
16 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Offline-Sampling SMPC Framework with Application to Autonomous Space Maneuvers / Mammarella, Martina;
Matthias, Lorenzen; Capello, Elisa; Hyeongjun, Park; Dabbene, Fabrizio; Guglieri, Giorgio; Romano, Marcello; Frank,
Allgower. - In: IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY. - ISSN 1063-6536. - ELETTRONICO.
- (2019), pp. 1-15. [10.1109/TCST.2018.2879938]

Original

An Offline-Sampling SMPC Framework with Application to Autonomous Space Maneuvers

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCST.2018.2879938

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2718495 since: 2018-12-11T09:47:21Z

IEEE



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

An Offline-Sampling SMPC Framework with
Application to Automated Space Maneuvers

Martina Mammarella1, Matthias Lorenzen2, Elisa Capello3 Member, IEEE,
Hyeongjun Park4 Member, IEEE, Fabrizio Dabbene5, Senior Member, IEEE, Giorgio Guglieri1,

Marcello Romano4, Senior Member, IEEE, and Frank Allgöwer2, Member, IEEE

Abstract—In this paper, a sampling-based Stochastic Model
Predictive Control algorithm is proposed for discrete-time linear
systems subject to both parametric uncertainties and additive
disturbances. One of the main drivers for the development
of the proposed control strategy is the need of reliable and
robust guidance and control strategies for automated rendezvous
and proximity operations between spacecraft. To this end, the
proposed control algorithm is validated on a floating spacecraft
experimental testbed, proving that this solution is effectively
implementable in real-time. Parametric uncertainties due to the
mass variations during operations, linearization errors, and dis-
turbances due to external space environment are simultaneously
considered.

The approach enables to suitably tighten the constraints
to guarantee robust recursive feasibility when bounds on the
uncertain variables are provided. Moreover, the offline sampling
approach in the control design phase shifts all the intensive
computations to the offline phase, thus greatly reducing the online
computational cost, which usually constitutes the main limit for
the adoption of Stochastic Model Predictive Control schemes,
especially for low-cost on-board hardware. Numerical simulations
and experiments show that the approach provides probabilistic
guarantees on the success of the mission, even in rather uncertain
and noise situations, while improving the spacecraft performance
in terms of fuel consumption.

Index Terms— Stochastic Model Predictive Control; Chance
Constraints; Sampling-based Approach; Receding Horizon Con-
trol; Real-time Implementability; Automated Rendezvous be-
tween Spacecraft.

I. INTRODUCTION

IN the last decades, model predictive control (MPC) has
become one of the most successful advanced control tech-

niques for industrial processes, thanks to its ability to handle
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multi-variable systems, explicitly taking into account state and
equipment constraints, see for instance the recent survey [1].

Early publications on the topic already emphasized that,
moving horizon schemes like MPC might incur significant
performance degradation in the presence of uncertainty [2].
Furthermore, ignoring modeling errors and disturbances can
lead to constraint violation in closed loop and the online
optimization being infeasible. To cope with this disadvantage,
in the last years Robust MPC has received a great deal of atten-
tion and, at least for linear systems, it can nowadays be consid-
ered well-understood and having achieved a mature state [3].
Yet, the inherent conservativeness of robust approaches, has
led to an increased interest in Stochastic Model Predictive
Control (SMPC) for processes where a stochastic model can
be formulated to represent the uncertainty and disturbance [4].
Indeed, a probabilistic model allows to optimize the average
performance or appropriate risk measures and the introduction
of so-called chance constraints, which seem more appropriate
in some applications. Furthermore, chance constraints lead to
an increased region of attraction and enlarge the set of states
for which MPC provides a valid control law [5].

On the other hand, the classical criticism of MPC schemes,
especially in their robust/stochastic instantiations, is their slow-
ness. This has limited their application to problems involving
slow dynamics, where the sample time is measured in tens
of seconds or minutes. In particular, due to the increased
computational load, SMPC has mainly been applied for slow
systems, as e.g. water networks [6] or chemical processes [7].

This widely recognized shortcoming is mainly due to the
computational effort required in the on-line solution of the en-
suing optimization problem, and to the difficulty of embedding
a real-time solver for MPC implementation. When the number
of variables and/or prediction horizon increase and the system
to be controlled is characterized by fast dynamics, a practical
solution proposed in the literature is to evaluate offline the
control law, and then the control action is implemented online
as a lookup table [8]. However, this solution renders the
controller less apt to deal win an appropriate way with model
uncertainties and external disturbances. Moreover, the com-
putational effort still grows very rapidly with the increase in
horizon, state and input dimensions. Hence, a quite substantial
computational capability and large memory requirements are
mandatory, especially for systems with fast dynamics, such as
UAV, aircraft, and spacecraft.

