
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Fast MPEG's CDVS Implementation for GPU Featured in Mobile Devices / Garbo, Alessandro; Quer, Stefano. - In:
IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 6:1(2018), pp. 52027-52046. [10.1109/ACCESS.2018.2870283]

Original

A Fast MPEG's CDVS Implementation for GPU Featured in Mobile Devices

Publisher:

Published
DOI:10.1109/ACCESS.2018.2870283

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2718627 since: 2018-11-27T13:56:15Z

Institute of Electrical and Electronics Engineers Inc.

Received July 12, 2018, accepted August 16, 2018, date of publication September 17, 2018, date of current version October 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2870283

A Fast MPEG’s CDVS Implementation for
GPU Featured in Mobile Devices
ALESSANDRO GARBO AND STEFANO QUER
DAUIN, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Stefano Quer (stefano.quer@polito.it)

ABSTRACT The Moving Picture Experts Group’s Compact Descriptors for Visual Search (MPEG’s
CDVS) intends to standardize technologies in order to enable an interoperable, efficient, and cross-platform
solution for internet-scale visual search applications and services. Among the key technologies within
CDVS, we recall the format of visual descriptors, the descriptor extraction process, and the algorithms for
indexing and matching. Unfortunately, these steps require precision and computation accuracy. Moreover,
they are very time-consuming, as they need running times in the order of seconds when implemented on
the central processing unit (CPU) of modern mobile devices. In this paper, to reduce computation times and
maintain precision and accuracy, we re-design, for many-cores embedded graphical processor units (GPUs),
all main local descriptor extraction pipeline phases of the MPEG’s CDVS standard. To reach this goal,
we introduce new techniques to adapt the standard algorithm to parallel processing. Furthermore, to reduce
memory accesses and efficiently distribute the kernel workload, we use new approaches to store and retrieve
CDVS information on proper GPU data structures. We present a complete experimental analysis on a large
and standard test set. Our experiments show that our GPU-based approach is remarkably faster than the
CPU-based reference implementation of the standard, and it maintains a comparable precision in terms of
true and false positive rates.

INDEX TERMS Computer applications, concurrent computing, embedded software, image analysis, object
detection.

I. INTRODUCTION
In modern scenarios (i.e., museums, exhibitions, etc.) a user,
equipped with a mobile terminal, takes pictures and receives
information on them in real time. The mobile terminal
automatically verifies whether two images depict the same
objects or the same scene. This task is usually referred as
‘‘pairwise matching’’. Matching can be performed by on-line
or off-line analysis. In on-line applications, to minimize
the amount of data transferred over the network and to
reduce the latency time, the terminal should extract (from the
picture) and deliver (to a workstation) only those data that
are essential to the matching. Alternatively, the overall pro-
cess, i.e., extraction and image matching, may be performed
off-line directly on the device [1]. The extraction of
the data essential to the matching has received specific
attention by the Moving Picture Experts Group (MPEG),
producing the so-called Compact Descriptors for Visual
Search (CDVS) [2]. Following this standard, extract-
ing local features from an image requires six phases,
usually referred to as keypoint detection, orientation

assignment, feature selection, local descriptor computation,
local descriptor compression, and coordinate coding. One
more step, the aggregation of local descriptors, is necessary to
generate a single global descriptor. In CDVS, a descriptor is a
sequence of bits which represent information about an image.
A descriptor may contain information about specific areas
of the image (provided by local features), and information
about the image as a whole (provided by global descriptors).
A local feature is a vector of values whose elements charac-
terize a point neighborhood. Such a point corresponds to an
image detail, and it is usually named ‘‘keypoint’’ or ‘‘interest
point’’. Global descriptors enable the search of similar images
(i.e., image retrieval), whereas local features empower pair-
wise matching (i.e., image matching).

The CDVS detector [3], named ALP (A Low-degree Poly-
nomial), identifies interest points finding local extrema in
the scale-space by approximating it using polynomials [4].
In the scale-space representation, the images that result
from the Laplacian-of-Gaussian filtering are functions of
the scale parameter. ALP approximates these functions with

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52027

https://orcid.org/0000-0001-6835-8277

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

polynomials of low degree. The algorithm works by subdi-
viding the scale-space in octaves in order to maintain low
complexity. This process is often referred to as keypoint
detection (KD). To achieve invariance of the final matching
to image rotations, a canonical orientation is associated to
each keypoint [5]. This stage is referred to as orientation
assignment (OA). By estimating how likely any feature will
be correctly matched, we may eliminate the least likely ones
and pack only the most promising features into the compact
descriptor. This process is often referred to as feature selec-
tion (FS). Selected keypoints are used for the local descriptors
computation (LDC). Local descriptors are then compressed,
subsequently encoded, and finally used in the pairwisematch-
ing phase to evaluate the matching probability. When a key-
point in one image matches a keypoint in another image,
there is a high probability that the two keypoints actually
correspond to the same point within the same depicted scene.

Although the above phases are extremely complex and
they entail several choices and branches, they mainly manip-
ulate images, and, for that reason, they are highly paral-
lelizable. For this reason, the main target of this paper is
to re-implement the entire process of descriptors extraction,
that is, re-engineering all main CDVS stages, to efficiently
run on many-cores General Purpose Graphical Processor
Units (GPGPUs) supporting the OpenCL (or CUDA) lan-
guage. As the work has been developed under an industrial
non-disclosure agreement between Politecnico di Torino and
Telecom Italia Joint Open Lab (which contributed, within
the MPEG group, to define the standard itself) our main
target was to obtain the best-possible behavior with a fully
compliant implementation, not to modify or improved the
standard itself. To this extend, one of the driving idea was to
reduce CPU-to-GPU communication and interference, thus
letting the CPU free to work on alternative tasks. To reach
this goal, we adapted the standard to parallel processing
by using the right kernel structure to implement the overall
process with the maximum possible parallelism. To reduce
memory accesses, optimize transfer times, decrease latencies,
and efficiently distribute the workload of all OpenCL kernels,
we used new approaches to store and retrieve KD, OA, FS
and LDC information on proper GPU data structures. To
reduce overheads, we introduced some approximation tech-
niques to implement expensive sequential steps in the parallel
environment.

More in details, our work entails the following
contributions:
• Wedescribe the standard CDVSALP detector andwe re-
design it to efficiently manipulate images onmany-cores
general purpose graphical processor units supporting
the OpenCL (or CUDA) language. This step implies a
detailed analysis of the original algorithm to adapt it to
parallel processing.

• We use new approaches to store FS and OA information
on proper GPU data structures in order to reduce mem-
ory accesses and to efficiently distribute the workload of
OpenCL (or CUDA) kernels.

• We introduce a new technique, a sort of Open-CL
‘‘texture pagination’’, to perform FS, OA and LDC.
In our application, while several working kernels are
dedicated to manipulate data following the standard
data-flow, others are adopted to re-organize these data
to make the former kernels more efficient.

• As following Amdahl’s law the speedup of a concurrent
program is limited by the serial part of the program itself,
we introduce approximation techniques to implement
expensive sequential steps in a parallel environment. For
example, the standard implementation of the FS phase
requires a sorting step to select the more promising
keypoints. As this step cannon be efficiently parallelized
in GPU, we present an alternative implementation in
which we do not order keypoints and we estimate the
final result. We essentially apply a bucket-sort-inspired
pseudo-sorting algorithm, and we experimentally prove
that our estimates reach the same final pair-wise match-
ing accuracy, and they are more time efficient, than the
original sorting strategy.

• We analyze a different CDVS flow where the FS step
is performed before the OA phase. We call this strategy
‘‘hastened feature selection’’, and we prove that it is
slightly more efficient than the standard approach (the
‘‘deferred feature selection’’ scheme).

• We present a complete suite of experimental results on
standard benchmarks usually adopted byMPEG. On this
suite we prove the consistency of our implementation
on different hardware platforms. Moreover, we com-
pare our embedded-GPU based implementation with the
original one.We demonstrate that our final application is
more efficient than, and at least as accurate as, the stan-
dard CPU-based implementation.

It has to be noticed that this paper is an extended version of
the conference papers [6], [7], each one presenting only a
few steps of the CDVS chain. The current paper, on the con-
trary, describes the entire CDVS implementation flow from
the source images to the extraction of compact descriptors.
We also extend our conference works by introducing a new
methodology to perform OA using Open-CL textures and
presenting the implementation of the LDC stage. We keep
the entire workload and data flow within the GPU even if
this may be prone to some level of inefficiency. In this way
we minimize data transfers which are by nature expensive in
terms of elapsed times and used memory. Moreover, we keep
the CPU idle for longer periods of time, enabling the CPU to
work on other tasks that may be deemed necessary on embed-
ded and power-limited systems. All main steps are fully
described from main ideas to algorithmic details. Results
have been revised and reformatted, andwe accurately validate
our approaches reporting new data.

As far as we know, some of the previous contributions are
presented for the first time, and this is the first work pre-
senting a complete Open-CL (or CUDA) GPU-based imple-
mentation of the standard. This research has been partially
sponsored by Telecom Italia S.p.A. with industrial project

52028 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

‘‘Algorithms’ Optimization for Visual Analysis.’’ It is also
worthwhile recalling that the work was supported by an
industrial contract with Telecom Italia Joint Open Lab. For
that reason, the software and the experiments cannot be made
publicly available.

A. ROADMAP
In the following description, we mainly focus on the more
time consuming and complex key-operations. All others
phases will be described more superficially for the sake of
space. The rest of the paper is thus organized as follows.

Section II reports some comments on (and comparisons
to) previous works. Section III presents background notions
on the CDVS standard and GPU. Section IV, V, VI, and VII
describe our implementation of the main phases. Section VIII
illustrates experimental results on standard benchmarks,
highlighting performance and precision accuracy. Finally,
Section IX concludes the paper with some summarizing
remarks.

II. RELATED WORKS AND COMPARISONS
Due to the integration of multiple heterogeneous process-
ing units, programmers can make use of processors with
various features. However, data transfer and partitioning
schemes appear as challenging tasks. The followings are sev-
eral attempts to adopt heterogeneous computing for several
applications close to the one we are dealing with in the paper.

Wang et al. [8] implement some major steps of the Scale-
Invariant Feature Transform (SIFT [5]) using both serial
C++ code and OpenCL kernels targeting mobile proces-
sors. Based on profiled results of different work-flows, they
partition SIFT between the CPU and the GPU to better
exploit the parallelism, and to minimize buffer transfer times.
Suárez et al. [9] introduce a CMOS vision sensor to extract
the Gaussian pyramid with an energy cost lower than the
one of conventional solutions. The chip, manufactured in a
0.18 µm CMOS technology, consists of an arrangement of
[88 × 60] processing elements. These units capture images,
and they perform concurrent parallel processing right at pixel
level. Leyva et al. [10] concentrate on hardware architectures
to speed-up the computation of the feature descriptor vector in
SIFT. The architectures could be time-optimized or memory-
optimized, and they computed a feature descriptor vector
of 27 elements, starting from a keypoint neighborhood of
[15×15] pixels, in 649 or 874 clock cycles, respectively. The
process involves several steps, including complex ones such
as vector normalization. Lee et al. [11] present a sequential
implementation of a two-stage FS based on the CDVS Test
Model (TM). They significantly reduce run times while main-
taining the original matching and retrieval accuracy. This
implementation is the closest one to ours in the literature, and
we use some of their ideas to implement our version of the
FS module. Nevertheless, our implementation is faster and
several steps have been further optimized. Zhang et al. [12]
accelerate the CDVS extracting process on a multi-core
ARM processor. They implement a NEON SIMD-based data
level parallelism and a Pthread-based multi-thread paral-

lelism scheme for mobile devices. They achieve significant
speed-up in the keypoint detection and in the local descriptor
computation stages. Arndt et al. [13] present a heterogeneous
implementation of the Histograms of Oriented Gradients
algorithm targeting the CPU-clusters and the GPU of the
Samsung Exynos 5 Octa 5422. The authors present different
strategies to generate the best partitioning scheme, and they
analyze the computational capabilities as well as the power
consumption of the individual processing units. Doush and
AL-Btoush [14] develop an automatic banknote recognition,
to classify Jordanian currency to the correct class. The appli-
cation uses SIFT, and it runs SIFT on smartphone devices.
The authors also compare a SIFT approach based on colored
images with the one based on gray tones. Lee et al. [15]
propose an efficient scheme to optimize SIFT for a mobile
GPU. They analyze the conventional scale-space construction
step in the SIFT generation, finding that reducing the size of
the Gaussian filter and the scale-space image leads to a sig-
nificant speed-up with only a slight degradation of the quality
of the features. Based on this observation, they modify SIFT
for real-time execution. They also obtain additional speed-
up by efficiently using both the CPU and the GPU available
on the mobile device. Duan et al. [16] presents a fast CDVS
encoder implemented using hybrid GPU-CPU computing.
The authors shift all computation-intensive and parallel-
friendly modules to the GPU platform. They also incorporate
the CDVS encoder with deep learning based approaches.
A comparison with other state-of-the-art visual descriptors
shows that they achieve significant speed-up compared with
algorithms running on pure CPU platforms while obtaining
similar results for image retrieval and matching accuracy.

