4, and consequently \(R(S^8_{15}) \) is not dense in \(\mathbb{Q}_2 \). On the other hand, we have

\[
2^{8v+7}(1 + 2y) = \frac{2^{8v}(16 + 32y)}{2^{8v} (2^{4-r} + 32 \cdot 0)} \in R(T^8_{16})
\]

and

\[
2^{8v+r+4}(1 + 2y) = \frac{2^{8v+r+1}(2^{r} + 32 \cdot 0)}{2^{8v} (16 + 32 \cdot 0)} \in R(T^8_{16})
\]

for all \(v \in \mathbb{Z}_{\geq 0} \), \(r \in \{0, 1, 2, 3, 4\} \), and \(y \in \mathbb{Z}_2 \). Hence, \(\mathbb{Z}_p \subseteq R(T^8_{16}) \) and, since \(R(T^8_{16}) \) is closed by inversion, we get that \(R(T^8_{16}) = \mathbb{Q}_p \). Thus \(R(S^8_{16}) \) is dense in \(\mathbb{Q}_p \).

(f) On the one hand, by (5), the 2-adic valuation of each nonzero element of \(T^{16}_{63} \) is congruent to 0, 1, 2, 3, 4, or 5 modulo 16. Hence, \(R(T^{16}_{63}) \) contains no element with 2-adic valuation equal to 6, and consequently \(R(S^{16}_{63}) \) is not dense in \(\mathbb{Q}_2 \). On the other hand, \(2^9 \) divides \(5^{16} + 1^{16} + \cdots + 1^{16} \) (63 times \(1^{16} \)). Hence, by point (a), we get that \(R(S^{16}_{63}) \) is dense in \(\mathbb{Q}_2 \).

Acknowledgments. The authors thanks the anonymous referee for carefully reading the paper. N. Murru and C. Sanna are members of the INdAM group GNSAGA.
ON THE p-ADIC DENSENESS OF THE QUOTIENT SET OF A POLYNOMIAL IMAGE

References

Jagiellonian University, Faculty of Mathematics and Computer Science, Kraków, Poland
E-mail address: piotrmiska91@gmail.com

Università degli Studi di Torino, Department of Mathematics, Torino, Italy
E-mail address: nadir.murru@unito.it
URL: http://orcid.org/0000-0003-0509-6278

Università degli Studi di Torino, Department of Mathematics, Torino, Italy
E-mail address: carlo.sanna.dev@gmail.com
URL: http://orcid.org/0000-0002-2111-7596