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The formulation of a family of advanced one-dimensional finite elements for the geometrically nonlinear static analysis of beam-
like structures is presented in this paper. The kinematic field is axiomatically assumed along the thickness direction via a Unified
Formulation (UF). The approximation order of the displacement field along the thickness is a free parameter that leads to several
higher-order beam elements accounting for shear deformation and local cross-sectional warping.Thenumber of nodes per element
is also a free parameter. The tangent stiffness matrix of the elements is obtained via the Principle of Virtual Displacements. A
total Lagrangian approach is used and Newton-Raphson method is employed in order to solve the nonlinear governing equations.
Locking phenomena are tackled by means of a Mixed Interpolation of Tensorial Components (MITC), which can also significantly
enhance the convergence performance of the proposed elements. Numerical investigations for large displacements, large rotations,
and small strains analysis of beam-like structures for different boundary conditions and slenderness ratios are carried out, showing
that UF-based higher-order beam theories can lead to a more efficient prediction of the displacement and stress fields, when
compared to two-dimensional finite element solutions.

1. Introduction

Many structural elements, such as aircraft wings, rotor
blades, robot arms, or structures in civil construction, can
be idealised as beams. Furthermore, the hypothesis that the
unstrained and deformed configurations are coincident at
equilibrium is often not true and geometrical nonlinearities
cannot be neglected. Engineering fields such as aeronautics,
space, and automotive need more and more accurate models
since an accurate prediction of the mechanics of beams
plays a paramount role in their optimal design. Therefore,
geometrically nonlinear modelling of beams represents an
important and up-to-date research topic.

A general overview on linear and nonlinear structural
mechanics can be found in Nayfeh and Pai [2]. Nonlin-
ear structural analysis via finite elements was thoroughly
discussed in Crisfield [3] and Bathe [4]. Hodges et al. [5]
provided a variational-asymptotical method that allowed

obtaining an asymptotically correct strain energy for the
approximation of stiffness coefficients for the prediction
of geometrically nonlinear behaviour of composite beams.
A paralinear isoparametric element for the geometrically
nonlinear analysis of elastic two-dimensional bodies was
presented by Wood and Zienkiewicz [6]. Newton-Raphson
method was used in order to solve the nonlinear equilibrium
equations. Surana [7] provided a geometrically nonlinear
formulation for two-dimensional curved beams. A total
Lagrangian approach was used and the beam element was
derived using linear, paralinear, and cubic-linear plane stress
elements. Dufva et al. [8] presented a two-dimensional shear-
deformable beam element for large deformation analyses.
Cubic interpolation was used for the rotation angles caused
by bending and linear interpolation polynomials were used
for the shear deformations. The absolute nodal coordinate
formulation was used for the finite element discretization
along the beam axis. Further works on large rotations and
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large displacements analysis of shear-deformable beams by
using an absolute nodal coordinate formulation accounting
for a nonrigid cross-sectional kinematics were carried out by
Dufva et al. [9] and Omar and Sharana [10]. A geometric and
material nonlinear analysis was carried out by Chan [11] for
beam-columns and frames. An optimum nonlinear solution
technique within the Newton-Raphson scheme was obtained
by minimizing the residual displacements. The evaluation of
geometrically exact beam theories andmodels based on a sec-
ond order approximation of finite rotations for the buckling
and postbuckling analysis of beam structures was carried out
by Ibrahimbegovic et al. [12]. Yu et al. [13] developed a gen-
eralised Vlasov theory for composite beams by means of the
variational-asymptotic method.The geometrically nonlinear,
three-dimensional elasticity problem was split into a linear,
two-dimensional cross-sectional analysis and a nonlinear
one-dimensional beam analysis. A novel two-dimensional
finite element solution for the nonlinear buckling and wrin-
kling of sandwich plates has been developed by Yu et al. [14].
Kirchoff ’s theory was adopted for the kinematics of the skins,
whereas a higher-order displacement field was considered
for the core mechanics. The nonlinear governing equations
were derived by the Principle of Virtual Displacements and
solved via the Asymptotic Numerical Method (ANM). Based
on this work, Huang et al. [15] proposed a more effective two-
dimensional model by using the technique of slowly variable
Fourier coefficients. Garcia-Vallejo et al. [16] introduced a
new absolute nodal coordinate finite element together with
a reduced integration procedure in order to mitigate the
locking phenomena in dynamic structural problems.

A static analysis of beam-like structures via a hierarchical
one-dimensional approach is addressed in this paper. The
kinematics along the thickness is axiomatically assumed via a
Unified Formulation (UF). UF had been previously proposed
for plate and shell structures; see Carrera [17]; and it has been
applied to the study of beams byCarrera et al. [18] andCarrera
and Giunta [19]. Thanks to this approach, the derivation
of a family of higher-order beam theories is made formally
general regardless of the through-the-thickness approximat-
ing functions and the approximation order. UF has been
extended to large deflections and postbuckling analysis of
beam structures in recent works by Pagani and Carrera
[20, 21], where the capability of such approach to investigate
global and local deformations in solid and thin-walled beam
structures was demonstrated by using Lagrange polynomials
as approximating functions for the cross-section kinematics
within a layer-wise approach. An elastoplastic analysis via
UF-based one-dimensional finite elements has been carried
out by Carrera et al. [22], showing that such formulation can
lead to a 3D-like accuracy in terms of displacements and
stresses for compact and thin-walled structures subjected to
localized loadings. Applications of the UF approach for the
investigation of multiphysics problems, vibration analyses,
and static structural analyses of composite structures can be
found in Carrera et al. [23], Biscani et al. [24], Koutsawa et al.
[25], and Giunta et al. [26–29]. In this study, a large displace-
ments, large rotations, and small strains analysis of beam-
like structures are carried out using UF-based finite elements
and Taylor expansion of the displacement field along the
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ℎ

Figure 1: Beam geometry and reference system.