To sum up, many works propose strategies to shift on a
GPU architecture only the most expensive and highly paral-
lelizable algorithmic steps. In those schemes data are usually
transferred several times forward-and-backward between the
CPU and the GPU. This sort of overhead may become a
bottleneck in several applications and it makes the overall
algorithmic flow intrinsically sequential. On the contrary we
strive to keep the entire workload and data flow within the
GPU even if this may be prone to some level of inefficiency.
In this way, we minimize data transfers which are by nature
expensive in terms of elapsed times and used memory. More-
over, we keep the CPU cores idle for longer periods of time
enabling them to work on other tasks that may be deemed as
necessary on embedded and power-limited systems.

As a final remark, notice that Francini et al. [17] present a
method to select features based on characteristics computed
by the keypoint detection process. They claim that in the
case of detectors based on Gaussian Scale Space theory [18],
the most important characteristics are the keypoint location,
scale, absolute value of the detected extreme, and the orienta-
tion. They prove that each of these characteristics has a strong
impact on the probability of having correct feature match.
This methodology has been inserted into the MPEG-CDVS
standard [19], and we base our KD, OA, and LDC phases
exactly on this algorithm.

VOLUME 6, 2018 52029

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

III. BACKGROUND
A. TERMINOLOGY AND NOTATION
In the rest of the paper, we will use the following notation and
terminology:

• KD, OA, FS, LDC, MP indicate keypoint detection, ori-
entation assignment, feature selection, local descriptors
computation, and matching probability, respectively.

• As kernels are organized as 2D-matrices of threads,
we use square brackets to indicate the number of threads
run by a kernel, e.g., [width× height].

• k indicates a keypoint, and K a keypoint set (with
k ∈ K). f indicates a feature, and F a feature set (with
f ∈ F). Subscripts indicate keypoint (feature) attributes,
i.e., matching probability (kmp), orientation (kα), etc.
In the CDVS terminology (see Section III-B) a key-
point k becomes a feature f when the former is enriched
with the orientation attribute kα .

• O (S) indicates the octave set (filter set), |O| (|S|) its
cardinality, and o (s) a specific octave (filter).

• W and H indicate the image width and height, thus
Wo and Ho the image width and height at octave o ∈ O.

• G (L) indicates Gaussian images (Laplacian) within the
Gaussian Scale Space (GSS). Go,s (Lo,s) indicates a
Gaussian image (Laplacian) at octave o ∈ O and with
filter s ∈ S.

• p indicates a pixel and t a texel. This terminology follows
the one introduced by Doggett [20], where individual
elements in the texture map are called texels (from
‘‘TEXture ELements’’) to differentiate them from the
screen pixels. T indicates an OpenCL texture.

B. THE CDVS STANDARD
The compact descriptor of an image is composed of two
main elements, that is, a selected number of compressed
local descriptors (representing confined picture areas) and
a single global descriptor (representing the whole image).
Fig. 1 illustrates how these two elements are produced by a
series of processing steps (the ones already listed right in the
introduction) starting from an input image.

FIGURE 1. Descriptor extraction pipeline: Computing the global and the
local descriptors from the source image.

The global descriptor is finally used for image retrieval,
while local descriptors are used to check image correspon-
dence [21]. Notice that keypoint detection, orientation assign-
ment, feature selection, and local descriptor computation are
the most CPU time and memory expensive steps. At the same
time, they consider information related to neighboring pixels,

thus they are highly parallelizable. The objectives of these
steps are the following:
• The keypoint detection phase (KD) can be further
divided into the Gaussian Scale Space computation and
the identification of Low Polynomial degree (ALP) [3]
keypoints. Following Witkin [22], the Gaussian Scale
Space (GSS) is generated by a sequence of Gaussian fil-
ters of increasing size and different Gaussian’s standard
deviation. For each pixel in the image, ALP generates
a polynomial approximation of the scale-space function
and it searches local extrema over a certain interval. The
coefficients of the polynomial are obtained by comput-
ing weighted sums of the Laplacian of Gaussian images.
The scale is the parameter value where the polynomial
assumes the extrema. The pixel candidates are subject to
a comparison with the adjacent 8 pixels. Those having
extreme polynomial values exceeding their neighbors
are kept as candidates, all the others are discarded.

• During orientation assignment (OA), one or more ori-
entations are assigned to each keypoint, based on local
image gradient directions. This is the key operation to
represent keypoint descriptors as a function of their
orientations, therefore achieving invariance with respect
to image rotation. Notice that the standard describes this
step within the keypoint detection phase. We detail it
separately only because its efficient implementation is
part of our contribution.

• Feature selection (FS) chooses a limited number of
keypoints to improve the quality of the final matching.
The selection is based on the matching probability (MP)
associated to each keypoint. In turn, theMP of a keypoint
is computed by the standard by applying several quan-
tification steps to keypoint information evaluated during
the KD phase.

• Local descriptor computation (LDC) calculates descrip-
tors for all keypoints selected during the previous phase.
Local descriptors are the used in the pairwise matching
phase.

• Local descriptor compression is a scalar quantization-
based compression of the selected local descriptors.
CDVS supports different sizes of compact descriptor
footprint, spanning from a maximum of 16KBytes per
image, which is the fully performing operating mode,
down to 512Bytes, for extremely constrained bandwidth
scenarios.

• Coordinate coding is the compression of the coordinates
of the selected keypoints to improve storage efficiency.

• Global descriptor compression consists in the aggrega-
tion of local descriptors, to form a single global descrip-
tor. Global descriptors enable image retrieval, that is,
the search for similar images. We will not concentrate
on this step as we mainly focus on image matching.

C. GPU ARCHITECTURES
Initially developed for real time and high-definition 3D
graphic applications, graphics processing units (GPUs) have

52030 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

recently gained attention for high performance computing
applications (general purpose GPU or GPGPU). Indeed,
the peak computational capabilities of modern GPUs exceeds
the one of top-of-the-line central processing units (CPUs).
GPUs are highly parallel, multi-threaded, many-core units
and have been recently used in a plethora of different appli-
cations and they are becoming more and more invasive in
every-day life [23]–[28]. GPUs are SIMT (single-instruction,
multiple-threads) architectures, i.e., the same instruction is
executed simultaneously on many data elements by different
threads. They are especially well-suited to address problems
that can be expressed as data-parallel computations.

The execution starts with a host (CPU) execution. When
an OpenCL or a CUDA kernel function is invoked, the exe-
cution is moved to a device (GPU) and a grid is launched
on the GPU. A grid represents a set of blocks, and each
block contains up to N threads, where N coincides with the
number of cores of the architecture. When the grid of threads
of a kernel complete its execution, the corresponding kernel
terminates, the execution continues on the host until another
kernel is invoked. When more kernels are run in parallel
they are pipelined by the GPU. When a kernel is launched,
each processor runs one block by executing groups of parallel
threads (named ‘‘warps’’ in the CUDA terminology). Threads
composing a warp start together at the same program address.
Nevertheless, they are free to branch and execute indepen-
dently. As thread blocks terminate, new blocks are launched
on the idle multiprocessors.

Threads have access to data stored on multiple memory
spaces. We can distinguish several types of memory spaces
(from the one with the smallest latency time on):
• Constant memory (for read-only constant data), regis-
ters, and private local memory space. This is local to
each thread.

• Shared memory spaces. This is accessible only by
threads in the same block.

• Global memory. This is visible by all grid threads and it
is accessible in read-and-write mode by all threads but
with larger latency times.

With CUDA 3.0, threads of different blocks cannot com-
municate with each other explicitly but they can share their
results through a global memory. If threads of a warp diverge
when executing a data-dependent conditional branch, then the
warp serially executes each branch path. This leads to poor
efficiency.

Another important aspect within GPU architectures is the
copy strategy, i.e., the method used to bring data from CPU to
GPU memory space and vice-versa. In discrete devices, such
as desktops and servers, this basically translates into copying
memory from the system DRAM, through PCI, towards the
on-board low-latency memory space of the graphics adapter.
In case of embedded platforms, most GPUs implement local
memory through global memory. In this case, local mem-
ory should not be used as a software-managed cache for
performance. As a final remark, notice that both CUDA
and OpenCL programming models specify alternatives to

avoid explicit memory transfers and unnecessary buffer repli-
cations, such as CUDA UVM (Unified Virtual Memory)
and OpenCL 2.0 SVM (Shared Virtual Memory). However,
these approaches introduce CPU-GPU memory coherency
problems when accessing the same shared memory buffer,
so that avoiding copy engines does not necessarily lead to
performance improvements.

IV. KEYPOINT DETECTION (KD)
As described in Section III-B, the keypoint detection phase
can be further divided into the Gaussian Scale Space compu-
tation and the identification of keypoints using ALP. We will
analyze both phases into details in the following paragraphs.

A. GAUSSIAN SCALE SPACE
The Gaussian Scale Space computation is the first CDVS
operation working on the input image. Algorithm 1 illustrates
this phase as implemented by the standard.

Algorithm 1 GSS Computation
Require: G, S
Ensure: GO,S , LO,S

1: GSS
2: G1,0 = G
3: for o = 1 to |O| do
4: (Wo, Ho) = ImageRange (Go,0)
5: for s = 1 to |S| do
6: Go,s = GaussianFilter (Go,s−1, Wo, Ho, Ss)
7: end for
8: for s = 1 to |S| do
9: Lo,s = Laplacian (Go,s)
10: end for
11: if (o < |O|) then
12: (Go+1,0) = Reduction (Go,|S|−1)
13: end if
14: end for

Function GSS receives as input parameters the gray tone
image G and the set of Gaussian filters S of cardinality |S|.
Its target is to compute and to return the Gaussian imageGO,S
and the Laplacian LO,S evaluated during all octaves O and all
filters S.Go,s (Lo,s) indicates the Gaussian image (Laplacian)
computed at octave o and filter s. Function GSS iterates
|O| times with images of decreasing size. For each octave
o ∈ O (line 3), function GSS first computes a new size
image (Wo,Ho). Then, it filters the current image through
|S| Gaussian filters and |S| Laplacian operators. The first
sequence of Gaussian filters (lines 5–7) starts from the gray
scale input image G assigned to G1,0 in line 2. All following
ones start from a rescaled image coming from the previous
octave and generated by function Reduction (lines 11–13).
The Laplacian operator Laplacian (line 9) is applied to each
Gaussian filtered image previously generated.

To implement Algorithm 1 on a GPU, and more specifi-
cally functions GaussianFilter, Laplacian, and Reduction,
we proceed as follows.

VOLUME 6, 2018 52031

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

1) GAUSSIAN FILTERING
In our scenario, we work with gray scale images. An image,
on the other hand, can be manipulated at its best using
GPU textures. We use RGBA OpenCL cached textures T
where every texel t includes 4 values (x, y, z,w). As a con-
sequence, we encode 4 gray level pixels p in one texel t
(see Doggett [20]) of the texture T , reducing the number of
memory accesses.

This choice is motivated by the following considerations.
OpenCL cl_image data structure, as well as CUDA tex-
tures, have a caching support, whereas global memory does
not have it (at least traditionally1). Several papers ana-
lyzed the performance difference between textures and global
memories (see for example Hakura and Gupta [29] and
Wong et al. [30]). Level 1 and Level 2 caching has also
been proved to be quite beneficial (especially during reading
operations) by several authors (see for exampleDoggett [20]).
In practice, we use cached textures in several parts of our
implementation (but in those cases in which we need a proper
synchronization among threads, see for example Section V-A
and Section VI-B). To be concrete, we run some experiments
on the keypoint extraction phase. We verified that global
memory is from 50% to 70% slower than cached textures in
our approach.