In space applications, the available and adopted processors
provide limited computational power on board of current and
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near-future spacecraft. This constrains the level of space-
craft autonomy because even relatively simple autonomous
operations require complex computations to be performed
in near real time. In this framework, the requirement of
real-time implementability for new Guidance Navigation and
Control (GNC) algorithms gains the highest priority. The
implementation of classical MPC on low-cost hardware, such
as microcontrollers, is already quite demanding.

The contribution of the paper is twofold. From a theoret-
ical viewpoint, the paper integrates and extends the previous
works of the authors [5], [9], proposing offline sample-based
strategies for addressing in a computationally tractable manner
Stochastic Model Predictive Control (SMPC). In particular, as
detailed Section I-A, the paper develops for the first time a
complete and integrated framework, able to cope simultane-
ously with additive random noise and parametric stochastic
uncertainty.

From an application viewpoint, the paper demonstrates real-
time implementability of the proposed scheme, addressing a
very important control problem arising in aerospace applica-
tions, the Autonomous Rendezvous and Docking (ARVD) ma-
neuver among spacecraft. Indeed, as discussed in Section I-B,
the ability to carry over proximity operations in a completely
autonomous manner represents one of the main challenges
of modern spacecraft missions. These require the capability
of dealing in an efficient way with external disturbances
due to the space environment, and with uncertainties. These
uncertainties are not only due to unmodeled dynamics or lin-
earization effects, but also to the necessity of designing control
techniques able to be implemented on vehicles produced in
good quantities, which will be the trend in future missions.
The SMPC scheme is shown to be able to cope with all
these requirements, providing sufficiently high guarantees in
terms of safety and constraints satisfaction, and at the same
time being sufficiently fast to be implemented in a real-time
framework (this latter issue is discussed in Section III-C).

In the next section, we highlight the contributions of the
present work to the SMPC theory, while the next section
describes in detail the application example considered, high-
lighting how it can benefit from the performance guarantees
provided by the introduced control framework.

A. A Novel Stochastic Model Predictive Control Framework

The main problem encountered in the design of SMPC algo-
rithms is the derivation of computationally tractable methods
to propagate the uncertainty for evaluating the cost function
and the chance constraints. Both problems involve multivari-
ate integrals, whose evaluation requires the development of
suitable techniques. An exact evaluation is in general only
possible for linear systems with additive Gaussian disturbance,
where the constraints can be reformulated as second-order
cone constraints [10], or for finitely supported disturbances as
in [11]. Approximate solutions include a particle approach [12]
or polynomial chaos expansion [13]. Among the different
methods, randomized algorithms [14], and in particular the
scenario approach [15], represent the most promising ones.
The first approaches in this direction can be found in the

methods proposed in [16], [17], [18], in which the uncertainty
is propagated recurring to a finite number of scenarios to be
considered at each step. However, these approaches may be
still rather demanding for real-time implementations, since
different samples need to be drawn at each step. Recently,
this drawback was overcome by the introduction of offline
sampling strategies, that allow to reduce the computational
effort made online by means of a pre-processing of data made
offline. In particular, in [9] this approach was developed for
problems involving additive disturbances, acting on a nominal
system. In [5], parametric uncertainty are instead considered
in a noise-free setting. Clearly, both these approaches are
somehow limited for real-world applications, such as those
encountered in spacecraft control.

This paper solves the nontrivial problem of extending the
previous result into a comprehensive framework, able to tackle
situations in which both additive disturbances and parametric
uncertainties are simultaneously present. The main contribu-
tion of this paper to the theory of SMPC is the introduction
of a nonconservative SMPC scheme that is computationally
tractable and guarantees recursive feasibility. As in [9], the
computational load is reduced by generating scenarios offline
and keeping only selected, necessary samples for the online
optimization. The algorithm guarantees robust satisfaction of
the input constraints and bounds on the confidence that the
chance constraints are satisfied can be chosen by the designer.
Due to the additive disturbance, the state does not converge
to the origin. Instead, an asymptotic performance bound is
provided. The presented theory is attractive for real-world
applications, since the design can be based on real data gath-
ered from experiments or high fidelity simulations. Moreover,
thanks to the offline sampling approach, this SMPC scheme
can be applied to significantly fast dynamics, as those relative
to space platforms during the final phase of the automated
rendezvous and mating maneuver.