thickness using an equivalent single-layer formulation. The
approximation order is a free parameter and, therefore,
several kinematic models can be straightforwardly obtained,
accounting for nonclassical effects, such as transverse shear
and local cross-sectional warping. The number of nodes per
element is also not a priori fixed. Linear, quadratic, and cubic
elements are formulated. The tangent stiffness matrix of the
element is derived from the weak form of the governing
equations obtained via the Principle of Virtual Displacements
(PVD). A total Lagrangian (TL) formulation is used and
the global problem is solved by classical Newton-Raphson
prediction/correction method. As far as the stress prediction
is concerned, once the second Piola-Kirchoff stresses have
been obtained by the TL formulation, they are transformed
into the trueCauchy stresses to have a direct comparisonwith
results coming fromupdated Lagrangian formulations imple-
mented in the commercial software ANSYS. As opposed to
the Lagrange layer-wise approximation [20, 21], in both linear
and nonlinear analyses, the use of Taylor polynomials allows
an enrichment of the cross-sectional kinematics by simply
increasing the order N and with no need for additional cross-
sectional nodes. This feature makes Taylor-based refined
models particularly suitable for the analysis of multilayered
structures in the framework of an equivalent single-layer
approach that will be presented in a future work. As further
novelties with respect to [20, 21], the correction of shear
and membrane locking phenomena in the nonlinear regime
via the MITC method has been introduced, allowing an
improved convergence performance of the proposed finite
elements in slender structures. Finally, a detailed descrip-
tion of the stress analysis under large displacements, not
often encountered in the literature, has been also provided,
together with the discussion of some limitations of the
proposed formulation with respect to finite elements with
large strains capabilities.

2. Preliminaries

A beam is a structure whose axial extension (𝑙) is predom-
inant with respect to any other dimension orthogonal to it.
The cross-section (Ω = ℎ × 𝑏) is defined by intersecting
the beam with planes orthogonal to its axis. Figure 1 presents
the beam geometry and the reference system, being ℎ and𝑏, respectively, the beam’s thickness and width. A fixed
Cartesian reference system is adopted. The 𝑥 coordinate is
coincident with the axis of the beam and it is bounded such
that 0 ≤ 𝑥 ≤ 𝑙, whereas the 𝑦- and 𝑧-axis are two orthogonal
directions laying on Ω. The displacement field in a two-
dimensional approach is

u𝑇 (𝑥, 𝑧) = {𝑢 (𝑥, 𝑧) 𝑤 (𝑥, 𝑧)} (1)
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where 𝑢 and 𝑤 are the displacement components along
the 𝑥- and 𝑧-axis, respectively. Superscript ‘𝑇’ represents
the transposition operator. For the sake of convenience, the
displacements gradient vector 𝜃 is introduced:

𝜃 = {𝑢,𝑥 𝑢,𝑧 𝑤,𝑥 𝑤,𝑧} (2)

Subscripts ‘𝑥’ and ‘𝑧’, when preceded by comma, represent
derivation versus the corresponding spatial coordinate.

Geometrical nonlinearity is accounted for in a Green-
Lagrange sense. Large displacements and rotations are, there-
fore, considered. The strain vector E is

𝐸𝑥𝑥 = 𝑢,𝑥 + 12 (𝑢2,𝑥 + 𝑤2,𝑥)
𝐸𝑧𝑧 = 𝑤,𝑧 + 12 (𝑢2,𝑧 + 𝑤2,𝑧)
𝐸𝑥𝑧 = 𝑢,𝑧 + 𝑤,𝑥 + 𝑢,𝑥𝑢,𝑧 + 𝑤,𝑥𝑤,𝑧

(3)

Equation (3) can be written in the following matrix form:

E = [H + 12A (𝜃)] 𝜃 (4)

where

E𝑇 = {𝐸𝑥𝑥 𝐸𝑧𝑧 𝐸𝑥𝑧} (5)

H = [[
[

1 0 0 0
0 0 0 1
0 1 1 0

]]
]

(6)

A (𝜃) = [[
[

𝑢,𝑥 0 𝑤,𝑥 0
0 𝑢,𝑧 0 𝑤,𝑧
𝑢,𝑧 𝑢,𝑥 𝑤,𝑧 𝑤,𝑥

]]
]

(7)

A virtual variation of the strain vector cam be written as (see
Crisfield [3])

𝛿E = 𝛿 {[H + 12A (𝜃)] 𝜃} = [H + A (𝜃)] 𝛿𝜃 (8)

where 𝛿 stands for the virtual variation operator.
The vectorial form of second Piola-Kirchhoff ’s stress

tensor S is

S𝑇 = {𝑆𝑥𝑥 𝑆𝑧𝑧 𝑆𝑥𝑧} (9)

The material is supposed to withstand small strains. Hooke’s
law is, therefore, considered:

S = QE (10)

In the case of an anisotropic material, the reduced material
stiffness matrix Q reads

Q = [[
[

𝑄11 𝑄13 𝑄15
𝑄13 𝑄33 𝑄35
𝑄15 𝑄35 𝑄55

]]
]

(11)

Coefficients 𝑄𝑖𝑗 are not reported here for the sake of brevity.
They can be found in Reddy [30]. The Cauchy stress tensor 𝜎
can be derived from the deformation tensor F and the Piola-
Kirchoff stress tensor through the following relation:

𝜎 = 1𝐽F[
𝑆𝑥𝑥 𝑆𝑥𝑧
𝑆𝑥𝑧 𝑆𝑧𝑧]F

𝑇 (12)

where

F = [1 + 𝑢,𝑥 𝑢,𝑧
𝑤,𝑥 1 + 𝑤,𝑧] (13)

and J = det(F) is the determinant of F. The weak form of the
governing equations is obtained by means of the Principle of
Virtual Displacement:

𝛿L = 𝛿L𝑖𝑛𝑡 − 𝛿L𝑒𝑥𝑡 = 0 (14)

whereL is the total work andL𝑖𝑛𝑡 the internal one:

𝛿L𝑖𝑛𝑡 = ∫
𝑉0

𝛿E𝑇S 𝑑𝑉 (15)

𝑉0 is the volume of the reference undeformed configuration.
L𝑒𝑥𝑡 is the work done by the external forces. An infinitesimal
variation of the total work reads

𝑑 (𝛿L) = ∫
𝑉0

[𝛿E𝑇𝑑S + 𝑑 (𝛿E𝑇) S] 𝑑𝑉 (16)

After few manipulations (see Crisfield [3]), (16) can be
rewritten in the following form:

𝑑 (𝛿L) = ∫
𝑉0

[𝛿E𝑇Q𝑑E + 𝛿𝜃𝑇Ŝ𝑑𝜃] 𝑑𝑉 (17)

where Ŝ ∈ R4×4 is

Ŝ =
[[[[[
[

𝑆𝑥𝑥 𝑆𝑥𝑧 0 0
𝑆𝑥𝑧 𝑆𝑧𝑧 0 0
0 0 𝑆𝑥𝑥 𝑆𝑥𝑧
0 0 𝑆𝑥𝑧 𝑆𝑧𝑧

]]]]]
]