The Test Model (TM) implementation of CDVS [16] per-
forms the Gaussian Filtering of Algorithm 1 using a sequence
of one 1D horizontal filter and one 1D vertical filter. On
the contrary, we implement this process as a sequence of
two horizontal filters using 4 kernels which implement the
following operations:

1) Filter the image T with a 1D horizontal Gaussian.
2) Take the transpose T T of T .
3) Convolve with the same 1D horizontal Gaussian filter

the image T T .
4) Transpose one more time the result from T T to T .

With a source image of size [width × height] pixels, we
run [width4 × height] threads for the horizontal filtering oper-
ations (steps 1 and 3) and [width4 ×

height
4] threads for the

transposition (steps 2 and 4). Every thread of the 4 kernels
sequentially manipulates 4 consecutive horizontal gray tone
pixels, i.e., (x, y, z,w), within the RGBA texel t . Those pixels
represent the atomic pieces of information loaded within the
thread. We decided to use just horizontal filters due to the
gray pixel coding policy adopted inside the texture texels t .
Each horizontal filter involves a number of pixels which
depends on the filter size. CDVS uses a set of 4 Gaussian
filters in sequence with size 15, 15, 21, and 27. For example,
to implement a Gaussian filter of size equal to 15, the stan-
dard approach requires 15 memory accesses for each pixel.
With our strategy, to upload all pixels required by the same
filtering operation, we read only 5 RGBA texels within each
thread. Those 5 texels store everything needed to sequentially

1 As far as we know, caching has been introduced for global memories
starting from CUDA-2.0. Anyhow, we do not take into consideration this
improvement in our implementation as the hardware platforms we consider
do not support it.

manipulate 4 gray tone pixels in the same thread. This process
is represented in Fig. 2.

FIGURE 2. Gaussian Filtering: Performing Convolution using OpenCL
kernels.

Although the distance of each keypoint to the image center
is used to weight keypoints in the FS stage, and keypoints
around the image boundary are rarely selected for image
retrieval or image matching, the CDVS standard requires
‘‘padding’’ during convolution. A straightforward implemen-
tation of this process implies concurrent code including
branches. Such a code, by definition, is not SIMT compliant
and therefore it may be quite inefficient. To avoid such a
problem, Algorithm 2 shows a solution in which branching
is restricted to the first and the last two texel columns.

At the same time, all internal columns present the same
branching flow. Moreover, notice that, as we use only hori-
zontal filters, padding must be implemented only on the left
and right borders. Thus, our coding policy reduces the overall
working load.

Function Conv15 follows the process of Fig. 2 for the first
and second filters of size 15. It receives the Gaussian image
at octave o and filter s − 1 (i.e., Go,s−1), the width (Wo)
and height (Ho) of the image at that octave, and the set of
filters (S). It generates the Gaussian image at the octave o
and filter s. In line 2, variables i and j are used to store
the thread indices, i.e., the texel position within the current
Gaussian image Go,s−1. When the current pixel is not on the
image border (i.e., i > 1 and i < (Wo − 2)), following
Fig. 2, the four pixel data sets focus[0], focus[1], focus[3], and
focus[4] are read (by function ReadItem) from the current
Gaussian image Go,s−1. On the contrary, when the current
pixel is on the image border (i.e., i = 0 or i = (Wo − 1))
or just on the inner frame (i.e., i = 1 or i = (Wo − 2)),
one or more pixels are obtained with padding (lines 9-10,
13, 21-22, and 25). Padding duplicates one gray tone in
all texel components. Function UnrollConvolution finally
computes Go,s by optimizing the convolution computation
through loop unrolling.

To further reduce branching, it is possible to use 5 kernels
to manipulate different sections of the image. In this scheme
the first kernel manipulates texels within the first column,
the second one pixels belonging to the second column, the
third one the central image section, the fourth one pixels
belonging to the last but one column, and the fifth kernel
pixels within the last column. These 5 kernels would run

52032 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

Algorithm 2 Edge Padding During Gaussian Filtering on a
Texture With Size 15 (the First or the Second One). Notice
That, With This Filter Size, the Situation Is Exactly the One
Depicted in Fig. 2, Where There Are Just 2 Texels on the
Right and on the Left of the Analyzed Texel
Require: Go,s−1, Wo, Ho, S
Ensure: Go,s

1: Conv15
2: (i, j) = GetGlobalId ()
3: focus[2] = ReadItem (i, j, Go,s−1)
4: if (i > 1) then
5: focus[0] = ReadItem (i− 2, j, Go,s−1)
6: focus[1] = ReadItem (i− 1, j, Go,s−1)
7: else
8: if (i == 0) then
9: for j ∈ {x, y, z,w} do focus[0].j = focus[2].x
10: for j ∈ {x, y, z,w} do focus[1].j = focus[2].x
11: else
12: focus[1] = ReadItem (i− 1, j, Go,s−1)
13: for j ∈ {x, y, z,w} do focus[0].j = focus[1].x
14: end if
15: end if
16: if (i < (Wo − 2)) then
17: focus[3] = ReadItem (i+ 1, j, Go,s−1)
18: focus[4] = ReadItem (i+ 2, j, Go,s−1)
19: else
20: if (i == (Wo − 1)) then
21: for j ∈ {x, y, z,w} do focus[3].j = focus[2].w
22: for j ∈ {x, y, z,w} do focus[4].j = focus[2].w
23: else
24: focus[3] = ReadItem (i+ 1, j, Go,s−1)
25: for j ∈ {x, y, z,w} do focus[4].j = focus[3].w
26: end if
27: end if
28: Go,s = UnrollConvolution (focus, S)

a number of threads equal to [1 × height], [1 × height],
[(width/4) − 4 × height], [1 × height], and [1 × height],
respectively. Algorithm 2 can be modified following this
strategy, such that all running threads would be completely
SIMT complaint.

To analyze the best trade-off between the number of code
branches allowed and the number of kernels that have to
be run, we implemented and compared three versions of
this procedure: The one with one single kernel, the one
presented in Algorithm 2, and the one with 5 kernels. If we
consider the intermediate solution, i.e., the one represented by
Algorithm 2, about 20–25% of the time is spent in padding
and about 75–80% by functionUnrollConvolution (line 28).
From the one hand, without stencil code optimization this last
function would be from 4 to 5 times slower. From the other
one, with one single kernel padding is about 50% slower and
it is about 5–10% faster with 5 kernels. As the two versions
with 2 and 5 kernels are almost equally efficient, with no

clear winner (as the majority of the time is spent to unroll
the convolution, anyhow), we consider Algorithm 2 as our
reference implementation.

To transpose T into T T (and vice-versa) each threadmanip-
ulate 4 RGBA pixels vertically placed, and it generates the
same number of output pixels. As represented in Fig. 3, each
thread identifies the area of the input texture on which it has
to work, using its thread index (i, j), and it identifies the area
on the output texture, using the transpose (I = j, J = i).

FIGURE 3. Transpose operation: From (i, j) on the input texture to
(I = j, J = i) on the output texture.

Using 4 sequential kernels to perform filtering reduces the
number of read operations (Rt) with respect to the standard
case which uses 2 kernels to perform a horizontal and a
vertical filter. For example, with filters of size equal to 15,
the standard procedure performs 5 read operations for the
horizontal filter, and 15 for the vertical one, i.e., a total of
Rt = 5 + 15 = 20 read operations. At the same time, our
solution with 4 kernels implies 5 accesses for each convolu-
tion and 1 access for a group of 4 transpositions (that is 0.25
accesses every single texel), i.e., Rt = 5+ 0.25+ 5+ 0.25 =
10.5 read operations. Furthermore, it is important to remind
that the GPU caching infrastructure stores a pixel t and its
neighbor (after it has been read) within the hardware cache,
thus reducing latency times of all subsequent accesses by
other threads.

2) LAPLACIAN
The Laplacian operator (useful to highlight regions of rapid
intensity change) is applied to the images that have first been
smoothed by a Gaussian filter. Following Algorithm 1 the
Laplacian function takes a single gray-level image as input
and produces a Laplacian of Gaussian image as output. We
implement an OpenCL kernel with [width4 × height] threads,
which it is able to apply the Laplacian operator sequentially
to the 4 gray pixels encoded in t . Fig. 4 shows which input
image pixels (left-hand side) are used to compute the output
pixels (right-hand side).

Boxes in the image represent different texture texels.
The standard approach does not perform padding as it rules-
out all pixels of the image frame from the Laplacian compu-
tation. In our case, threads compute the Laplacian even on the

VOLUME 6, 2018 52033

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

FIGURE 4. Laplacian computation considering 4 gray pixels at the same
time.

frame to avoid kernel branches. Nevertheless, as our function
ReadItem of Algorithm 2 returns (0, 0, 0, 0) on the frame,
the result we obtain is exactly the one returned by the standard
procedure. The formulas

Lo,s[1].x += Go,s[0].w+ Go,s[1].y

Lo,s[1].y += Go,s[1].x + Go,s[1].z

Lo,s[1].z += Go,s[1].y+ Go,s[1].w

Lo,s[1].w += Go,s[1].z+ Go,s[1].x

Lo,s[1] += Go,s[3]+ Go,s[4]− 4 · Go,s[1] (1)

represent the computation of Laplacian for each encoded
gray pixel (Lo,s[1].x, Lo,s[1].y, Lo,s[1].z, Lo,s[1].w) given the
adjacent texels (Go,s[0], Go,s[2], Go,s[3], and Go,s[4]) from
the correspondent Gaussian texture. Each thread computes
the Laplacian for 4 pixels at the same time accessing the
memory only 5 times.

3) REDUCTION
Following Algorithm 1, the Go,|S|−1 image (i.e., the sec-
ond to last filtering Gaussian from the GSS pyramid) is
down-scaled by a factor of two by procedure Reduction.
This down-scaling procedure creates the next octave, and
it is performed by a dedicated kernel running a matrix of
[width8 ×

height
2] threads. Given our texture texel t the

kernel reads two consecutive texels on the same row
t ′(t ′.x, t ′.y, t ′.z, t ′.w) and t ′′(t ′′.x, t ′′.y, t ′′.z, t ′′.w), and it gen-
erates a single pixel t(t ′.x, t ′.z, t ′′.xt ′′.z) skipping odd rows.
The result of this reduction becomes the input Go+1,0
for the next octave as represented by the pseudo-code of
Algorithm 1.

B. THE ALP DETECTOR
The target of ALP is to find all keypoints k , and to return
the entire keypoint set KO (with k ∈ KO), given the
Laplacian LO at the current octave. This process is described
in Algorithm 3.
For each octave o ∈ O (line 2), and for each pixel within the

image available at the current octave p ∈ [1,Wo ·Ho] (line 3),
ALP generates a polynomial of degree 3, i.e., ψo[p]. This
polynomial is generated (line 5) as a linear combination of the
4 Laplacian values Lo,f (with f ∈ [1,F]) forming the octave.
Given ψo[p], the roots of its first derivative (ψ ′o[p], line 6),
are the minimum Smo and the maximum SMo values (scale).
Evaluating ψo[p] in Smo and SMo gives the minimum Rmo [p]
and the maximum RMo [p] values (response), respectively.
All those data are stored in different textures in a position

Algorithm 3 Keypoint Detection The 4 Coefficients of ψo
and All Information Within Smo , S

M
o , Rmo e RMo Are Encoded

in a RGBA Texture With 4 Components
Require: LO
Ensure: KO

1: ALP
2: for o = 1 to |O| do
3: for p = 1 to (Wo · Ho) do
4: (Rmo [p], R

M
o [p]) = Init (Lo,1, Lo,F)

5: ψo[p] = Coeff (Lo)
6: (Smo [p], S

M
o [p]) = Root (ψ ′o[p])

7: (Rmo [p], R
M
o [p]) = ψo[p] (Smo [p], S

M
o [p])

8: Ko = Detect (ψo[p], Smo [p], SMo [p], Rmo [p], R
M
o [p])

9: end for
10: (Ko−1, Ko) = Duplicate (Ko−1, Ko)
11: end for

corresponding to the one of the pixel p. This technique
enables a quick retrieval of all keypoint information by all
kernels that have to perform their computation. Theminimum
and maximum values of ψo become keypoint candidates
if they represent minimum and maximum values around a
pixel p. FunctionDetect (line 8) performs a selection process
among the keypoints generated for each pixel. Once all pixels
are manipulated, function Duplicate compares all keypoints
generated during two consecutive octaves (i.e, Ko−1 and Ko),
and it retains only the strongest keypoint within each couple
of duplicated keypoints.