B. ARVD Problem (Problem Setup)

The advancement of robotics and autonomous systems
will be central to the transition of space missions from
current ground-in-the-loop (geocentric) architectures to self-
sustainable, independent systems, mainly to support human
activities beyond Low Earth Orbits (LEO). Indeed, the Com-
mittee on NASA Technology Roadmaps has highlighted as
“Robotics, Tele-Robotics, and Autonomous Systems” shall
be regarded as high-priority technology area in broadening
access to space and expanding human presence in the Solar
System [19]. Among them, ARVD represents the cornerstone
technology, since all the scenarios that space agencies have
defined for the future exploration program have one thing
in common: each mission architecture heavily relies on the
ability to rendezvous and mate multiple elements in space
autonomously. In order to meet the exploration enterprise
goals of affordability, safety and sustainability, the critical
capabilities of rendezvous, capture and in-space assembly must
become routine and autonomous, increasing their reliability
[20]. The complexity of the ARVD mainly results from the
multitude of safety and operational constraints which must
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be fulfilled. These constraints are defined with respect to the
rendezvous approach phase considered. In terms of safety,
the close range rendezvous phase is the most critical, since
the space systems involved are relatively close together and
the trajectory of the chaser, by definition, leads toward the
target, so that any deviation from the planned trajectory
can potentially lead to a collision. Therefor, the main focus
of this paper is on the final approach between the chaser
vehicle with the target one, considering the typical minus
V-bar approach. First, for sensing purposes (see [21]), it
is required that the chaser vehicle remains inside a Line-
Of-Sight (LOS) from the docking point, constraint usually
defined in terms of an approaching corridor, as represented
in Figure 1, which can be modeled as a polytope (without
any generality loss, a rectangular parallelepiped can be used).
Moreover, soft docking constraints can be enforced, reducing
the approach velocity in line with distance to the target, as
well as limiting the maximum approach velocity. When using
thrusters for spacecraft trajectory control, not only there are
constraints on the maximum force that can be applied at
any given instant, i.e. saturation of the actuators, but there is
also the physical constraint of a thrust “dead-zone” between
the thruster being fully off, and delivering its minimum non-
zero thrust, often referred to as the “Minimum Impulse Bit”
(MIB), and the total number of firings available. Indeed,
constraints on the maximum deliverable ∆v are placed on
each element of the input vector. Last but not least, another
constraint can be imposed on the fuel consumption or on
the amount of fuel dedicated to the maneuver. A second

Fig. 1. Line-Of-Sight constraint defined in terms of infeasible/feasible region
considering a minus V-bar approach [22].

important challenge for close-range ARVD is represented by
the need to handle uncertainty. Thruster firings, aerodynamic
drag in Low Earth Orbit (LEO), solar radiation pressure, and
camera measurements can introduce uncertainties in relative
state knowledge and control accuracy. As the spacecraft nears
its target, these uncertainties can induce violations in any of the
aforementioned mission constraints. Hence, one should embed
in ARVD algorithms the capability to handle any expected
uncertainty directly, i.e. incorporating strategies to handle all
known unknowns. The key for ARVD GNC strategies is
relying on solution techniques that can be made efficient
for real-time implementation. Indeed, in order to meet the
GNC challenges of next-generation space missions, onboard
algorithms will need to meet the following specifications: (i)
real-time implementability; (ii) optimality; (iii) verifiability.
Therefor, new GNC algorithms need to be implemented and
executed on real-time processors, in a compatible amount
of time, providing a feasible and (approximately) optimal
solution, verifying the design metrics identified to describe

their performance.
The space community is working on new regulations to

define the safety constraints for ARVD maneuvers. These
rules should be defined with respect to collision avoidance
requirements driven by the mission as well as by the stake-
holders, introducing a maximum level of constraints violation
probability allowance. Furthermore, until now, rendezvous
maneuvers have involved the International Space Station (ISS)
and the rigid safety requirements are mainly due to the
presence of a crew on board, which requires the highest level
of failure tolerance. On the other hand, in the future, numerous
missions will involve ARVD maneuvers between unmanned
systems and the safety requirements could be relaxed, always
in compliance with the protection of the investment made in
the space systems involved.

Several methodologies have been proposed in the literature
for the ARVD, which have shown robustness with respect to
known and unknown uncertainty and disturbance affecting the
system during the final phase of the rendezvous maneuver.
The reader is referred to [23] for a recent survey. In
particular, we want to recall the approach proposed in [24],
where a robust MPC is adopted to solve the problem of
spacecraft rendezvous, using the Hill-Clohessy-Wiltshire
(HCW) model and including additive disturbances and LOS
constraints. Furthermore, it has been proved that a robust
approach implies higher fuel consumption with respect to
classical methods where disturbances are neglected (see [25]).
However, still a probability of constraints violation needs to
be considered. In this work, a stochastic approach is proposed
in order to relax the safety trajectory constraints reducing the
conservativeness with respect to a robust approach, as well
as fuel consumption, optimizing the average performance and
allowing an affordable level of constraints violation.

The remainder of this paper is organized as follows.
Section II introduces the finite horizon receding optimal
control problem, starting with a suitable reformulation of the
constraints through an offline uncertainty sampling approach.
Thereafter, the SMPC scheme algorithm is resumed, and
its main theoretical properties are summarized and proved.
In Section III, the experimental testbed used to validate
the real-time implementability of the proposed scheme is
described and its dynamical model is derived, including
the identification and modeling of uncertainty and additive
disturbance and presenting the main issues linked to real-time
implementability and principal solvers investigated. The
simulation and experimental results are discussed in Section
IV and the algorithm performances are discussed with respect
to computational effort and fuel consumption. Finally, Section
V provides some conclusions and directions for future works.