(18)

The variation of the virtual work is finally written in terms of
the actual and virtual variation of the gradient vector:

𝑑 (𝛿L)
= ∫
𝑉0

𝛿𝜃𝑇 {[H𝑇 + A𝑇 (𝜃)]Q [H + A (𝜃)] + Ŝ} 𝑑𝜃𝑑𝑉 (19)

3. Hierarchical Beam Elements

3.1. Kinematic and Finite Element Approximations. Within
the assumed Unified Formulation and the finite element
framework, the displacement components are approximated
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along the beam thickness via the base functions 𝐹𝜎(𝑧) and
along the axis by the shape functions 𝑁𝑗(𝑥):
𝑢 (𝑥, 𝑧) = 𝐹𝜎 (𝑧)𝑁𝑗 (𝑥) 𝑞𝑢𝜎𝑗
𝑤 (𝑥, 𝑧) = 𝐹𝜎 (𝑧)𝑁𝑗 (𝑥) 𝑞𝑤𝜎𝑗

with 𝜎 = 1, 2, . . . , 𝑁𝑢, 𝑗 = 1, 2, . . . ,𝑁𝑒𝑛
(20)

where 𝑞𝑛𝜎𝑗 : 𝑛 = 𝑢,𝑤 are the nodal unknowns. Einstein’s
compact notation is used in (20): a repeated index implicitly
implies summation over its variation range.𝑁𝑢 is the number
of terms accounted in the through-the-thickness expansion
and it is arbitrary. Index 𝑗 varies over the element number of
nodes 𝑁𝑒𝑛 and it is also a free parameter of the formulation.
Linear, quadratic, and cubic elements along the beam axis
are considered. These elements are addressed by “B2”, “B3”,
and “B4”, respectively. The finite element shape functions
approximate the displacements along the beam axis in a𝐶0 sense up to an order 𝑁𝑛 − 1. For the sake of brevity,
these functions are not reported here, but they can be found
in Bathe [4]. Taylor polynomials are used as the class of
expansion functions 𝐹𝜎(𝑧). The generic explicit form of the
displacement field expanded via𝑁-order Taylor polynomials
is given by

𝑢𝑥 = 𝑢𝑥1 + 𝑢𝑥2𝑧 + 𝑢𝑥3𝑧2 + ⋅ ⋅ ⋅ + 𝑢𝑥(𝑁+1)𝑧𝑁
𝑢𝑧 = 𝑢𝑧1 + 𝑢𝑧2𝑧 + 𝑢𝑧3𝑧2 + ⋅ ⋅ ⋅ + 𝑢𝑧(𝑁+1)𝑧𝑁

(21)

𝑁 is the order of the approximating polynomials along the
thickness and it is a free parameter of the formulation. By
this approach, several displacement-based theories and finite
elements accounting for nonclassical effects are straightfor-
wardly derived. By replacing (20) within (2), the kinematic
and finite element approximation of the displacements gra-
dient vector reads
𝜃 = {𝐹𝜎𝑁𝑗,𝑥𝑞𝑢𝜎𝑗 𝐹𝜎,𝑧𝑁𝑗𝑞𝑢𝜎𝑗 𝐹𝜎𝑁𝑗,𝑥𝑞𝑤𝜎𝑗 𝐹𝜎,𝑧𝑁𝑗𝑞𝑤𝜎𝑗}
= G𝜎𝑗q𝜎𝑗

(22)

whereG𝜎𝑗 ∈ R4×2 and q𝜎𝑗 ∈ R2×1 are

G𝜎𝑗 =
[[[[[
[

𝐹𝜎𝑁𝑗,𝑥 0
𝐹𝜎,𝑧𝑁𝑗 0
0 𝐹𝜎𝑁𝑗,𝑥0 𝐹𝜎,𝑧𝑁𝑗

]]]]]
]

(23)

and
q𝑇𝜎𝑗 = {𝑞𝑢𝜎𝑗 𝑞𝑤𝜎𝑗} (24)

3.2. Tangent Stiffness Matrix. Once (22) is replaced within
(19), the variation of the total virtual work reads
𝑑 (𝛿L𝑒)

= 𝛿q𝑇𝜏𝑖 ∫
𝑉𝑒0

G𝑇𝜏𝑖 {[H𝑇 + A𝑇 (𝜃)]Q [H + A (𝜃)] + Ŝ}
⋅ G𝜎𝑗𝑑𝑉𝑑q𝜎𝑗 = 𝛿q𝑇𝜏𝑖 (K𝑒𝑙𝜏𝜎𝑖𝑗 + K𝑒𝑡1𝜏𝜎𝑖𝑗 + K𝑒𝑡2𝜏𝜎𝑖𝑗) 𝑑q𝜎𝑗

(25)

where the superscript ‘e’ refers to the considered element,𝑉𝑒0 = 𝑙𝑒 ⋅ 𝑏𝑒 ⋅ ℎ𝑒 is the element volume at the reference
unstrained configuration, and K𝑒𝑙𝜏𝜎𝑖𝑗 K

𝑒𝑡1
𝜏𝜎𝑖𝑗 K

𝑒𝑡2
𝜏𝜎𝑖𝑗 ∈ R2×2 are

the “fundamental nuclei” of the linear, initial-displacement,
and geometric contributions to the tangent stiffness matrix:

K𝑒𝑙𝜏𝜎𝑖𝑗 = ∫
𝑉𝑒0

G𝑇𝜏𝑖H
𝑇QHG𝜎𝑗𝑑𝑉

K𝑒𝑡1𝜏𝜎𝑖𝑗 = ∫
𝑉𝑒0

G𝑇𝜏𝑖 [H𝑇QA + A𝑇Q (H + A)]G𝜎𝑗𝑑𝑉
K𝑒𝑡2𝜏𝜎𝑖𝑗 = ∫

𝑉𝑒0

G𝑇𝜏𝑖ŜG𝜎𝑗𝑑𝑉
(26)

The nuclei are very general regardless of the approximation
order 𝑁 over the thickness, the class of approximating
functions 𝐹𝜏, and the number of nodes per element𝑁𝑒𝑛 along
the beam axis; see Carrera et al. [18]. Their explicit form can
be found in the Appendix. Once the approximation order and
the number of nodes per element are fixed, the element tan-
gent stiffness matrix is obtained straightforwardly via sum-
mation of the previous nucleus corresponding to each term of
the expansion. Finally, the nonlinear system is solved via the
classical Newton-Raphson prediction/correction method.