1) SCALE SPACE APPROXIMATION AND
EXTREMA DETECTION
ALP finds keypoints during each octave and it merges all
results during the last iteration. To extract keypoints we use
several kernels implementing the steps included in the CDVS
standard. The number of kernels has been selected as the best
possible trade-off between precision and efficiency. A few
of them are used to run initialization operations. Others are
used to find, re-arrange, and gather keypoints based on their
octave.

To implement Algorithm 3 on a GPU, we use 5 different
OpenCL kernels.

The first one (function Init, line 4) initializes response
textures Rmo and RMo with the lower and the upper Laplacian
texture Lo,1 and Lo,F .

The second one (functionCoeff, line 5) computes the linear
combination ψo of 4 Laplacian coefficients for every pixel p.

The third kernel (function Root, line 6) evaluates the
roots Smo , and S

M
o of the first derivative ψ ′o of the polyno-

mial. Moreover, it finds the minimum and maximum values
of those roots Rmo [p], and R

M
o [p]. Unlike the Gaussian and

Laplacian computation, where also neighboring pixels are
considered, in this case each kernel (running a matrix of
[width4 × height] threads) performs just one memory access
to process 4 gray pixels p.

52034 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

All threads within kernel Init, Coeff and Root read all
required pixel information from different textures storing
intermediate data. These data are manipulated by a fourth
kernel, that is Detect. This kernel considers only pixels with
minimum or maximum local polynomial values (i.e., those
pixels having values Rmo and RMo exceeding the ones of their
pixel neighbors), and for each of them:

• It refines the position of those candidates to sub-pixel
precision using a different polynomial ω. This polyno-
mial ω is a linear combination of the Laplacians of the
area of dimension q around the examined pixel p and
the root of ψ ′o[p]. Using the ALP standard, from ω it is
possible to compute the ratio τ (the squared trace to the
determinant of the Hessian), and the value of1x and1y.
These variables are the two values that influence the
displacement from the integer pixel position (Ix , Iy).

• It initializes σ as the root Smo [p] or S
M
o [p] of the polyno-

mial ψ ′o,p with the generation of Rmo [p] or R
M
o [p] local

minimum or maximum. It defines the peak ρ as the
reference value Rmo [p] or R

M
o [p]. Moreover, it specifies

the scale δf (with f ∈ (1 . . .F)) as the value of the
Gaussian filter Sσ closer to Smo [p] or S

M
o [p].

• It computes the keypoint curvature σcurv based on the
second derivative of ψo.

Note that candidates are detected one octave at a time, and the
analyzed images in each octave have a quarter of the size of
those in the previous octave. The coordinates and scales are
referred to the coordinate system of the octave in which they
are detected. Therefore a further step performed by kernel
Detect is to map coordinates and scale to the resolution of
the converted initial input image dimension [31] (coordinated
domain). Once coordinates are mapped, we need to store the
keypoints Ko of all octaves O into KO.

2) ALP KEYPOINTS
Instead of storing keypoints on temporary CPU data struc-
tures, we store them in OpenCL textures. Fig. 5 shows all
internal fields of this OpenCL texture.

FIGURE 5. OpenCL implementation: A keypoint/feature structure.

3) DUPLICATES
In the last row of Algorithm 3 the OpenCL kernel Duplicate
works on (Ko−1,Ko) represented by the keypoint textures

we have just described. If keypoints are meaningful, it may
happen that they are captured by different octaves o ∈ O.
The procedure compares each keypoint in Ko−1 with all key-
points in Ko. For each pair, first CDVS computes the distance
between the two keypoints and the difference between their
scales. Then, it compares these two values with two different
thresholds. If both values (distance and scale difference) are
below the threshold, the keypoint with the smallest abso-
lute value of ρ is canceled, otherwise both keypoints are
maintained.

V. FEATURE SELECTION (FS)
As represented in Fig. 1, keypoint detection (KD) is followed
by orientation assignment (OA), and then by feature selec-
tion (FS). In this process, each keypoint (k ∈ K) becomes a
feature (f ∈ F) when the orientation kα is added to the orig-
inal keypoint. Nevertheless, our GPU algorithm is designed
in such a way that OA and FS can be swapped with some
memory and time advantage. As a consequence, in the follow-
ing two subsections, we present two feature selection algo-
rithms. In the first one, which we call ‘‘deferred FS’’ scheme
(see Section V-A), FS is performed after OA, as in the
standard. In this case, our main contribution consists in
adopting a GPU-oriented approximated sorting algorithm
inspired by bucket-sort instead of an exact sorting algorithm.
In the second one, which we call ‘‘hastened FS’’ scheme
(see Section V-B), the FS phase is anticipated and performed
before OA. The last part of this section (Section V-C) focus
on one important CDVS sub-step, namely the matching prob-
ability phase.

A. DEFERRED (STANDARD) FS
In the standard scheme, FS is computed following the pseudo-
code reported in Algorithm 4. The procedure receives the
set of all keypoints at all octaves, KO, and a quantification
set Q. It generates the set of features at all octaves FO,
a threshold TH , and all local descriptors at all octaves DO.

Algorithm 4Deferred (Standard) Approach: FS Is Performed
After OA
Require: KO, Q
Ensure: FO, TH , DO
1: DeferredFS
2: FO = OrientationAssignment (KO)
3: (FO, H) =MP (FO, Q)
4: TH = ComputeThreshold (H)
5: DO = LocalDescriptor (FO, TH)

To do that, the CDVS standard proceeds as follows.
Function OrientationAssignment (line 2) manipulates all
keypoints (KO) found by theKDmodule, and it generates a set
of features (FO). The setFOmay have a cardinality larger than
the one ofKO, i.e., |FO| ≥ |KO|, as the orientation assignment
step duplicates all keypoints with more than one possible ori-
entation. Then, for each feature f ∈ FO generated by the OA
module, CDVS computes its matching probability (line 3).

VOLUME 6, 2018 52035

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

Notice that in this case, function MP works on the entire set
of features FO, considering their orientations fα directly when
computing their matching probability fmp. As a consequence,
MP has to manipulate a quite large set of objects. Function
MP will be analyzed into details in Section V-C. The list
of features, enriched with the matching probability, is then
sorted by function ComputeThreshold (line 4). The stan-
dard, running on CPU platforms, sorts features using a state-
of-the-art sorting algorithm. Even if the number of features,
for every octave o ∈ O, is upper-bounded by (2 · 103),
sorting keypoints adopting a standard sorting algorithm may
be quite inefficient on a GPU-based SIMT architectures [32].
Moreover, note that the CDVS standard sorts keypoints only
to select the most important features, not to obtain a complete
and global order among them. As a consequence, we apply an
approximated sorting algorithm inspired by bucket-sort. This
guarantees low time complexity with practically no penalty
in terms of accuracy. It proceeds as follows.

The histogram H , returned by function MP, represents a
pre-defined number of classes. Each class stands for a range
interval within the minimum and maximum values of fmp.
This number of classes is selected as a function of the desired
approximation. As the histogram’s maximum number of
intervals is 103, and fmp ∈ [3, 3 · 10−3], the size of each class
is [3 · 10−6]. In this situation, the first class contains features
having fmp ∈ [0, 3 · 10−6], the second class features having
fmp ∈]3·10−6, 6·10−6], etc. For each class (or bin), we define
a counter representing the number of features having fmp in
the corresponding interval. As a consequence, once all fmp
values have been computed, each feature is assigned to the
corresponding histogram interval to populate the histogram.

As all threads work in parallel, we must guarantee a proper
synchronization among them, such that only one thread can
modify a bin counter at any given time. Synchronization is
obtained with OpenCL (or CUDA) proper functions, such as
atomic_add. However, this can become a source of over-
head, and locally computing parts of the histogram and then
merging results together may be a solution. Obviously, there
is a trade-off between concurrency and number of threads
and kernels, i.e., between fine-grained and coarse-grained
procedures. Anyhow, our results do not show large variations
in terms of overall performances once the overall ‘‘race-
histogram’’ strategy has been implemented. For this reason
we prefer the simplest solution in which just one single race
is run to compute the entire histogram to the one in which
more races are run in parallel.

Once this phase is terminated, each box of the histogram
represents an interval and it contains the number of features
belonging to that interval. To select the target number N
of keypoints, we compute a threshold TH . This threshold
is obtained by multiplying the interval size by the number
of buckets considered at that point. Then, we use an accu-
mulator A to count the number of features in each interval,
starting from the last element of the histogram. The counting
phase ends when A ≥ N . The threshold TH is then used as
a threshold to select or rule-out each keypoint k based on

its matching probability kmp. Notice that in this algorithm
linear search is performed only on a subset of the overall
number of classes. This makes our algorithm much faster
than a standard linear search. Moreover, even if the number
of features selected is just an estimate of the desired one,
this approximation does not have any impact on accuracy as
proved in Section VII.

B. HASTENED FS
Algorithm 5 shows how we re-designed FS within the entire
CDVS chain to re-position it before OA [11]. We call this
computation scheme hastened FS.

Algorithm 5 Hastening FS Before OA
Require: KO, Q
Ensure: FO, TH , DO
1: HastenedFS
2: (KO, H) =MP (KO, Q)
3: TH = ComputeThreshold (H)
4: FO = OrientationAssignment (KO, TH)
5: H = UpdateHistogram (H , FO)
6: TH = ComputeThreshold (H)
7: DO = LocalDescriptor (FO, TH)

Input and output parameters are the same of the deferred
version (Algorithm 4). However, in this case we first com-
pute the matching probability (line 2), then we compute the
threshold TH (line 3), and finally we resort to the Orien-
tationAssignment function (line 4). Function MP (line 2)
works as in Algorithm 4 but, in this case, it manipulates
the keypoint set (KO) instead of the feature set (FO). Pro-
cedure OrientationAssignment starts from the keypoint KO
selected by ComputeThreashold and it produces enriched
features FO, i.e., the original keypoint with added orientation
information kα . Notice that the cardinality of FO is usually
larger than the one of KO, because OrientationAssignment
can generate many features with different orientations from
the same keypoint. As a consequence, to maintain the number
of selected features as desired, we need to update the his-
togram (function UpdateHistogram, line 5) and compute a
new threshold TH (line 6). Procedure ComputeThreshold
applies the bucket-sort-inspired approximated sorting algo-
rithm previously described in Section V-A. Moreover, all
local descriptors DO are computed by function LocalDe-
scriptor. Notice that in this scheme, functions Orienta-
tionAssignment and LocalDescriptor manipulate only a
subset of keypoints and features, thus reducing the overall
computational effort.

Our experimental analysis, performed on a vast set of
images, shows that the contribution of the OA phase to the
MP function consists in an almost constant displacement.
This means that if we do not consider orientation during MP,
no important feature is ruled-out by the process, and the final
matching accuracy does not decrease. A similar consideration
is done by Lee et al. [11]. As a consequence, FS can be

52036 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

performed before OA computing the orientation only for a
reduced number of selected keypoints.

C. MATCHING PROBABILITY (MP)
As analyzed in Sections V-A and V-B the matching probabil-
ity phase can be applied either after (Algorithm 4) or before
(Algorithm 5) orientation assignment. In the first case,
it manipulates features f ∈ F . In the second one, it deals with
keypoints k ∈ K . For the sake of simplicity, we explicitly
refer to Algorithm 5 in this section, and function MP will
manipulate keypoints.

Following the CDVS standard (see Section III-B),
the matching probability phase is mainly based on data eval-
uated during the detection phase, such as the displacement
from the image center (1x ,1y), the scale δ, the peak ρ, the
curv-sigma σcurv, and the ratio τ . Anyhow, in the deferred
algorithm, it also considers data coming from OA, such as α
(see Lee et al. [33]). MP generates the matching probabil-
ity kmp of each keypoint k ∈ KO.
To compute these kmp values, the standard adopts sev-

eral conditional distributions, learned during standardization
using an independent matching data set, and several quan-
tification steps [19]. To parallelize and to accelerate their
computation (and also to select the most promising features
as described in Sections V-A and V-B) we use OpenCL kernel
work-groups. A work-group must consist of at least one
work-item (thread). The maximum number of work-items
is platform dependent. The work-items within a work-group
must be synchronized to share local memory with each other.