Notation: The notation employed is standard. Uppercase letters
are used for matrices and lower case for vectors. [A]j and
[a]j denote the j-th row and entry of the matrix A and vector
a, respectively. Positive (semi)definite matrices A are denoted
A � 0 (A � 0) and ‖x‖2A = xTAx. The set N>0 denotes the
positive integers and N≥0 = {0} ∪ N>0, similarly R>0, R≥0
for positive real numbers. The notation Pk {A} = P {A|xk}



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 4

denotes the conditional probability of an event A given
the realization of xk, similarly Ek {A} = E {A|xk} for
the expected value. We use xk for the (measured) state
at time k and x`|k for the state predicted l steps ahead at
time k. The sequence of length T of vectors v0|k, . . . , vT |k
is denoted by vT |k. A ⊕ B = {a+ b| a ∈ A, b ∈ B},
A	 B = {a ∈ A| a+ b ∈ A,∀b ∈ B} denote the Minkowski
sum and the Pontryagin set difference, respectively.

II. SMPC DESIGN UNDER UNCERTAINTY AND RANDOM
NOISE

We consider the following discrete-time system subject to
both random noise and stochastic uncertainty

xk+1 = A(qk)xk +B(qk)uk +Bw(qk)wk, (1)

with state xk ∈ Rn, control input uk ∈ Rm, additive
disturbance wk ∈ Rmw , and parametric uncertainty qk ∈ Rnq .

We first report the principal assumptions made in the paper
regarding system (1).

The disturbance sequence (wk)k∈N≥0
is assumed to be a

realization of a stochastic process (Wk)k∈N≥0
.

Assumption 1 (Bounded Random Disturbance). The distur-
bances Wk, for k = 0, 1, 2..., are independent and identically
distributed (iid), zero-mean random variables with support W,
which is a bounded and convex set.

We assume that the system matrices A(qk), B(qk) and
Bw(qk), of appropriate dimensions, are (possibly nonlinear)
functions of the uncertainty qk. The uncertainty vector
qk belongs to a given set Q and satisfies the following
assumption.

Assumption 2 (Stochastic Uncertainty). The parameters
qk ∈ Rnq , for k ∈ N, are realizations of i.i.d. multivari-
ate real valued random variables Qk. Moreover, let G =
{(A(qk), B(qk), Bw(qk))}qk∈Q, a polytopic outer approxima-
tion Ḡ .

= co
{
Aj , Bj , Bjw

}
j∈NNc

1
⊇ G exists and is known.

The system is subject to px individual chance-constraints
on the state and m hard constraints on the input

P
{

[Hx]αx`|k ≤ [hx]α
}
≥ 1− εα, ∀ ` ∈ N≥0, α ∈ Npx1

(2a)
Huu`|k ≤ hu, ∀ ` ∈ N>0, (2b)

with Hx ∈ Rpx×n, hx ∈ Rpx , Hu ∈ Rm×m, hx ∈ Rm,
and εα ∈ (0, 1). Note that the probability P in (2) denotes the
joint probability with respect to qk and wk. Then, as typical
in stabilizing MPC, we assume that a suitable terminal set XT
and an asymptotically stabilizing control gain for (1) exist.

Assumption 3 (Terminal set). There exists a terminal set
XT = {xk |HTxk ≤ hT }, which is robustly forward invariant
for (1) under the (given) control law uk = Kxk. Given any
xk ∈ XT , the state and input constraints (2) are satisfied and
there exists P ∈ Rn×n such that

Q+KTRK + E[Acl(qk)TPAcl(qk)]− P � 0 (3)

for all q ∈ Q, with Acl(qk)
.
= A(qk) + B(qk)K, and with

Q ∈ Rn×n, Q � 0, R ∈ Rm×m, R � 0.

Following a dual-mode prediction scheme, also adopted
in [4] to define the predicted control sequence for nominal,
robust and also stochastic MPC, we consider the design of a
parametrized feedback policy of the form

u`|k = Kx`|k + v`|k, (4)

where for a given x0|k = xk, the sequence of correction terms
vk

.
=
{
v`|k
}
`∈NT−1

0
is determined by the SMPC algorithm as

the minimizer of the expected finite-horizon cost

JT (xk, vk) = E

{
T−1∑
l=0

(xT`|kQx`|k + uT`|kRu`|k) + xTT |kPxT |k

}
,

(5)
subject to constraints (2).