3.3. Shear and Membrane Locking: MITC Beam Elements.
In the geometrically nonlinear analysis of straight beams,
the displacement components are coupled by the quadratic
terms in the geometric relations; see (3). Therefore, mem-
brane as well as shear locking phenomena will degrade the
element performance and need to be mitigated, especially
when slender structures and low-order shape functions are
considered (see Reddy [31] and Malkus and Hughes [32] for
more details). In this study, locking phenomena are overcome
via the MITC method (see Bathe et al. [33–35]), consisting in
the following interpolation of all the strain components along
the beam element axis:

𝐸𝑥𝑥 = 𝑁𝑝𝐸𝑝𝑥𝑥
𝐸𝑧𝑧 = 𝑁𝑝𝐸𝑝z𝑧
𝐸𝑥𝑧 = 𝑁𝑝𝐸𝑝𝑥𝑧

(27)

where 𝑝 denotes an implicit summation and varies from
1 to 𝑁𝑒𝑛 − 1. 𝐸𝑝𝑥𝑥, 𝐸𝑝𝑧𝑧, and 𝐸𝑝𝑥𝑧 are the strain components
coming from the geometrical relations in (3) evaluated at the𝑝-th tying point 𝑟𝑇𝑝 and 𝑁𝑝 are the assumed interpolating
functions. Their expressions as functions of the natural beam
element coordinate 𝑟 ∈ [−1, 1] can be found in Carrera et
al. [36] and they are reported below. For linear elements, the
interpolation is reduced to a point evaluation, since

𝑁1 = 1
𝑟𝑇1 = 0 (28)
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For quadratic elements, the assumed interpolating functions
and tying points are

𝑁1 = −12√3(𝑟 − 1√3)
𝑁2 = 12√3(𝑟 + 1√3)
𝑟𝑇1 = − 1√3
𝑟𝑇2 = 1√3

(29)

And for cubic elements

𝑁1 = 56𝑟(𝑟 − √35)

𝑁2 = −53 (𝑟 − √35)(𝑟 + √35)

𝑁3 = 56𝑟(𝑟 + √35)

𝑟𝑇1 = −√35
𝑟𝑇2 = 0
𝑟𝑇3 = √35

(30)

4. Numerical Results

The beam support is [0, 𝑙] × [−ℎ/2, ℎ/2] × [−𝑏/2, 𝑏/2]. The
cross-section is square with ℎ = 𝑏 = 1 m. Slender
(𝑙/ℎ = 100) and short beams (𝑙/ℎ = 10) are investigated.
Cantilever, doubly clamped, and simply supported (hinged-
hinged) beams made of aluminium (𝐸 = 75 GPa and ] =0.33) are considered. A concentrated load 𝑃𝑧 is applied at(𝑥/𝑙 = 1, 𝑧/ℎ = 0) for the cantilever case and at (𝑥/𝑙 =1/2, 𝑧/ℎ = 0) for doubly clamped and simply supported
boundary conditions. A dimensionless load factor 𝜆 =𝑃𝑧𝑙2/𝐸𝐼 is used, 𝐼 being the moment of inertia of the beam
cross-section. Both displacement and stress values are given
with respect to the initial fixed coordinate system.

Results for a plane stress, large displacements, large
rotations, and small strains analysis provided by the proposed
family of one-dimensional finite elements are compared with
two-dimensional finite elements based on a total Lagrangian
formulation and small strains hypothesis, referred to as
“FEM 2D TL” (see Hu et al. [37]). Reference solutions from
the available literature as well as classical one-dimensional
corotational ANSYS finite elements “Beam3”, with both
Euler-Bernoulli (EBT) and Timoshenko (TBT) kinematics,
are considered for comparison and validation purposes.
Results given by two-dimensional large strains ANSYS finite
elements “Plane183” based on an updated Lagrangian formu-
lation are also provided as a further assessment. About the

computational costs, in order to be able to predict an accurate
stress field in both short and slender beams, the most refined
model used in the following numerical investigations for the
proposed one-dimensional formulation is given by a mesh of121 nodes and beam theory𝑁 = 5, corresponding to 1.5 ⋅ 103
degrees of freedom (DOFs), whereas a mesh of 240 × 24
elements was used for 2D FEM solutions, corresponding to3.6 ⋅ 104 DOFs. It should be noticed that the computational
advantage coming from theUF approach is evenmore signifi-
cant in nonlinear analyses when compared to linear analyses,
since an iterative solution procedure is required and, there-
fore, a computational gain is obtained at every solution step.

4.1. Locking Assessment. In order to correct the shear and
membrane locking phenomena affecting nonlinear one-
dimensional elements, MITC method was adopted. Figure 2
shows the effectiveness of the MITC B2 elements in predict-
ing the normalised displacement 𝑢̂𝑧 = 𝑢𝑧/𝑢Cubic𝑧 for increas-
ing slenderness ratios 𝑙/ℎ, where 𝑢Cubic𝑧 is the converged
solution obtained with 40 B4 elements. It can be noticed that
the locking correction strategy is effective regardless the beam
theory order 𝑁 and the considered boundary conditions.
Due to the presence of membrane locking, simply supported
beams are the most critical case among those investigated,
as far as element performance is concerned. Figure 3 shows
that MITC correction in slender beams can significantly
reduce the number of nodes needed for convergence. The
converged reference solution 𝑢Cubic𝑧 is here obtained with
140 B4 elements. The improvement is even more significant
when lower-order shape functions are used, such as in linear
and quadratic beam elements. It should be also noticed
that, unlike a classical displacement-based finite element, an
element adoptingMITC correction strategy no longer assures
a monotonic convergence “from below”, as shown in Laulusa
et al. [38]. Following the previous convergence analyses, 121
nodes and MITC B4 elements are used for the plot results,
whereas 121 nodes and MITC B2, B3, and B4 elements are
compared in the table results at a fixed load parameter.