To efficiently distribute the workload of the kernel we use
the MP procedure described in Algorithm 6.

Algorithm 6 Computing the Matching Probability kmp for
Each Keypoint k ∈ KO Q Is a Quantization Set Which
Enables the Quantization of the Interest Point Distance From
the Image Center, Its Scale, Its Peak Response, Its Curv-
Sigma, and Its Ratio
Require: KO, Q
Ensure: KO, H

1: MP
2: for o = 1 to |O| do
3: for k = 1 to Ko do
4: k1x ,1y = Quantize (Q, k1x ,1y)
5: kδ = Quantize (Q, kδ)
6: kρ = Quantize (Q, kρ)
7: kσcurv = Quantize (Q, kσcurv)
8: kτ = Quantize (Q, kτ)
9: (kmp, H) = PDF (k1, kδ , kρ , kσ , kτ)
10: end for
11: end for

FunctionMP receives the set of keypoints at all octavesKO,
and a quantification set Q. It returns the same keypoint set
KO updated with new attributes values (namely kmp), and a
histogram H . Function MP calls function Quantize for each

keypoint k ∈ Ko (line 3) of each octave o ∈ O (line 2). This
function restricts keypoint attributes (i.e., the displacement
from the image center (1x ,1y), the scale δ, the peak ρ,
the curv-sigma σcurv, and the ratio τ) to discrete values start-
ing from a continuous set of values. The 5 calls to function
Quantize (lines 4-8) are done in sequence, but they perform
operations with a high level of concurrency. To optimize this
phase, we follow the suggestion given by Francini et al. [17],
where the maximum number n of quantized elements is
mapped on the higher populated conditional distributions Q,
i.e., n1x ,1y = 32, nδ = 8, nρ = 16, nσcurv = 16, nτ = 16.
Thus, for every Quantize function calls, we activate a work
group composed by 32 work-items running in parallel. Any-
how, for each function Quantize only the right number of
threads n (i.e., n1x ,1y , nδ , nρ , nσcurv , and nτ) is activated.
The attribute values of each keypoint k (i.e., k1x ,1y , kδ , kρ ,
kσcurv , and kτ) after quantization (computed by lines 4-8) are
used by function PDF to generate the matching probability
kmp of the keypoint k . Finally, one work-item inserts each
keypoint matching probability kmp into the histogram H used
by function ComputeThreshold (see Section V-A) to select
the desired number of keypoints.

VI. ORIENTATION ASSIGNMENT (OA)
OA finds the feature f ∈ FO corresponding to each keypoint
k ∈ KO. During the orientation assignment phase, CDVS
assigns a dominant orientation Fα to each feature to allow
rotation invariance during the pairwise matching phase. To
do that, for each keypoint selected by the FS (hastened or
deferred) phase, CDVS computes the magnitude 2mod and
direction 2θ of the gradient of every pixel within the circu-
lar neighboring area defined by the keypoint (scale kδ and
sigma kσ) and from the Gaussian (Gfo with f = Kδ ∈
(1 . . .Gg) and o = Ko). Gradient values 2θ are then orga-
nized in a histogram Hk .

All previous computations are sketched in Fig. 6 and
detailed by Algorithm 7. For each keypoint k ∈ K (black
dot) its scale defines a circular neighboring area (or radius rk
and evaluated by function Compute, line 4) and a square
matrix circumscribing this area (of size equal to [(2 · rk) ×
(2 · rk)] pixels). The Gradient is then used to get the final
orientation result [34] adopting a histogram composed by
36 bins (function Histo, line 8). This histogram is recursively

FIGURE 6. Keypoints k ∈ K (black dots), circular neighboring (of
radius rk), and circumscribed square (of size [(2 · rk)× (2 · rk)] pixels)
defined by the keypoint scale.

VOLUME 6, 2018 52037

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

Algorithm 7 Sequential Algorithm: Pixel-by-Pixel Manipu-
lation for Gradient Computation and Histogram Update. If
There Values Are Larger Than 80% of the Main Maximum,
the Procedure Duplicates the Keypoint k Into a New Feature
Require: KO
Ensure: FO
1: OrientationAssignment
2: for o = 1 to |O| do
3: for k ∈ Ko do
4: rk = Compute (kσ)
5: for i = (k1x − rk) to (k1x + rk) do
6: for j = (k1y − rk) to (k1y + rk) do
7: (2mod ,2θ) = Gradient (i, j, kδ , Go,s)
8: Hk = Histo (2θ)
9: end for
10: for i = 1 to 6 do
11: Hk = Smooth (Hk)
12: end for
13: end for
14: kα =Max (Hk)
15: end for
16: end for

smoothed (procedure Smooth, line 11) six times by averag-
ing 3 adjacent bins at a time. The bin corresponding to the
highest peak (functionMax, line 14), as well as the bins with a
value larger than 80% of the highest value, are selected as the
dominant orientations of the interest point. Notice that these
extra orientations generate the same features computed by the
original keypoints but with different orientations.

The OpenCL computation scheme for 2h and 2v is very
close to the Laplacian one, shown in Fig. 4. Input image
pixels (left-hand side of Fig. 4) are used to compute the
horizontal 2h and vertical 2v components of the gradient,
separately.

For each Go,s every gray scale pixel (x, y, z,w) gradients
2h and 2v are computed as follows:

2h.x = 0.5 · (Go,s[1].y− Go,s[0].w)

2h.y = 0.5 · (Go,s[1].z− Go,s[1].x)

2h.z = 0.5 · (Go,s[1].w− Go,s[1].y)

2h.w = 0.5 · (Go,s[2].x − Go,s[1].z) (2)

for the horizontal position, and

2v.x = 0.5 · (Go,s[4].x − Go,s[3].x)

2v.y = 0.5 · (Go,s[4].y− Go,s[3].y)

2v.z = 0.5 · (Go,s[4].z− Go,s[3].z)

2v.w = 0.5 · (Go,s[4].w− Go,s[3].w) (3)

for the vertical one. From2h and2v, it is possible to obtain:

2mod =

√
2h2 +2v2

2θ = arctan
2v

2h (4)

To implement Algorithm 7 concurrently, we experimented
with two different solutions. In our first implementation,
we run a fixed number of threads (corresponding to the
maximum required ones) for each neighboring areas, and we
eventually disabled the ones that were not required. In the sec-
ond one we use 4 kernels to orchestrate the overall work-flow,
i.e., a first kernel generates all pagination data and then all
other kernels manipulate pixels. Experimentally, we discover
that the time spent by the pagination kernel is more than
balanced by all following ‘‘denser’’ kernels, and that this last
solution is about 40% faster than the previous one on aver-
age. As consequence, we concentrate on it. It adopts kernels
Gradient, Pagination, Orientation, and Peak. They are
called in sequence as described by Algorithm 8. These 4 ker-
nels are described in Sections VI-A, VI-B, VI-C, and VI-D.

Algorithm 8 Concurrent Algorithm: Kernels Gradient,
Pagination, Orientation, and Peak Are Run Sequentially
to Generate Features From Keypoints
Require: KO
Ensure: FO
1: OrientationAssignment
2: (2mod ,2θ) = Gradient (kδ , Go,s)
3: PT = Pagination (KO)
4: Hk = Orientation (PT , idwidth, idpages)
5: Kα = Peak (HK)

A. KERNEL GRADIENT: GRADIENT EVALUATION
We use the first kernelGradient (running a matrix of [width4 ×

height] threads) to pre-compute the gradient (2mod ,2θ) of all
pixels within the image. More specifically, like in Section IV,
we run one thread for each image texel of the convolution
texture. Each thread essentially computes the gradient for that
coded pixel using Equations (2) and (3). After that, using
Equations 4, we generate the texture pairs including 2mod
and 2θ for each convolution Go,s (with s ∈ S and octave
o ∈ O). Notice that this sort of pre-computation implies that
the gradient is evaluated also for pixels outside all neighbor-
ing areas (rk ,∀k ∈ KO). At the same time, it also implies
that we compute a single gradient for all pixels belonging
to more than one neighboring area (as represented by all
gray areas in Fig. 6). As many pixels actually do belong to
more than one neighboring area, these two effects generally
balance each other. Once we have computed rk for each
keypoint, to perform the two nested cycles of Algorithm 7 in
a concurrent way, we run a group of threads (items) for each
keypoint. Each item manipulates a pixel within the keypoint
neighboring area and it contributes to the generation of the
histogram Hk . If we suppose to organize these items with a
proper data grid structure, we should use a 2D matrix storing
keypoints along rows and items (for each neighboring pixel)
along columns.

52038 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

B. KERNEL PAGINATION: DENSE PAGINATION TABLE
The pagination kernel does not perform any specific CDVS
step as it essentially builds a ‘‘pagination table’’ to make
the orientation kernel (analyzed in Section VI-C) more effi-
cient. In other words, the pagination kernel pre-computes
information items that are common to all threads run by
the orientation kernel to improve its performances and to
avoid re-computations. The problem and the core idea are the
following ones.

The orientation kernel must analyze all pixels of all key-
point neighboring areas (of all octaves) to update a histogram
storing keypoint characteristics. To perform this task in a
concurrent way, one possible solution consists in running one
thread for each pixel of each keypoint. As the number of
pixels in the neighboring area varies with the size of this area,
one first possibility is to run a number of threads equal to the
number of keypoints multiplied by the number of pixels in the
largest neighboring area. In this case, many threads would
be run and then stopped when dealing with keypoints with
smaller neighboring areas, and this would imply that a lot of
threads would not be SIMT compliant, reducing the overall
efficiency.

To solve this problem we first compute the total number
of pixels included in the neighboring areas of all keypoints.
Then, as the generated threads have to be distributed over
a dense grid to optimize their computation, we create a
‘‘pagination table’’ to store every thread-to-pixel correspon-
dence. Finally, we run a number of threads equal to the
number of those pixels and we use the pagination table to
allow each thread to manipulate the right pixel within the
proper keypoint neighboring area. Whereas this last step is
performed by the orientation kernel (see in Section VI-C)
all previous ones are performed by the pagination kernel. Its
implementation is reported in Algorithm 9.

Algorithm 9 Pagination Process The Scheduled ItemsWithin
the Pagination Table Represent a Dense Grid of Parallel
Processes
Require: KO
Ensure: PT
1: Pagination
2: rk = Compute (kσ , kmp, TH)
3: if rk > 0 then
4: (idstart , idend) = Page (Catomic, rk)
5: PT = Index (idstart , idend , k)
6: end if

Kernel Pagination receives the keypoint set KO as a
parameter, and it returns the pagination table PT . It runs
one thread for each keypoint k ∈ KO of that octave. Each
thread executes function Compute (line 2) to compute the
neighboring regions radius rk . Thus the neighboring area will
be defined by the square matrix of size [(2 · rk) × (2 · rk)].
The value returned by function Compute is larger than zero
only for the selected keypoints, i.e., for those keypoints above
the threshold TH which have been selected as features kmp.

For those features (line 3), function Page (line 4) assigns
to each keypoint a number of threads equal to the number
of pixels in its neighboring area. The global counter Catomic
is used to count the number of required threads required
for each keypoint as well as the total number of threads
required by all keypoints. As function Page is shared among
all threads, we need to avoid collisions on the counterCatomic.
To obtain a proper synchronization we protect the counter
within a critical section, such as the one obtained with the
OpenCL function atomic_add. As a result, function Page
finally returns for each keypoint k a starting index (idstart) and
an ending index (idend). All threads assigned to that keypoint
will have index within the range [idstart , idend]. As variable
Catomic is manipulated within a critical section, its final value
defines the total number of threads that have to be run. Those
threads are rearranged in groups, spread-out in subsequent
pages (i.e., rows) within the pagination table PT . Each page
of the pagination table represents a group of constant size,
equal to PTwidth = 512. We selected this value statically for
the following reasons. First of all, 512 is a power of 2 and this
enables each thread to address the right page with a simple
binary-shift operation. Obviously, any power of 2 would suit
this requirement, but too small values would imply too many
rows to represent threads for the same keypoint, and too large
values would imply too many keypoints into the same row.
In fact, the neighboring area of each feature can be spread
in more than one page, and a page may store neighboring
items belonging to more than one feature. Groups of items
belonging to different pages will have duplicated entries on
different pages within PT . Given the smallest neighboring
area with pages of width 512, we experimentally noticed that
each page contains information for a maximum of 8 keypoint
neighboring areas. This is an important value as within the
orientation kernel each thread will have to visit an entire page
of the pagination table PT to recover its pixel position. Too
large values would imply an inefficient sequential search.
Too small values would imply a too large number of pages.
Thus 512 (corresponding to 8 keypoints) is a trade-off among
several requirements.