A. Offline Uncertainty Sampling for SMPC

For the following analysis, we first explicitly solve equa-
tion (1) with prestabilizing input (4) for the predicted
states x1|k, . . . , xT |k and predicted inputs u0|k, . . . , uT−1|k.
In particular, simple algebraic manipulations show that it
is possible to derive suitable transfer matrices Φ0

`|k(qk),
Φv`|k(qk),Φw`|k(qk) and Γ` (the reader is referred to Ap-
pendix A for details), such that

x`|k(qk,wk) = Φ0
`|k(qk)xk + Φv`|k(qk)vk + Φw`|k(qk)wk(6a)

u`|k(qk,wk) =KΦ0
`|k(qk)xk + (KΦv`|k(qk) + Γ`)vk

+KΦw`|k(qk)wk, (6b)

where wk
.
=
{
w`|k

}
`∈NT−1

0
. In the previous equations, we

highlight that both predicted states and inputs are function
of the uncertainty qk and the noise sequence wk. Given the
solution (6), the expected value of the finite-horizon cost (5)
can be evaluated offline, leading to a quadratic cost function
of the form

JT (xk, vk) = [xTk vTk 1Tmw
]S̃

 xk
vk

1mw

 (7)

in the deterministic variables xk and vk. The evaluation of S̃
requires the computation of an expected value, which can be
explicitly evaluated or sufficiently exact approximated taking
random samples of qk and wk (see again Appendix A for
details).

We now follow the same approach proposed in [9], and
observe that an inner approximation for the chance constraint
(2a) can be derived in the form of linear constraints on xk,
vk and wk, utilizing a sampling-based approach. In particular,
for each probabilistic state constraint α ∈ Npx1 , and for each
time step ` ∈ NT−10 , let us define the corresponding chance-
constrained set as follows

XP,α` =
{
P
{

[Hx]αx`|k(qk,wk) ≤ [hx]α
}
≥ 1− εα

}
. (8)

In the above definition, we use the apex P as in [9] to indicate
that the set has probabilistic nature. Then, exploiting results
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from statistical learning theory [26], an estimate of XP,α` may
be constructed extracting Nx

` iid samples q(i
x
` ) from Qk, and

w(ix` ), with ix` ∈ NN
x
`

1 , and building the corresponding sampled
state constraint set

XS,α` =
{
xk, vk | [Hx]αx`|k(q(i

x
` )) ≤ [hx]α, ix` ∈ NN

x
`

1

}
,

for ` ∈ NT−10 . The apex S is used to indicate that the set is
the outcome of a sampling process.

In particular it was shown in [9] that, for given probabilistic
levels δ ∈ (0, 1) and εα ∈ (0, 0.14), if we define

Ñ(d, εα, δ) =
4.1

εα

(
ln

21.64

δ
+ 4.39d log2

(8e

εα

))
,

then the choice Nx
` ≥ Ñ(p+`m, εα, δ) guarantees that XS,α` ⊆

XP,α` with probability greater than 1−δ. Hence, we obtain that
x`|k ∈ XS,α` is guaranteed with high probability whenever x`|k
satisfies the following set of linear constraints

Hxx`|k(q(i
x
` ),w(ix` )) ≤ hx, for ix` ∈ NN

x
`

1 .

Note that, from (6a), the above equations rewrite as the
following linear constraint in xk, vk[

H̃x
x H̃u

x

] [xk
vk

]
≤ h̃x (9)

where we defined

[H̃x
x H̃u

x ] =



HxΦ0
0|k(q(1)) HxΦv0|k(q(1))

...
...

HxΦ0
0|k(q(N

x
0 )) HxΦv0|k(q(N

x
0 ))

...
...

HxΦ0
T−1|k(q(1)) HxΦvT−1|k(q(1))

...
...

HxΦ0
T−1|k(q(N

x
T−1))HxΦvT−1|k(q(N

x
T−1))


,

(10a)

h̃x =



hx−HxΦw0|k(q(1))w(1)
k

...
hx−HxΦw0|k(q(N

x
0 ))w(Nx

0 )
k

...
hx−HxΦwT−1|k(q(1))w(1)

k

...
hx−HxΦwT−1|k(q(N

x
` ))w(NT−1x)

k


. (10b)

Note that the total number of samples to be drawn to construct
the sampled constraint sets (9) is equal to Nx .

=
∑T−1
`=0N

x
` ,

and thus the total number of linear inequalities will be pNx.
On the other hand, these sets can be be computed offline. We
note also that, due to the sampling procedure, these linear
constraints are in general highly redundant. To cope with this
issue, suitable algorithms for redundant constraints removal
may be applied and the sets can be further simplified. The
reader is referred to [9] for a thorough discussion on this issue.

In a similar way, the hard input constraints can be approx-
imated by introducing a suitable sampled approximation. To

this end, for given probabilistic level εβ ∈ (0, 0.14) for each
β ∈ Npu1 , we draw Nu

` ≥ Ñ(n + `m, εβ , δ) random samples
and construct the sampled input constraint set

US,β` =
{
xk, vk | [Hu]βu`|k(qiu) ≤ hu, iu ∈ NN

u
`

1

}
for ` ∈ NT−10 , thus obtaining the Nu

` linear constraints

Huu`|k(q(iu),w(iu)) ≤ hu,

which, from (6b), rewrites as the following linear constraint
in xk, vk [

H̃x
u H̃u

u

] [xk
vk

]
≤ h̃u. (11)

where H̃x
u and H̃u

u are defined analogously to (10), and involve
Nu .