4.2. Cantilever Beam. A slender cantilever beam (𝑙/ℎ = 100)
is first considered in order to validate the model towards clas-
sical reference beam solutions. Dimensionless displacements𝑢𝑖 = 𝑢𝑖/𝑙, Cauchy stresses 𝜎𝑖𝑗 = 𝜎𝑖𝑗(2𝐼/𝑃𝑧𝑙ℎ), and thickness𝑧̃ = 𝑧/ℎ are considered. Figures 4 and 5 show the evolution
of the displacement components with the load parameter.
The displacement 𝑢̃𝑥 is evaluated at (𝑙, ℎ/2), whereas 𝑢̃𝑧
at (𝑙, −ℎ/2). For the case of slender beam, the reference
solution based on EBT kinematics can accurately predict the
nonlinear deformation and it matches the higher-order beam
theories as well as the two-dimensional FEM results. On the
other hand, if the slenderness ratio is reduced, the shear
deformation effects as well as local cross-sectional warping
become relevant and at least a beam theory with order 𝑁
equal to 2 should be used for an accurate displacement
prediction, as shown in Figures 6 and 7. A more detailed
numerical comparison is given in Table 1, showing that beam
theories with 𝑁 ≥ 2 can reduce the error given by TBT
from 5.5% to 0.7%, when compared to 2D FEM solutions. As
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Figure 2: Locking correction via MITC method for linear elements and different beam theories, doubly clamped beam, 𝜆 = 2, 𝑢̂𝑧 evaluated
at (𝑙/2, −ℎ/2).
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Figure 3: Convergence analysis of the normalised displacement 𝑢̂𝑧 versus the total number of nodes 𝑁𝑛 via cubic finite elements B4 and
MITC B4, simply supported beam (𝑙/ℎ = 100 and 𝜆 = 3), 𝑢̂𝑧 evaluated at (𝑙/2, ℎ/2).

far as stress prediction is concerned, Figures 8–10 show the
through-the-thickness profile of the stress components for
the short beam case. Stress components are given in the initial
fixed reference system. A small difference can be noticed
between the large strains 2D FEM solution “Plane183” and
the small strains “FEM 2D TL”. Furthermore, the higher-
order beam theories match the 2D small strains solution, with
relative differences being lower than 0.6% for 𝑁 ≥ 3 and B4

elements, as shown in Table 2. Unlike classical theories, the
proposed higher-order models can predict global as well as
localized displacements and stresses, even in the proximity of
boundary conditions and throughout the nonlinear regime,
as shown in Figures 26–30.

4.3. Doubly Clamped Beam. Clamped-clamped boundary
conditions are considered. The evaluation point for 𝑢̃𝑥 is
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Figure 4: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑥 for a slender cantilever beam.
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Figure 5: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑧 for a slender cantilever beam.

(𝑙/4, ℎ/2), whereas 𝑢̃𝑧 is evaluated at (𝑙/2, −ℎ/2). Figures 11
and 12 show the load-displacement curves for a slender beam,
whereas the short beam case is shown in Figures 13 and
14. A significant difference between large and small strains
hypothesis can be noticed in this latter case. Similarly to
the cantilever case, Table 3 shows that higher-order beam
theories can improve the accuracy with respect to the 2D

FEM small strains solution from 4.6% (TBT) to 0.3% (𝑁 ≥ 3),
at worse. Figures 15–17 as well as Table 4 show that higher-
order beam theories are required in order to accurately
predict the stress profile in a thick beam, being the relative
error given by a 2-nd order beam theory about 27.8% in the
worst case and the one given by theories with 𝑁 ≥ 3 lower
than 0.8%.



8 Mathematical Problems in Engineering

EBT [38]
PLANE183
FEM 2D TL

N=2
N=3
N=5

 0

 2

 4

 6

 8

 10



−6 −5 −4 −3 −2 −1  0−7
10 × ＯＲ

Figure 6: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑥 for a short cantilever beam.
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Figure 7: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑧 for a short cantilever beam.

4.4. Simply Supported Beam. Simply supported beams are
considered.𝑢𝑥 and 𝑢̃𝑧 are evaluated at (0, −ℎ/2) and (𝑙/2, ℎ/2),
respectively. The load-displacement curves are presented in
Figures 18 and 19, whereas Figures 20–22 show the through-
the-thickness profile of the stress components at the fixed
load parameter 𝜆 = 6.03. The same considerations of the
previous sections also apply to this case: the displacement
prediction can be improved from an error of 3.7% for a 2nd

order theory to 0.8% for a 5th order theory, as shown in
Table 5. Similarly for the stresses given in Table 6, 𝑁 = 2
and B4 elements lead to a relative difference with respect to
“FEM 2DTL” of about 2.3% for 𝜎𝑥𝑥, 60.5% for 𝜎̃𝑧𝑧, and 35.2%
for 𝜎𝑥𝑧, whereas the errors given by a theory 𝑁 = 5 and
B4 finite elements reduce to about 0.3%. The capability of
the proposed formulation for an accurate stress prediction
is preserved along the full deformation path, as shown in



Mathematical Problems in Engineering 9

PLANE183
FEM 2D TL
N=2

N=3
N=5

−0.5

−0.25

 0

 0.25

 0.5

 Ｔ

 0−1−2  1  2  3−3
10 × ＲＲ

Figure 8: Dimensionless Cauchy stress 𝜎̃𝑥𝑥 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 5.20 for a short cantilever beam.
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Figure 9: Dimensionless Cauchy stress 𝜎̃𝑧𝑧 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 5.20 for a short cantilever beam.

Figures 23–25, where the stress profile given by the 𝑁 = 5
model and the results obtained by the 2D FEM solution are
presented for different load factors 𝜆.
5. Conclusions

A family of refined one-dimensional finite elements derived
through a Unified Formulation of the displacement field has

been proposed for the geometrically nonlinear analysis of
beam-like structures. Slender as well as short beams have
been investigated for different boundary conditions. MITC
method has been adopted in order to tackle the shear and
membrane locking phenomena and improve the convergence
performance of the proposed elements. The capability of UF-
based structural theories to accurately yet efficiently predict
both the displacement and the stress fields in the nonlinear
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Figure 10: Dimensionless Cauchy stress 𝜎̃𝑥𝑧 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 5.20 for a short cantilever beam.
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Figure 11: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑥 for a slender doubly clamped beam.

regime via a one-dimensional model has been demonstrated
in this work. As far as computational costs are concerned, the
use of UF-based one-dimensional finite elements can save at
least one order of magnitude in terms of DOFs, with respect
to two-dimensional elements. The extension of the proposed
formulation based on Taylor polynomials for an equivalent
single-layer analysis of composite beam structures will be
presented in a future work.