Function Index finally generates the entry for the pagi-
nation table PT based on the item position (idstart , idend).
PT will be used by all threads within the orientation kernel to
recover all required keypoint information. Notice that within
the pagination table, each entry is encoded with two pixels
represented as RGBA float numbers.

C. KERNEL ORIENTATION: UPDATE HISTOGRAM
Once the pagination table is created we run the Orientation
kernel to update all histogram’s bins. Once again, this step
corresponds to a real CDVS phase, whereas the pagination
thread has just set the pagination table up to optimize it.
In other words, the orientation kernel uses the pagina-
tion table to recover all thread-to-pixel correspondences.
Its pseudo-code is reported in Algorithm 10.

It receives as input parameters the pagination table PT
and the thread identifiers idwidth and idpages. It returns the

VOLUME 6, 2018 52039

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

Algorithm 10 Orientation Kernel: Starting From the
Pagination Table (PT) Pre-Computed by the Pagination
Kernel, It Creates the Histogram Hk
Require: PT , idwidth, idpages
Ensure: Hk
1: Orientation
2: (idk , iditem) = Recovery (PT , idwidth, idpages)
3: Hk = Histo (idk , iditem, 2mod , 2θ)

final keypoint histogram Hk . The orientation kernel runs a
number of threads equal to the total number of pixels within
all selected keypoints (i.e., features), which also corresponds
to the final value of variable Catomic. Each thread, using
procedure Recovery, accesses the pagination table texture
PT (line 2). This function, given the thread identifiers (idwidth
and idpages), identifies the corresponding keypoint idk and the
target pixel iditem of which it will be in charge of.

Function Histo builds the keypoint histogram. To store
the histogram Hk , we use the global memory (shared by
all threads run by the Orientation kernel) to enable atomic
operations. Essentially, the histogram is composed by a buffer
with [2048 × 36] integer elements, where 2048 is the max-
imum number of keypoints per octave, and 36 is the length
of the orientation histogram of each keypoint. The current
gradient, is selected using the feature scale kδ . Each thread
reads the direction 2θ and magnitude 2mod of the gradient
of the target pixel, it identifies the corresponding orientation
histogram bin, and, using atomic instructions (such as the
OpenCL atomic_add) it adds the corresponding gradient
magnitude (multiplied by a specific function [19]) to the
histogram.

D. KERNEL PEAK: SMOOTH HISTOGRAM
The fourth and last kernel performs the smoothing and it
selects the dominant orientations. This kernel runs [KO× 36]
threads. Its pseudo-code is reported in Algorithm 11.

Algorithm 11 Kernel Peak Returns All Keypoint Orien-
tations (Kα) Whose Values Is Larger Than 80% of the
Maximum Orientation Value
Require: Hk
Ensure: Kα
1: Peak
2: for i = 1 to 6 do
3: Hk = Smooth (Hk)
4: end for
5: Kα = Race (Hk)

We use OpenCL work-groups, composed by 36 work-
items, to smooth the orientation histogram Hk . The structure
named Hk is used to define the orientation kα and identify
all possible keypoint duplicates. Each work-item operates on
an orientation histogram bin computing average values using
two adjacent bins. Work-items are synchronized using the

OpenCL barrier function in order to read consistent memory
values. Following the standard, function Smooth is called
6 times. Through loop unrolling and stencil code optimization
it performs the required smoothing. Once all computations
on all bins have been completed by all work-items, the entire
histogram Hk is manipulated by the first 4 work-items within
function Race. At this point, each work-item computes the
maximum histogram value of 9 consecutive histogram bins,
e.g., the first work-item computes the maximum among his-
togram elements in position 1–9, the second one the max-
imum among histogram elements in position 10–18, etc.
After that, the first work-item evaluates the global maximum
considering the 4 local maximum values previously com-
puted. Finally each work-item checks whether its correspond-
ing bin is equal to the maximum value, or larger than 80% of
the maximum. The maximum bin will define the orientation
of the corresponding feature. All other relative maximum
values will duplicate the feature with its orientation. All these
features will be returned as Kα .

VII. LOCAL DESCRIPTOR COMPUTATION (LDC)
Local descriptor computation is quite similar to the orien-
tation assignment phase, analyzed in Section VI. LDC is
performed by 3 kernels.

The first kernel is in charge of all initial operations neces-
sary to compact all items within the pagination table. It fol-
lows an implementation quite similar to the one reported in
Algorithm 9 of Section VI-B. Anyhow, it is worthwhile to
highlight two main differences from Section VI-B:
• The neighboring area is constructed (see function

Compute) with a different strategy and rk is usually two
times larger than in the pagination kernel. This obviously
implies larger computational costs.

• Procedures Histo and Smooth of Sections VI-C
and VI-D are replaced by functions Descr and Norm.
These functions, reported in Algorithms 12 and 13, per-
form a sequence of steps, described within the standard,
to compute the feature descriptor. Those operations are
highly parallelizable with subsequent important effi-
ciency advantages.

In the second kernel, reported in Algorithm 12, the Recovery
phase (line 2) identifies the feature and its corresponding
position in the neighboring area.

Algorithm 12 Local Descriptor Computation Kernel
Require: PT , idwidth, idpages
Ensure: Df
1: Descriptor
2: (idk , iditem) = Recovery (PT , idwidth, idpages, Precovery)
3: Df = Descr (idf , iditem, 2mod , 2θ)

In function Descr (line 3), each item participates to the
composition of Df , which is composed by 128 bins. The
descriptor Df is built using data such as 2mod and 2θ stored
in textures previously created. Df includes information used

52040 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

by the subsequent CDVS matching phase. Differently from
Histo, within function Descr each bin is coupled with more
than one field of the descriptor Df . Anyway, also in this
case all descriptors are recorded into the global memory to
enable atomic operations (e.g., such as the ones performed by
the atomic_add function) to avoid conflicts among different
items.

The third kernel (running [Ko × 128] threads) is described
in Algorithm 13.

Algorithm 13 Normalization Kernel
Require: Df
Ensure: Df
1: Normalization
2: for i = 1 to 2 do
3: Df = Norm (Df)
4: end for

It performs the normalization step required by the standard
in a concurrent way. The required operations are performed
on Df by groups of 128 threads appropriately synchronized.
Following the CDVS standard, normalization is performed
twice (line 2). Function Norm (line 3) copies each descriptor
from the global memory to a local texture. Loop unrolling is
used to optimize stencil codeswithin the function. The texture
has 32 rows and FO columns. Each descriptor is encoded on
32 RGBA floats in a texture where on each row there is a
different Df .

A. COMPRESSION AND COORDINATE CODING
Local descriptors Df require about 83 KBytes of memory.
This makes local descriptors complex to manage and to trans-
mit. This is especially true when hardware platforms have
limited resources, like embedded devices and cell phones.
For this reason MPEG developed a compression technique
to generate more manageable data. CDVS includes 6 modes
of compression that store the following amount of informa-
tion: 512Bytes, 1KBytes, 2KBytes, 4KBytes, 8KBytes, and
16KBytes. According to the compression mode being used,
the compression algorithm selects a specific subset of the
transformed components from local descriptors. In order to
enable mode interoperability, these components are selected
such that the set of components of amore compressedmode is
always a subset of the set of components of a less compressed
mode. Once the transformed components have been selected,
each component is quantized to three values (that is, −1,
0, and 1) and finally encoded (into 10, 0, and 11). The
quantization levels for each component are defined in the
standard’s normative look-up table. These values are obtained
maintaining a high level of precision when doing image
matching.

For each compression mode, we implement a different
kernel. The system runs only the kernel corresponding to
the selected mode. Each kernel gathers all coding operations
required by an increasing number of groups, depending on
the mode (5, 5, 10, 16, 20, and 32). Each group of 8 threads

applies the CDVS standard encoding and quantization table
to the descriptor to reduce its size as specified by the selected
compression mode. Using separate kernels to perform com-
pression enables a straightforward mapping of several cod-
ing tables, it reduces the required checks, and improves
performances.

The last step in the feature compression pipeline effi-
ciently encodes the coordinates of each keypoint (1x ,1y).
Coordinates are usually represented using floating-point pre-
cision, which becomes a bottleneck once the feature vectors
have been quantized. CDVS uses a location histogram coding
scheme [35] to identify cluster of features and it efficiently
makes use of arithmetic encoding. For this reason, our last
kernel [FO] reads keypoint positions and, based on coding
tables, it associates these keypoints to an encoding coordinate
which will be used (together with the compact descriptor)
during the matching phase.

VIII. EXPERIMENTAL RESULTS
In this section we present our results, with specific atten-
tion on accuracy (precision) and computation efficiency
(speed). We follow the inter-operability (Pairwise Matching)
test [36] defined by the CDVS standard. The reference picture
descriptors for pairwise matching are extracted using the
Test Model 14 (TM 14.0) (the last implementation of the
standard at publication time) while the query descriptors
are selected using the proposed methods. The data-sets
used for the CDVS interoperability test are the follow-
ings [37]: Graphics (2500 images), Graphics VGA resolution
(2500 images), Graphics VGA resolution and high JPEG
compression (2500 images), Paintings (455 images), Video
Frames (500 images), Buildings (14935 images), Common
Objects (10200 images). We manipulate all images with a
resolution of (640 · 480) pixels.

We selected three widely used devices:
• The Arndale Octa board. This is a high-power single-
board computer featuring a 1.7GHz dual-core ARM
Cortex-A15 as a CPU and an ARM Mali T628 GPU.

• The Samsung Galaxy Note 3. This adopts a chipset
Snapdragon 800 Qualcommm MSM8974 embedding
a CPU 2.3GHz quad-core ARM Cortex A15 and a
Qualcomm Adreno 330 GPU.

• The Samsung Galaxy Note 4. It uses a APQ8084 Qual-
comm Snapdragon 805 chipset, with a 2.7 GHz Quad
Core CPU and a Qualcomm Adreno 420 GPU.

Anyhow, our considerations may easily be extended to
other float single-precision GPUs supporting the Open-CL
or CUDA language.

Section VIII-A compares our fully GPU-based approach
with the CPU-based CDVS Test Model, in terms of time
efficiency. Section VIII-B draws a comparison between
our approach and the one by Duan et al. [16]. Moreover,
following Cavicchioli et al. [38], it talks about memory
issues and memory transfer times. Section VIII-C, follows
SectionVIII-A, and it compares the same approaches in terms
of accuracy.

VOLUME 6, 2018 52041

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

A. EFFICIENCY
We start our experimental analysis by comparing our
GPU-based implementation of the extraction pipeline
of Fig. 1 with the CPU-based CDVS Test Model
implementation.

Fig. 7 reports results on the whole CDVS data-set,i.e.,
more than 33, 000 images with resolution (640 · 480) pixels.
The y-axis indicates the average feature extraction times,

FIGURE 7. Average wall-clock running times on the entire CDVS data-set.
Times include all CDVS processing steps, from the original input images to
the extraction of compact descriptors (see Fig. 1). (a) Arndale Octa board.
(b) Samsung galaxy note 3. (c) Samsung galaxy note 4.

i.e., the average wall-clock times,2 for 4 different approaches
(reference deferred computation and hastened computation
on the CPU, and deferred and hastened computations on
the GPU) running on the three selected target devices (i.e.,
the Arndale Octa board, Fig. 7a, the Samsung Galaxy Note 3,
Fig. 7b, and the Samsung Galaxy Note 4. Fig. 7c). The
x-axis reports the different CDVS descriptor lengths mea-
sured in bytes (512, 1K, 2K, 4K, 8K, 16K). Average values
are computed over all images. The plots show that the refer-
ence implementation (named ‘‘Reference Deferred’’) is from
2 to 5 times slower than our OpenCL implementations. This is
true especially for the larger descriptor lengths, as GPUs scale
much better than CPUs when working with larger amount of
data due to efficient massive parallelization. Notice that the
two CDVS reference implementations on the Arndale and the
Note 3 platforms have very similar results, as they embed
the same CPU. Moreover, ‘‘hastened’’ versions are from 10%
to 30% faster than ‘‘deferred’’ versions, and they use less
memory, reducing interference issues on common memory
platforms. This difference is larger for GPU platforms than
for CPU ones.