=
∑T−1
`=1 N

u
` samples. Finally, for each γ ∈ Nn1 , εγ ∈

(0, 0.14), the terminal constraints can also be approximated
by drawing NT ≥ Ñ(n + Tm, εγ , δ) random samples and
constructing the sets

XS,γT =
{
xk, vk | [HT ]γxT |k(qiT ) ≤ hT , iT ∈ NNT

1

}
for iT ∈ NNT

1 , which lead to

HTxT |k(q(iT ),w(iT )) ≤ hT .

that through (6a), [
H̃x
T H̃u

T

] [xk
vk

]
≤ h̃T (12)

where H̃x
T and H̃u

T involve NT samples.
The linear constraints (9), (11), (12), possibly after con-

straint reduction, can be summarized in the following linear
constraint set

D =

xk, vk |
H̃x

x H̃u
x

H̃x
T H̃u

T

H̃x
u H̃u

u

[xk
vk

]
≤

h̃xh̃T
h̃u


=

{
xk, vk | H̃

[
xk
vk

]
≤ h̃

}
. (13)

Moreover, again similar to [9], a first step constraint is added
to (13), defined starting from the set

CT =

{[
xk
v0|k

]
∈ Rn+m

∣∣∣∃v1|k, · · · , vT−1|k ∈ Rn,
s.t. (xk,vk) ∈ D

}
(14)

which defines the set of feasible states and first inputs of the
scenario program with given fixed samples. Therefore, we can
define C∞T,x = {xk |H∞xk ≤ h∞} as the (maximal) robust
control invariant set for the system (1) with (xk, uk) ∈ CT .
Finally, in order to ensure robust recursive feasibility, a con-
straint on the first input is added to (13) and the additional
constraint set is given by

DR =
{
xk, vk | H∞Acl(qk)xk +H∞B(qk)v0|k ≤

h∞ −H∞Bw(qk)w0|k
}

(15)

with A(qk), B(qk), Bw(qk) from Assumption 1 and Acl(qk) =
A(qk) + B(qk)K. The final set of linear constraints to be
employed in online implementation is thus given by the
intersection of the sets D and DR, defined in (13) and (15)
respectively.
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B. SMPC Algorithm Based on Offline Sampling

The complete sampling-based SMPC algorithm we propose
is split into two parts: (i) an offline step, which comprises
the sample generation and the computation of the ensuing
sets, and (ii) a repeated online optimization. While the first
step may be rather costly, the online implementation has only
involves the solution of quadratic programs, which may be
carried out in a very efficient way. A detailed description
of the Offline Sampling-Based Stochastic Model Predictive
Control (OS-SMPC) scheme is reported next.

OS-SMPC scheme

OFFLINE STEP. Before running the online control algorithm:
1) Compute the finite-horizon cost matrix S̃ in (7);
2) Draw a sufficiently large number of samples to deter-

mine the sampled constraints XS,α` , US,β` , and XS,γT ,
defined respectively in (9), (11), (12),

3) Possibly remove redundant constraints and get D in (13)
4) Determine the first step constraint set DR in (15).

ONLINE IMPLEMENTATION. At each time step k:
1) Measure the current state xk;
2) Determine the minimizer of the quadratic cost (7) subject

to the pre-computed linear constraints D and DR

v∗k = arg min
vk

[xk vk 1mw
]S̃

 xk
vk

1mw


s.t. (xk, vk) ∈ D ∩ DR;

3) Apply the control input

uk = Kxk + v∗0|k,

where v∗0|k is the first control action of the optimal
sequence v∗k.

In the next section, we prove several important properties
of the proposed OS-SMPC scheme.

C. Theoretical Guarantees of OS-SMPC

First, we show how the introduction of the first step con-
straint DR allows to prove recursive feasibility of the OS-
SMPC scheme.

Proposition 1 (Recursive Feasibility). Let V(xk) ={
vk ∈ RmT | (xk, vk) ∈ D ∩ DR

}
. If vk ∈ V(xk), then, for

every realization qk and xk+1 = Acl(qk)xk + B(qk)v0|k +
Bw(qk)w0|k, the OS-SMPC guarantees

V(xk+1) 6= ∅.

Proof The proof follows similar lines to the one provided
in [9], and is briefly sketched here: From (xk, vk) ∈ DR
it follows xk+1 ∈ C∞T,x robustly. Then, by construction,
C∞T,x ⊂ {x |V(x) 6= ∅}. �

The previous proposition, besides showing how the OS-
SMPC algorithm guarantees recursive feasibility, it is also

instrumental in proving that the control input returned by the
algorithm guarantees satisfaction of the chance-constraints on
the state and hard constraints on the input defined in (2). This
is formally stated next.