Appendix

Fundamental Nuclei of the Tangent
Stiffness Matrix

The components of the linear stiffness matrix K𝑒𝑙𝜏𝜎𝑖𝑗 are

𝐾𝑒𝑙𝑥𝑥𝜏𝜎𝑖𝑗 = 𝐽11𝜏𝜎𝐼𝑖,𝑥𝑗,𝑥 + 𝐽55𝜏,𝑧𝜎,𝑧𝐼𝑖𝑗 + 𝐽15𝜏,𝑧𝜎𝐼𝑖𝑗,𝑥 + 𝐽15𝜏𝜎,𝑧𝐼𝑖,𝑥𝑗
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Figure 12: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑧 for a slender doubly clamped beam.
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Figure 13: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑥 for a short doubly clamped beam.

K𝑒𝑙𝑥𝑧𝜏𝜎𝑖𝑗 = 𝐽13𝜏𝜎,𝑧𝐼𝑖,𝑥𝑗 + 𝐽15𝜏𝜎𝐼𝑖,𝑥𝑗,𝑥 + 𝐽35𝜏,𝑧𝜎,𝑧𝐼𝑖𝑗 + 𝐽55𝜏,𝑧𝜎𝐼𝑖𝑗,𝑥
𝐾𝑒𝑙𝑧𝑥𝜏𝜎𝑖𝑗 = 𝐽13𝜏,𝑧𝜎𝐼𝑖𝑗,𝑥 + 𝐽15𝜏𝜎𝐼𝑖,𝑥𝑗,𝑥 + 𝐽35𝜏,𝑧𝜎,𝑧𝐼𝑖𝑗 + 𝐽55𝜏𝜎,𝑧𝐼𝑖,𝑥𝑗
𝐾𝑒𝑙𝑧𝑧𝜏𝜎𝑖𝑗 = 𝐽33𝜏,𝑧𝜎,𝑧𝐼𝑖𝑗 + 𝐽55𝜏𝜎𝐼𝑖,𝑥𝑗,𝑥 + 𝐽35𝜏𝜎,𝑧𝐼𝑖,𝑥𝑗 + 𝐽35𝜏,𝑧𝜎𝐼𝑖𝑗,𝑥

(A.1)

The generic term 𝐽𝑔ℎ𝜏(,𝑧)𝜎(,𝑧) is a cross-section moment:

𝐽𝑔ℎ𝜏(,𝑧)𝜎(,𝑧) = ∫
Ω𝑒=ℎ𝑒×𝑏𝑒

𝑄𝑔ℎ𝐹𝜏(,𝑧)𝐹𝜎(,𝑧)𝑑Ω (A.2)

and it is a weighted sum (in the continuum) of each elemental
cross-section area where the weight functions account for the
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Figure 14: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑧 for a short doubly clamped beam.
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Figure 15: Dimensionless Cauchy stress 𝜎̃𝑥𝑥 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 11.04 for a short doubly clamped beam.

spatial distribution of the geometry and thematerial. 𝐼𝑖(,𝑥) 𝑗(,𝑥) is
the integral along the element axis of the product of the shape
functions and/or their derivatives:

𝐼𝑖(,𝑥)𝑗(,𝑥) = ∫
𝑙𝑒

𝑁𝑖(,𝑥)𝑁𝑗(,𝑥)𝑑𝑥 (A.3)

These integrals are numerically evaluated through Gaussian
quadrature. K𝑒𝑡1𝜏𝜎𝑖𝑗 is the initial-displacement, or initial-slope,

contribution to the tangent stiffness matrix. Its components
are

𝐾𝑒𝑡1𝑥𝑥𝜏𝜎𝑖𝑗 = 𝑞𝑢𝑡𝑙 (2𝐽11𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽13𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 𝐽13𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙
+ 2𝐽15𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 2𝐽15𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 2𝐽15𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥
+ 2𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 2𝐽55𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥 ) + 𝐽55𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙
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Figure 16: Dimensionless Cauchy stress 𝜎̃𝑧𝑧 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 11.04 for a short doubly clamped beam.
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Figure 17: Dimensionless Cauchy stress 𝜎̃𝑥𝑧 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 11.04 for a short doubly clamped beam.

+ 𝐽55𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙) + 𝑞𝑢𝑡𝑙𝑞𝑢𝑠𝑚 (𝐽11𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽13𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚 + 𝐽13𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥 + 𝐽15𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚
+ 𝐽15𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥 + 𝐽15𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥 + 𝐽15𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽35𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽35𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥
+ 𝐽35𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚 + 𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚 + 𝐽55𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚

+ 𝐽55𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥 + 𝐽55𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚 + 𝐽55𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥)
(A.4)

𝐾𝑒𝑡1𝑥𝑧𝜏𝜎𝑖𝑗 = 𝑞𝑢𝑡𝑙 (𝐽13𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 𝐽15𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽35𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙
+ 𝐽55𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 𝐽35𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥
+ 𝐽55𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥) + 𝑞𝑤𝑡𝑙 (𝐽11𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽13𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙
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Figure 18: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑥 for a short simply supported beam.
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Figure 19: Load factor 𝜆 versus dimensionless displacement 𝑢̃𝑧 for a short simply supported beam.

+ 𝐽15𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽15𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 𝐽15𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙
+ 𝐽55𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽55𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥) + 𝑞𝑢𝑡𝑙𝑞𝑤𝑠𝑚 (𝐽11𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽13𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚 + 𝐽15𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚 + 𝐽15𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥
+ 𝐽15𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥 + 𝐽35𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽55𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚

+ 𝐽55𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥 + 𝐽13𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥 + 𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚
+ 𝐽35𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥 + 𝐽15𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽35𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚 + 𝐽55𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚 + 𝐽55𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥)

(A.5)
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Figure 20: Dimensionless Cauchy stress 𝜎̃𝑥𝑥 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 6.03 for a short simply supported beam.
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Figure 21: Dimensionless Cauchy stress 𝜎̃𝑧𝑧 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 6.03 for a short simply supported beam.