Fig. 8 presents time breakdowns of our techniques and
comparison with the reference implementation on the Sam-
sung Galaxy Note 3. Similar results have been collected
on the other platforms. The x-axis reports the descriptor
lengths (in bytes), for the reference CPU implementations
(deferred and hastened) and for the GPU versions (deferred
and hastened). The y-axis reports average wall-clock times
of the main phases (KD, OA, FS, LDC). For the hastened
implementation the FS stage has been divided into FS1 and
FS2 (to indicate the time spent before and after, respectively,
the OA phase). The average height of the CDVS reference

2The wall-clock time is the time necessary to a (mono-thread or multi-
thread) process to complete its job on a new input image, i.e., the difference
between the time at which an image is completely handled and the time at
which this task started. For this reason, the wall-clock time is also known as
‘‘elapsed time’’.

FIGURE 8. Average running times for the Samsung Galaxy Note 3 with
time breakdown in the different algorithmic phases. All times are
reported in milliseconds. The 4 histograms report (from left to right) time
details for the: (a) Reference (deferred) CPU algorithm, (b) Hastened CPU
version, (c) Deferred GPU implementation, (d) Hastened GPU version, All
4 histograms report times for all CDVS descriptor lengths.

52042 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

CPU bars are about 627 (deferred) and 600 (hastened)
milliseconds, whereas the average height of the GPU runs
are 238 (deferred) and 189 (hastened).

Fig. 9 presents time breakdowns of our GPU implemen-
tations (deferred and hastened versions) on a pie chart. The
KD stage is strongly influenced by the image size and it is the
most expensive step. Nevertheless, it can be highly optimized
by the concurrent implementation. It approximately needs
the 40% of the total time on the GPU on average, whereas
this figure is higher for the CPU implementation. The OA and
FS stages require much less time than the KD stage, but their
concurrent versions are not much faster than the sequential
ones.

FIGURE 9. GPU time breakdown: Deferred approach (4 main phases,
i.e., KD, FS, OA, LDC) and hastened version (5 main phases, i.e., KD, FS1,
OA, FS2, LDC). (a) Deferred FS. (b) Hastened FS.

Table 1 reports the resulting average speed-up for the GPU
with respect to the CPU. The most expensive phases have an
average speed-up larger than 3 for thee hastened approach,
and slightly smaller than 3 for the deferred algorithm. Our
concurrent implementation makes smaller improvements to
the FS and the OA phases whose speed-up is around 2.

TABLE 1. GPU versus CPU Speed-up: Deferred approach (4 main phases,
i.e., KD, FS, OA, LDC) and Hastened version (5 main phases, i.e., KD, FS1,
OA, FS2, LDC).

B. COMPARISON AND MEMORY ISSUES
In this section we compare our results with the ones by
Duan et al. [16], and we present some data to justify our idea
to avoid CPU-to-GPU memory transfer as long as possible
and to use the integrated memory. For this reason, in this
section, we mainly concentrate on running times, throughput,
and latency.

Table 2 reports a comparison with the data presented by
Duan et al. [16].

In that paper the authors present a CDVS implementa-
tion targeting discrete platforms with cooperating CPU and
GPU cores. To speed-up the process, the authors also incorpo-
rate several optimizations within the standard CDVS encoder,
such as the adoption of deep learning based approaches.

TABLE 2. Comparison between our approach and data presented by
Duan et al. [16]. The symbol − means that the data is not available
on the original paper.

On the contrary, wemainly concentrate on embedded systems
with much more limited computing power and our target is
not to optimize single CDVS phases but to stick to the stan-
dard as much as possible while porting it under a many-core
architecture. Moreover, one of our algorithmic intrinsic fea-
tures is to avoidmemory transfer to possibly let the CPUwork
on other issues. Albeit these very different starting points,
we run some experiments to have some common figures. First
of all, we select two common hardware architectures. Then
we show the average running time to extract different visual
descriptors on 1000 images with resolution (640 ·480) pixels.
We report results on our reference CPUs (Snapdragon 800
and Snapdragon 805), GPUs (Adreno 330 and Adreno 420),
and on the common platforms (i.e., Intel Xeon E5-2650 v2
2.6GHz CPU and NVIDIA GTX 1060 GPU). As there are no
details on how the images were selected, we present average
results on 10 different sets of 1000 images. Table 2 reports
our data.

Although, as we have just mentioned, the two strategies
are quite different, and no definitive conclusion can be made,
Table 2 at least shows that our results and the ones by
Duan et al. [16] are somehow comparable. We need more
time to run experiments, but this is not surprising, and from
our point of view, it can be considered as a very good result
given the consideration reported above. Moreover, one of
the main differences is that Duan et al. [16] mainly con-
centrates on discrete devices. On these platforms memory
copies mainly involve copying data from the system DRAM
towards the on-board RAM of the graphics adapter, through
the PCI standard. On the contrary, we concentrate on embed-
ded systems, where integrated graphics processors may share
memory on modern platforms. However, these approaches
introduce CPU-to-GPU memory coherency problems when
accessing the same shared memory buffer. As a consequence
sharing memory and avoiding memory copies does not nec-
essarily lead to performance improvements. To analyze this
issue, and following Cavicchioli et al. [38], we present an
analysis in which we show how the performance of our
algorithm degrades on recent SoCs, when memory is shared
among the CPU cores and the GPUs (see also the considera-
tions reported at the end of Section III-C).

Fig. 10 reports the following experiments.
We consider an Intel i7-6700 SoC platform, featuring an

HD 530 Integrated GPU. This platform uses OpenCL 2.0, and
this, in turn, enables shared memory usage. In this platform

VOLUME 6, 2018 52043

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

FIGURE 10. Relative execution times with different levels of interference
(from no interference at all Alone, to the larger one Int4) between the
CPU and the GPU.

we dedicate the GPUs to run our CDVS algorithm with
the different compression modes (512B, 1KBytes, 2KBytes,
4KBytes, 8KByets and 16KBytes), whereas we run some
interference programs on the CPU cores. The x-axis reports
the different compression modes. For each mode the his-
togram bars refer to the different interference programs.
Interference programs perform sequential and random
accesses, in read and write modes, involving an increasing
working memory size and an increasing number of CPU
cores. The y-axis indicates the total relative execution time
averaged on all experiments. Data shows that slow-down of
more than 60% may be reported in some cases.

C. ACCURACY
Accuracy is a primary target for the CDVS standard and a
main issue when working with GPU [39]. To evaluate the
accuracy of our algorithms, we present the CDVS inter-
operability test results. Accuracy results are practically iden-
tical on all platforms. Thus, we just report results for the
Samsung Note 3. We work with 33, 000 images, running
the inter-operability test on the entire CDVS data-set. We
generate about 17, 000 matching-pairs and about 180, 000
no-matching-pairs.

Fig. 11 shows the true positive rate for the 4 different
approaches previously analyzed.

The x-axis reports the query size defined by the CDVS
standard. The sizes (1k, 4k) and (2k, 4k) represent the
matching performed with different descriptor lengths, e.g.,
1k descriptors length are compared with 4k ones. The y-axis
reports the true positive rate for the 4 implementations. The
high variability of the true positive rate is due to the intrinsic
characteristics of the test model. Notice that, the monotonic-
ity of the curve should be obtained by re-ordering the x-axis
(as 512, 1K, 1K-4K, 2K, 2K-4K, 4K, 8K, 16K), but we did
not perform this operation, as we decided to adopt the order
specified in the original MPEG proposal. Anyway, the plot
shows that the difference between our implementations and
the reference one is less than 2% for the majority of the
modes.

FIGURE 11. CDVS data-set: Pairwise matching true-positive rate.
(a) Buildings. (b) Common objects.

Fig. 12 shows the false alarm rate for the same approaches
under the same conditions.

In this case, the difference between our implementations
and the reference one is less than 0.2%. The two graphs
prove that the visual matching systems under test have similar
behaviors in terms of accuracy and that the exact response
(i.e., the pair is matching or non-matching) is given with a
very high probability.

We finally compare our approaches with the reference one
considering pairwise matching test results performed using
the same approach to extract the features, i.e., conversely
to the inter-operability test, described above, the reference
and the query image features are computed by the same
extractor. The objective of this test is to analyze the intrin-
sic characteristics, in terms of accuracy, of our approaches
considering them as stand-alone visual search systems. To
this regard we selected from [40] and [41] data-sets about
2500 images, generating about 10000 matching-pairs and
about 5000 non-matching pairs. Fig. 13 shows the Receiver
Operating Characteristic (ROC3) for the CPU and GPU
implementations on the same benchmark set.

Even if we performed the test on all reference GPUs,
we report results just on the Samsung Galaxy Note 3 device,
as the data are identical in the other cases. Essentially,

3A ROC curve is a graphical plot which illustrates the performance of a
binary classifier system as its discrimination threshold is varied (please, see
reference [42] for further details).

52044 VOLUME 6, 2018

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

FIGURE 12. CDVS data-set: Pairwise matching false-positive rate.
(a) Buildings. (b) Common objects.

FIGURE 13. GPU and CPU Receiver Operating Characteristics (ROC).

the x axis reports the complemented value of the true negative
matching rate (1−TrueNegative, i.e., 1−TN), while the y axis
reports the true positive matching rate (TP). Those values
are plotted for several matching and non-matching thresholds
varying along the curves. The graph shows a sharp knee
after which it remains stable around a y-value of about 0.86.
This means that, for a wide range of threshold values,
the number of true positives (i.e., correct matching results)
remains around 86% (y-value), while the number of wrong
negatives (i.e., wrong non-matching results) stays below 12%
(x-value). In other words, the graph proves that the two visual

matching systems under test have similar behaviors in terms
of accuracy, and the exact response (i.e., the pair is match-
ing or non-matching) is given with a very high probability.

IX. CONCLUSIONS
Pairwise matching has become a core technology for many
modern scenarios and several common applications. The
extraction of features essential to the matching has received
specific attention by several researchers and by the MPEG.
Following this standard, extracting features from an image
requires several complex and time consuming steps.

In this paper, we show how to efficiently implement the
entire process of descriptors extraction, i.e., all main stages
of the CDVS standard and the ALP detector, on embedded
GPUs.We specifically focus on themore time consuming and
complex phases, namely keypoint detection, feature selec-
tion, orientation assignment, and local descriptor computa-
tion.We discuss strategies and recommendations to divide the
overall workload among different kernels. We show how to
enforce thread regularity. We strive to improve concurrency
and reduce synchronization waiting times. We present how
to design ‘‘pagination’’ or ‘‘recovery’’ tables to store and
access data efficiently from different threads. We debate how
to appropriately store and retrieve all data that have to be
transferred from the CPU to the GPU (and vice-versa) and
exchanged among different kernels.

In our approach the entire workload and data flow have
been maintained within the GPU and GPU only. This
approach may lead to some inefficiency, but it also intrinsi-
cally increases concurrency, it avoids repeated data transfer
between different computing units, and it keeps the CPU idle
as long as possible. This in turns enables the CPU to work on
other tasks that may be deemed as necessary on embedded
and power-limited systems.

Experimental results on CDVS standard image data-sets
shows that our solutions have a speed-up up to 3x over the
CDVSTestModel CPU implementation.Moreover, pairwise-
matching experiments clearly show that our parallel imple-
mentations are very close to the test model one in terms of
accuracy.

REFERENCES
[1] B. Girod et al., ‘‘Mobile visual search,’’ IEEE Signal Process. Mag.,

vol. 28, no. 4, pp. 61–76, Jul. 2011.
[2] L.-Y. Duan, F. Gao, J. Chen, J. Lin, and T. Huang, ‘‘Compact descriptors

for mobile visual search andMPEGCDVS standardization,’’ inProc. IEEE
Int. Symp. Circuits Syst. (ISCAS), Beijing, China, May 2013, pp. 885–888.

[3] K. Cordes, B. Rosenhahn, and J. Ostermann, ‘‘Localization accuracy of
interest point detectors with different scale space representations,’’ in Proc.
IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS), Seoul, South
Korea, Aug. 2014, pp. 247–252.

[4] T. Lindeberg, ‘‘Discrete derivative approximations with scale-space prop-
erties: A basis for low-level feature extraction,’’ J. Math. Imag. Vis., vol. 3,
no. 4, pp. 349–376, Nov. 1993.