Proposition 2 (Constraint Satisfaction). If x0 ∈ C∞T,x, then
the closed-loop system under the OS-SMPC control law, for
all k ≥ 1, satisfies each probabilistic state constraint (2a) with
confidence (1−δ), and the hard input constraint (2b) robustly.

Proof Since the OS-SMPC algorithm is robustly recursively
feasible (Proposition 1), hard input constraint satisfaction is
guaranteed, because of Huu0|k ≤ hu, which does not rely
on sampling. On the other hand, for all α = 1, . . . , p, we
have D ⊆ XS,j1 . Hence, by Proposition 1, for all feasible
(xk, vk) ∈ D, we can ensure with confidence (1− δ) that the
chance constraint (2a) is satisfied. �

Finally, we analyze the convergence properties of the pro-
posed scheme. To this end, we first remark that, since additive
disturbances affect the system at every time instant, we cannot
expect the closed-loop system to be asymptotically stable at
the origin.

However, we can show that, under persistent noise excita-
tion, the closed-loop state does remains bounded, under the
following technical assumption.

Assumption 4 (Bounded Optimal Value Function). Let
VT (xk) be the optimal value function of the quadratic program
(2), and let P`, Pu ∈ Rn×n, P` � 0, Pu � 0 be such that
xTk P`xk ≤ VT (xk) − c ≤ xTk Puxk holds for all xk ∈ C∞T,x,
where c is a constant term related to the presence of additive
disturbance.

Assumption 4 guarantees that the increase in cost, in cases
when the candidate solution does not remain feasible, is
limited. We are now in the position to state the main result of
this section, whose proof is reported in Appendix B.

Proposition 3 (Asymptotic Bound). Let εf = [0, 1) be the
maximum probability that the previously planned trajectory is
not feasible. Then, there exists a constant C = C(εf ) such
that

lim
t→∞

1

t

t∑
k=0

‖xk‖22 ≤ C. (16)

The results of this section guarantee that the proposed OS-
SMPC scheme enjoys important theoretical properties. These,
combined with the efficiency of the scheme, which confines
all costly computations in an offline step, and the generality
of the considered setup, addressing both additive noise and
parametric uncertainty, render the scheme suitable for efficient
real-time applications. In the next section, we show how the
scheme can be applied to control the last stage of a ARVD
mission.

III. PROXIMITY OPERATIONS MODEL SETUP

The objective of the following section is to investigate the
applicability of. the OS-SMPC to achieve autonomous docking
in ARVD mission. Goal of the control, in the docking stage, is
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to guide an active vehicle, the chaser, towards a passive one,
the target, along a specific trajectory, while satisfying security
constraints.

A. The NPS-POSEYDIN Simulator

The performance proposed MPC controller was experimen-
tally evaluated at the Naval Postgraduate School (NPS) Prox-
imity Operation with Spacecraft: Experimental hardware-In-
the-loop DYNamic simulator (POSEIDYN), an experimental
testbed developed to provide a representative system-level
platform upon which to develop, experimentally test, and
partially validate GNC algorithms.

Fig. 2. NPS-POSEIDYN testbed with the Vicon motion capture cameras,
FSSs, and granite monolith in the Spacecraft Robotics Laboratory at the Naval
Postgraduate School. The target FSS is on the right and the chaser FSS is on
the left. For obvious reasons, the applicability of the testbed, as a high-fidelity
dynamic simulator, is limited to short lived close proximity operations, with
respect to the planar motion only.

As shown in Figure 2, the NPS-POSEIDYN consists of
four main elements: (i) a 15 ton, 4-by-4 meter polished
granite monolith, with a planar accuracy of ±0.0127 mm
and a horizontal leveling accuracy at least 0.01 deg; (ii)
two Floating Spacecraft Simulators (FSS), representing real
spacecraft, which use three 25 mm air bearings to float
on top of the granite table in a quasi-frictionless and low
residual acceleration dynamic environment; (iii) a commercial
motion capture system, produced by British Vicon Motion
Systems Ltd [27], composed by ten overhead cameras, which
accurately determines the position of objects carrying passive
markers (i.e. the FSS); (iv) a ground station computer.