𝐾𝑒𝑡1𝑧𝑥𝜏𝜎𝑖𝑗 = 𝑞𝑢𝑡𝑙 (𝐽15𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽35𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 𝐽55𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙
+ 𝐽55𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 𝐽13𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 𝐽35𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙
+ 𝐽35𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥) + 𝑞𝑤𝑡𝑙 (𝐽11𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽15𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥
+ 𝐽15𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽55𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 𝐽13𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙

+ 𝐽15𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽55𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥) + 𝑞𝑤𝑡𝑙𝑞𝑢𝑠𝑚 (𝐽11𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽13𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚 + 𝐽15𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚 + 𝐽15𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥
+ 𝐽15𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥 + 𝐽35𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽55𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚
+ 𝐽55𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥 + 𝐽13𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥 + 𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚
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Figure 22: Dimensionless Cauchy stress 𝜎̃𝑥𝑧 along the thickness coordinate at 𝑥 = 𝑙/4 and 𝜆 = 6.03 for a short simply supported beam.

Table 1: Displacements for a short cantilever beam, 𝜆 = 10.
10 × −𝑢̃𝑥 10 × 𝑢̃𝑧

Plane183 6.1163 8.7165
Beam3 TBT 6.4377 8.2409
Beam3 EBT 6.3579 8.1661
EBT [1] 6.2652 8.1061
N B2 B3 B4 B2 B3 B4
5 6.1579 6.1585 6.1585 8.6817 8.6820 8.6820
4 6.1575 6.1580 6.1581 8.6809 8.6812 8.6812
3 6.1596 6.1601 6.1601 8.6760 8.6764 8.6764
2 6.1521 6.1527 6.1527 8.6671 8.6674 8.6674
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Figure 23: Through-the-thickness profile of 𝜎̃𝑥𝑥 for different load
factors.

+ 𝐽35𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥 + 𝐽15𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽35𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚 + 𝐽55𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚 + 𝐽55𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥)

(A.6)

𝐾𝑒𝑡1𝑧𝑧𝜏𝜎𝑖𝑗 = 𝑞𝑤𝑡𝑙 (𝐽13𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 𝐽13𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 2𝐽15𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥
+ 2𝐽35𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 2𝐽35𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 2𝐽35𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥
+ 2𝐽55𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽55𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 ) + 𝐽55𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥
+ 2𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙) + 𝑞𝑤𝑡𝑙𝑞𝑤𝑠𝑚 (𝐽11𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚 + 𝐽55𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚 + 𝐽55𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥
+ 𝐽55𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚 + 𝐽55𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥 + 𝐽13𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚
+ 𝐽13𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥 + J15𝜏𝜎𝑡𝑠,𝑧 𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚 + 𝐽15𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥
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Figure 24: Through-the-thickness profile of 𝜎̃𝑧𝑧 for different load factors.
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Figure 25: Through-the-thickness profile of 𝜎̃𝑥𝑧 for different load factors.

Table 2: Cauchy stresses evaluated at 𝑥 = 𝑙/4 and 𝑧 = −ℎ/2 for a short cantilever beam, 𝜆 = 5.20.
10 × 𝜎̃𝑥𝑥 10 × 𝜎̃𝑧𝑧 10 × 𝜎̃𝑥𝑧

Plane183 2.4166 1.3372 1.7978
FEM 2D TL 2.7403 1.5302 2.0480
N B2 B3 B4 B2 B3 B4 B2 B3 B4
5 2.5622 2.7426 2.7414 1.6556 1.5336 1.5291 2.0730 2.0496 2.0474
4 2.5632 2.7435 2.7424 1.6552 1.5332 1.5287 2.0730 2.0494 2.0472
3 2.5554 2.7355 2.7344 1.6468 1.5248 1.5203 2.0779 2.0546 2.0522
2 2.4216 2.5995 2.5984 1.7133 1.5896 1.5851 2.1354 2.1114 2.1090
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0-0.05-0.1-0.15-0.2-0.25-0.3-0.35
(a) FEM 2D TL

0-0.05-0.1-0.15-0.2-0.25-0.3-0.35
(b) N=5

Figure 26: Axial displacement 𝑢̃𝑥, cantilever beam, 𝜆 = 3.79, and 𝑙/𝑏 = 10.

0.10 0.2 0.3 0.50.4 0.6
(a) FEM 2D TL

0.10 0.2 0.3 0.50.4 0.6
(b) N=5

Figure 27: Transverse displacement 𝑢̃𝑧, cantilever beam, 𝜆 = 3.79, and 𝑙/𝑏 = 10.

Table 3: Displacements for a short doubly-clamped beam, 𝜆 = 15.89.
103 × −𝑢̃𝑥 102 × 𝑢̃𝑧

Plane183 9.4375 7.1822
FEM 2D TL 8.8841 6.7892
Beam3 TBT 9.2102 7.1003
Beam3 EBT 9.5180 6.4598
N B2 B3 B4 B2 B3 B4
5 8.8863 8.8848 8.8848 6.7911 6.7918 6.7918
4 8.8857 8.8841 8.8841 6.7879 6.7887 6.7887
3 8.8829 8.8814 8.8814 6.7725 6.7733 6.7733
2 8.8476 8.8461 8.8460 6.7109 6.7117 6.7117
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(b) N=5

Figure 28: Piola-Kirchoff stress 𝑆𝑥𝑥, cantilever beam, 𝜆 = 3.79, and 𝑙/𝑏 = 10.

-0.2 0.2 0.3-0.1 0.10
(a) FEM 2D TL

-0.2 0.2 0.3-0.1 0.10
(b) N=5

Figure 29: Piola-Kirchoff stress 𝑆𝑧𝑧, cantilever beam, 𝜆 = 3.79, and 𝑙/𝑏 = 10.