[5] D. G. Lowe, ‘‘Object recognition from local scale-invariant features,’’
in Proc. IEEE Int. Conf. Comput. Vis., Washington, DC, USA, vol. 2,
Sep. 1999, pp. 1150–1157.

[6] G. Francini et al., ‘‘Accurate and efficient visual search on embedded sys-
tems,’’ inProc. 3rd Int. Conf. Adv. Comput., Commun. Inf. Technol. (CCIT),
Birmingham, U.K., Apr. 2015, pp. 61–66.

VOLUME 6, 2018 52045

A. Garbo, S. Quer: Fast MPEG’s CDVS Implementation for GPU Featured in Mobile Devices

[7] A. Garbo, C. Loiacono, S. Quer, M. Balestri, and G. Francini, ‘‘CDVS fea-
ture selection on embedded systems,’’ in Proc. IEEE Int. Conf. Multimedia
Expo Workshops (ICMEW), Turin, Italy, Jun./Jul. 2015, pp. 1–6.

[8] G. Wang, B. Rister, and J. R. Cavallaro, ‘‘Workload analysis and efficient
OpenCL-based implementation of SIFT algorithm on a smartphone,’’ in
Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP), Austin, TX,
USA, Dec. 2013, pp. 759–762.

[9] M. Suárez, V.M. Brea, J. Fernández-Berni, R. Carmona-Galán, D. Cabello,
andA. Rodríguez-Vázquez, ‘‘A 26.5 nj/px 2.64Mpx/s CMOS vision sensor
for Gaussian pyramid extraction,’’ in Proc. 40th Eur. Solid State Circuits
Conf. (ESSCIRC), Sep. 2014, pp. 311–314.

[10] P. Leyva et al., ‘‘Simplification and hardware implementation of the feature
descriptor vector calculation in the SIFT algorithm,’’ in Proc. 24th Int.
Conf. Field Program. Logic Appl. (FPL), Sep. 2014, pp. 1–4.

[11] K. Lee, S. Lee, and W.-G. Oh, ‘‘Accelerating local feature extraction using
two stage feature selection and partial gradient computation,’’ in Proc.
Asian Conf. Comput. Vis., 2014, pp. 366–380.

[12] S. Zhang, R. Wang, Q. Wang, and W. Wang, ‘‘Accelerating CDVS extrac-
tion on mobile platform,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Quebec City, QC, Canada, Sep. 2015, pp. 3837–3840.

[13] O. J. Arndt, T. Linde, and H. Blume, ‘‘Implementation and analysis of
the histograms of oriented gradients algorithm on a heterogeneous mul-
ticore CPU/GPU architecture,’’ in Proc. IEEE Global Conf. Signal Inf.
Process. (GlobalSIP), Dec. 2015, pp. 1402–1406.

[14] I. A. Doush and S. AL-Btoush, ‘‘Currency recognition using a smartphone:
Comparison between color SIFT and gray scale SIFT algorithms,’’ J. King
Saud Univ.-Comput. Inf. Sci., vol. 29, no. 4, pp. 484–492, Oct. 2017.

[15] C. Lee, C. E. Rhee, and H.-J. Lee, ‘‘Complexity reduction by modified
scale-space construction in SIFT generation optimized for a mobile GPU,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 10, pp. 2246–2259,
Oct. 2017.

[16] L.-Y. Duan et al., ‘‘Fast MPEG-CDVS encoder with GPU-CPU hybrid
computing,’’ IEEE Trans. Image Process., vol. 27, no. 5, pp. 2201–2216,
May 2018.

[17] G. Francini, S. Lepsøy, and M. Balestri, ‘‘Selection of local features
for visual search,’’ Signal Process., Image Commun., vol. 28, no. 4,
pp. 311–322, Apr. 2013.

[18] T. Lindeberg, ‘‘Feature detection with automatic scale selection,’’ Int.
J. Comput. Vis., vol. 30, no. 2, pp. 79–116, 1998.

[19] L.-Y. Duan et al., ‘‘Overview of the MPEG-CDVS standard,’’ IEEE Trans.
Image Process., vol. 25, no. 1, pp. 179–194, Jan. 2016.

[20] M. Doggett, ‘‘Texture caches,’’ IEEE Micro, vol. 32, no. 3, pp. 136–141,
May 2012.

[21] S. Bianco, D. Mazzini, D. P. Pau, and R. Schettini, ‘‘Local detectors and
compact descriptors for visual search: A quantitative comparison,’’ Digit.
Signal Process., vol. 44, pp. 1–13, Sep. 2015.

[22] A. Witkin, ‘‘Scale-space filtering: A new approach to multi-scale descrip-
tion,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
San Diego, CA, USA, Mar. 1984, pp. 150–153.

[23] S. Chen, J. Qin, Y. Xie, J. Zhao, and P.-A. Heng, ‘‘A fast and flexible sorting
algorithm with CUDA,’’ in Proc. 9th Int. Conf. Algorithms Archit. Parallel
Process. (ICAPP), Taipei, Taiwan, Jun. 2009, pp. 281–290.

[24] M. Lu, B. He, andQ. Luo, ‘‘Supporting extended precision on graphics pro-
cessors,’’ in Proc. 6th Int. Workshop Data Manage. New Hardw. (DaMoN),
Indianapolis, IN, USA, Jun. 2010, pp. 19–26.

[25] M. Burtscher and K. Pingali, ‘‘An efficient CUDA implementation of the
tree-based Barnes hut n-body algorithm,’’ in Proc. GPU Comput. Gems
Emerald Ed., Burlington, VT, USA, 2011, pp. 75–92.

[26] M. E. Lalami, D. El-Baz, and V. Boyer, ‘‘Multi GPU implementation of
the simplex algorithm,’’ in Proc. IEEE Int. Conf. High Perform. Comput.
Commun., Banff, AB, Canada, Sep. 2011, pp. 179–186.

[27] G. Lowe, ‘‘Concurrent depth-first search algorithms based on
Tarjan’s algorithm,’’ Int. J. Softw. Tools Technol. Transf., vol. 18,
no. 2, pp. 129–147, 2016.

[28] C. Johnson, L. Barford, S. M. Dascalu, and F. C. Harris, Jr., ‘‘CUDA
implementation of computer go game tree search,’’ in Proc. 13th Int.
Conf. Inf. Technol. New Gener., Las Vegas, NV, USA, Mar. 2016,
pp. 339–350.

[29] Z. S. Hakura and A. Gupta, ‘‘The design and analysis of a cache architec-
ture for texture mapping,’’ ACM SIGARCH Comput. Archit. News, vol. 25,
no. 2, pp. 108–120, 1997.

[30] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
‘‘Demystifying GPU microarchitecture through microbenchmarking,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2010,
pp. 235–246.

[31] L.-Y. Duan, J. Lin, J. Chen, T. Huang, and W. Gao, ‘‘Compact descrip-
tors for visual search,’’ IEEE Multimedia, vol. 21, no. 3, pp. 30–40,
Jul./Sep. 2014.

[32] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. L. B. Kim, and
P. Dubey, ‘‘Fast sort on CPUs and GPUS: A case for bandwidth oblivious
SIMD sort,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,
pp. 351–362.

[33] K. Lee, S. Lee, S.-I. Na, S. Je, andW.-G. Oh, ‘‘Extensive analysis of feature
selection for compact descriptor,’’ inProc. 19th Korea-Jpn. JointWorkshop
Frontiers Comput. Vis., Incheon, South Korea, Jan./Feb. 2013, pp. 53–57.

[34] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[35] S. S. Tsai et al., ‘‘Improved coding for image feature location infor-
mation,’’ Proc. SPIE, vol. 8499, pp. 8499-1–8499-10, 2012, doi:
10.1117/12.935619.

[36] MPEG-CDVS Group. Accessed: Mar. 1, 2015. [Online]. Available:
http://wg11.sc29.org

[37] MPEG-CDVS Group. Accessed: Mar. 1, 2015. [Online]. Available:
http://pacific.tilab.com/www/datasets/download/Dataset-20120210

[38] R. Cavicchioli, N. Capodieci, and M. Bertogna, ‘‘Memory interference
characterization between CPU cores and integrated GPUS in mixed-
criticality platforms,’’ in Proc. 22nd IEEE Int. Conf. Emerg. Technol.
Factory Automat. (ETFA), Sep. 2017, pp. 1–10.

[39] G. Cabodi, A. Garbo, C. Loiacono, S. Quer, and G. Francini, ‘‘Efficient
complex high-precision computations on GPUS without precision loss,’’
J. Circuits, Syst. Comput., vol. 26, no. 12, p. 1750187, 2017.

[40] T. Italia. The Cturin180 Test Set. Accessed: Jan. 15, 2016. [Online]. Avail-
able: http://jol.telecomitalia.com/jolvisible/cturin180/?lang=en

[41] Computer Vision Laboratory. Zurich Building Image Database.
Accessed: Oct. 1, 2014. [Online]. Available: http://www.vision.ee.ethz.ch/
showroom/zubud/index.en.html

[42] F. Oberti, A. Teschioni, and C. S. Regazzoni, ‘‘ROC curves for perfor-
mance evaluation of video sequences processing systems for surveillance
applications,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Kobe,
Japan, Oct. 1999, pp. 949–953.

ALESSANDRO GARBO received the M.S. degree
in software engineering from the Politecnico di
Torino, Italy, in 2003, and the Ph.D. degree in
software engineering from the Dipartimento di
Automatica ed Informatica, Politecnico di Torino,
in 2007. He was as a Post-Doctoral Researcher
with the Computer Engineering Department,
Politecnico di Torino, with Prof. G. Cabodi and
Prof. S. Quer for 10 years. He is currently a Senior
Researcher with Nuance, where he contributes in

the research and development of new algorithms in speech synthesis. His
research interests include vision algorithms for automotive applications,
eye/gaze tracking, traffic video detection, image processing, and pattern
recognition. He is active in the computer vision field using embedded system
for tracking and machine learning.

STEFANO QUER received the M.S. degree in
electronic engineering from the Politecnico di
Torino, Turin, Italy, in 1991, and the Ph.D. degree
in computer engineering from the Ministry of Uni-
versity and Scientific and Technological Research,
Rome, in 1996. He has been a Visiting Faculty
with the Department of Electronic Engineering
and Computer Science, University of California at
Berkeley. He has been an Intern with the Advanced
Technology Group, Synopsys, Inc., Mountain

View, CA, USA, and the Alpha Development Group, Compaq Computer
Corporation, Shrewsbury, MA, USA. He has been a Compaq Computer
Corporation Consultant. He is currently a Professor with the Department of
Control and Computer Engineering, Politecnico di Torino. His main research
interests include systems and tools for CAD for VLSI, formal methods for
hardware and software systems, and embedded systems. Other activities
focus on the development of sequential and concurrent algorithms and on
optimization techniques able to achieve acceptable solutions with limited
resources.

52046 VOLUME 6, 2018

https://doi.org/10.1117/12.935619

	INTRODUCTION
	ROADMAP

	RELATED WORKS AND COMPARISONS
	BACKGROUND
	TERMINOLOGY AND NOTATION
	THE CDVS STANDARD
	GPU ARCHITECTURES

	KEYPOINT DETECTION (KD)
	GAUSSIAN SCALE SPACE
	GAUSSIAN FILTERING
	LAPLACIAN
	REDUCTION

	THE ALP DETECTOR
	SCALE SPACE APPROXIMATION AND EXTREMA DETECTION
	ALP KEYPOINTS
	DUPLICATES

	FEATURE SELECTION (FS)
	DEFERRED (STANDARD) FS
	HASTENED FS
	MATCHING PROBABILITY (MP)

	ORIENTATION ASSIGNMENT (OA)
	KERNEL GRADIENT: GRADIENT EVALUATION
	KERNEL PAGINATION: DENSE PAGINATION TABLE
	KERNEL ORIENTATION: UPDATE HISTOGRAM
	KERNEL PEAK: SMOOTH HISTOGRAM

	LOCAL DESCRIPTOR COMPUTATION (LDC)
	COMPRESSION AND COORDINATE CODING

	EXPERIMENTAL RESULTS
	EFFICIENCY
	COMPARISON AND MEMORY ISSUES
	ACCURACY

	CONCLUSIONS
	REFERENCES
	Biographies
	ALESSANDRO GARBO
	STEFANO QUER