+ 𝐽15𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥 + 𝐽15𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥 + 𝐽35𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚
+ 𝐽35𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚)

(A.7)

K𝑒𝑡2𝜏𝜎𝑖𝑗 is the initial stress, or geometric, contribution to the
tangent stiffness matrix. Its components are

𝐾𝑒𝑡2𝑥𝑥𝜏𝜎𝑖𝑗 = 𝐾𝑒𝑡2𝑧𝑧𝜏𝜎𝑖𝑗 = 𝑞𝑢𝑡𝑙 (𝐽11𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽15𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙
+ 𝐽15𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 𝐽55𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 𝐽15𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽55𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙
+ 𝐽13𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙) 𝑞𝑤𝑡𝑙 (𝐽13𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙
+ 𝐽15𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽35𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 𝐽55𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 𝐽35𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙

+ 𝐽55𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥) 12 (𝑞𝑢𝑡𝑙𝑞𝑢𝑠𝑚
+ 𝑞𝑤𝑡𝑙𝑞𝑤𝑠𝑚) (𝐽11𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥 + 𝐽13𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚
+ 𝐽15𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥 + 𝐽15𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚 + 𝐽15𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥
+ 𝐽35𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽55𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥 + 𝐽55𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚
+ 𝐽15𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥 + 𝐽35𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚 + 𝐽55𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥
+ 𝐽55𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚 + 𝐽13𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥 + 𝐽33𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚
+ 𝐽35𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥 + 𝐽35𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚)

(A.8)
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0 0.05 0.1 0.15 0.2
(a) FEM 2D TL
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(b) N=5

Figure 30: Piola-Kirchoff stress 𝑆𝑥𝑧, cantilever beam, 𝜆 = 3.79, and 𝑙/𝑏 = 10.

Table 4: Cauchy stresses evaluated at 𝑥 = 𝑙/4 and 𝑧 = 0 for a short doubly-clamped beam, 𝜆 = 11.04.
103 × 𝜎̃𝑥𝑥 103 × 𝜎̃𝑧𝑧 102 × 𝜎̃𝑥𝑧

Plane183 8.6194 3.2658 1.1290
FEM 2D TL 9.8958 3.1957 1.1281
N B2 B3 B4 B2 B3 B4 B2 B3 B4
5 9.9050 9.8829 9.8987 3.1738 3.2083 3.1858 1.1210 1.1315 1.1250
4 9.9077 9.8858 9.9014 3.1859 3.2205 3.1979 1.1208 1.1312 1.1248
3 9.9050 9.8830 9.8987 3.1858 3.2200 3.1976 1.1210 1.1314 1.1249
2 10.4620 10.4390 10.4550 2.3066 2.3405 2.3182 0.8477 0.8581 0.8516

Table 5: Displacements for a short simply supported beam, 𝜆 = 8.36.
102 × 𝑢̃𝑥 10 × 𝑢̃𝑧

Plane183 3.9585 1.3032
FEM 2D TL 3.8909 1.2805
N B2 B3 B4 B2 B3 B4
5 3.9239 3.9239 3.9192 1.2843 1.2843 1.2839
4 3.9011 3.9000 3.8960 1.2820 1.2819 1.2814
3 3.8267 3.8251 3.8232 1.2739 1.2738 1.2735
2 3.7501 3.7482 3.7474 1.2583 1.2580 1.2579

Table 6: Cauchy stresses evaluated at 𝑥 = 𝑙/4 and 𝑧 = −ℎ/2 for a short simply supported beam, 𝜆 = 6.03.
102 × −𝜎̃𝑥𝑥 103 × −𝜎̃𝑧𝑧 102 × −𝜎̃𝑥𝑧

Plane183 8.6470 5.2555 2.1314
FEM 2D TL 8.2064 4.8990 2.0056
N B2 B3 B4 B2 B3 B4 B2 B3 B4
5 8.2878 8.2030 8.2002 6.9946 4.8699 4.9120 2.2776 2.0010 2.0067
4 8.2696 8.1840 8.1811 6.9402 4.8190 4.8614 2.2707 1.9942 2.0002
3 8.2018 8.1142 8.1125 6.7966 4.6917 4.7352 2.2464 1.9717 1.9779
2 8.4861 8.3928 8.3917 4.0106 1.8893 1.9344 1.5683 1.2941 1.3006
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𝐾𝑒𝑡2𝑥𝑧𝜏𝜎𝑖𝑗 = 𝐾𝑒𝑡2𝑧𝑥𝜏𝜎𝑖𝑗 = 0 (A.9)

The integrals 𝐽𝑔ℎ𝜏(,𝑧)𝜎(,𝑧) 𝑡(,𝑧) , 𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥) , 𝐽𝑔ℎ𝜏(,𝑧)𝜎(,𝑧)𝑡(,𝑧)𝑠(,𝑧) , and𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)𝑚(,𝑥) in (A.6) and (A.9) are given by

𝐽𝑔ℎ𝜏(,𝑧)𝜎(,𝑧)𝑡(,𝑧) = ∫
Ω𝑒=ℎ𝑒×𝑏𝑒

𝑄𝑔ℎ𝐹𝜏(,𝑧)𝐹𝜎(,𝑧)𝐹𝑡(,𝑧)𝑑Ω (A.10)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥) = ∫
𝑙𝑒

𝑁𝑖(,𝑥)𝑁𝑗(,𝑥)𝑁𝑙(,𝑥)𝑑𝑥 (A.11)

𝐽𝑔ℎ𝜏(,𝑧)𝜎(,𝑧)𝑡(,𝑧)𝑠(,𝑧) = ∫
Ω𝑒=ℎ𝑒×𝑏𝑒

𝑄𝑔ℎ𝐹𝜏(,𝑧)𝐹𝜎(,𝑧)𝐹𝑡(,𝑧)𝐹𝑠(,𝑧)𝑑Ω (A.12)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)𝑚(,𝑥) = ∫
𝑙𝑒

𝑁𝑖(,𝑥)𝑁𝑗(,𝑥)𝑁𝑙(,𝑥)𝑁𝑚(,𝑥)𝑑𝑥 (A.13)

If a MITC beam element is considered, the 𝐼-integrals in
(A.3), (A.11), and (A.13) are replaced, respectively, by the
following integrals:

𝐼𝑖(,𝑥)𝑗(,𝑥) = ∫
𝑙𝑒

𝑁𝑝𝑁𝑝𝑖(,𝑥)𝑁𝑞𝑁𝑞𝑗(,𝑥)𝑑𝑥 (A.14)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥) = ∫
𝑙𝑒

𝑁𝑝𝑁𝑝𝑖(,𝑥)𝑁𝑞𝑁𝑞𝑗(,𝑥)𝑁𝑞𝑙(,𝑥)𝑑𝑥 (A.15)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)𝑚(,𝑥) = ∫
𝑙𝑒

𝑁𝑝𝑁𝑝𝑖(,𝑥)𝑁𝑝𝑗(,𝑥)𝑁𝑞𝑁𝑞𝑙(,𝑥)𝑁𝑞𝑚(,𝑥)𝑑𝑥 (A.16)
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