The FSS are custom-designed vehicles that emulate orbital
spacecraft moving in close proximity of another vehicle or
object (see Figure 3). The air bearings use compressed air,
delivered by an onboard tank, to lift the FSS approximately
5 µm, creating an air film between the vehicle and the granite
surface that eliminates their direct contact. To propel the
FSS, the vehicles are equipped with eight cold-gas thrusters,
mounted in couple to each corner of the upper part of the
vehicle, each one providing a maximum thrust of 0.15 N.
This value fluctuates considerably, as the thrust is a function

of the nozzle inlet pressure, which changes depending on the
number of thrusters that are being fired simultaneously as well
as the actual pressure in the tank. The onboard computational

Fig. 3. NPS-POSEIDYN FSSs: the chaser on the left and the target on the
right.

capabilities of the FSS are provided by a PC-104 form-
factor onboard computer, based on an Intel Atom 1.6 GHz
32-bit processor, with 2 GB of RAM and an 8 GB solid-
state drive. Despite the onboard computer not being space-
grade, its computational capabilities may be regarded to be
of the same order of magnitude of state-of-the-art space-grade
computers. A serial interface is used to communicate with an
onboard fiber-optic gyroscope which provides angular velocity
measurements at a 100 Hz rate. Hence, the NPS-POSEIDYN
setup is able to provide full-state estimate. Two 95 Wh lithium-
ion batteries and a battery management module regulate the
electrical power to the FSS. Whereas, a Wi-Fi module provides
the FSS with wireless communication capabilities with other
FSS and the ground station. Furthermore, once the location
of the FSS is determined by the Vicon system, the ground
station computer streams the telemetry data to the FSS using
the Wi-Fi link. The main FSS physical properties are resumed
in Table I, in terms of mass, geometry, and moment of inertia
(MOI). Additional details are provided in [28].

TABLE I
SUMMARY OF RELEVANT FSS PHYSICAL PROPERTIES.

Parameter Value

Dry Mass [kg] 9.465± 0.001

Wet Mass [kg] 9.882± 0.001

Dimensions [m] 0.27× 0.27× 0.52

MOI [kg·m2] 0.2527

In order to simplify the algorithm development and subse-
quent implementation on the FSS, a development simulator
and a FSS software template were created using a common
custom library. The simulator uses simulated sensors and
actuators and also simulates the plant (i.e. the FSS) response,
while the FSS software allows to develop the algorithms in
a simulation environment and, when ready, easily generate
the FSS onboard software to test them. The multi-rate GNC
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software running atop the RT-Linux OS is developed uti-
lizing MATLAB/Simulink environment. Once developed, the
Simulink models are autocoded to C and compiled.

B. Model of the Planar Experimental Testbed

To design the control architecture, we started by deriving
a continuous-time description of the Chaser dynamics, taking
into account parametric uncertainties and additive noise, ob-
taining an uncertain state-space equation of the form

ẋ = A(q)x+B(q)u+Bww, (17)

in which w is the vector of additive disturbance and q is
the vector of parametric uncertainty, defined according to
Assumption 1 and Assumption 2, respectively. In our setup,
the additive noise term, which is modeled as a random
and bounded model (truncated Gaussian), is related to the
external environment, in which the experimental tests will be
performed. The uncertainties in the state-space model are due
to several sources: (i) discrepancies between the mathematical
model and the actual dynamics of the physical system in
operation, as linearization effects and neglected high-order
dynamics; (ii) parametric physical uncertainties, such as mass
and MOI variation due to fuel consumption, characterized by
a uniform distribution.

In particular, we describe next how linearization introduces
important uncertainty sources in the state-space model. The
linearized relative dynamics of the chaser with respect to the
target vehicle during the final approach of the rendezvous
maneuver, modeled as two double integrators, has been de-
rived by Clohessy and Wiltshire in [29], starting from the
nonlinear equations for the restricted three-body problem and
considering for the both the spacecraft a reference circular
orbit around a master body. Considering the two spacecraft
masses infinitesimal with respect to the mass of the main
body (reference planet), we define ρ = ρiρ and r1 = r1 iξ
as the position vectors of the chaser and the target spacecraft
respectively, where iρ and iξ represent the direction main
body-chaser and main body-target, respectively. Then, letting
r = r iξ the vectorial sum of the two positions, r = ρ+ r1, the
equations of motion of the chaser spacecraft can be rewritten
as

d2ρ

dt2
+ 2ω × dρ

dt
+ ω × [ω × (ρ+ r1)] = −ω

2r31
r3

r, (18)

where ω is the orbital angular rate. Note that this differential
equation presents nonlinearities due to the term 1/r3. In [29],
using a Taylor Series expansion, a linear equation was obtained
by ignoring the high order terms O(ρ2/r21), as r31

r3 = 1 −
3 iξ · iρ ρr1 + O(ρ

2

r21
). That is, Eq. (18) reduces to the linearized

differential equation for the motion of the chaser relative to
the target spacecraft as

d2ρ

dt2
+ 2ω × dρ

dt
= −ω2ζiζ + 3ω2ξ(iξ + O(ρ2)). (19)

Ignoring the O(ρ2) and expressing the position vector in a
more convenient way as

ρ ≡ r = x iθ + z ir − y iy, ir1 = ir ω = −ω iy, (20)

with x in the direction of the motion iθ, z in the radial direction
ir and iy = iθ × ir normal to the orbital plane, the scalar
form of the well-known CW Equation can be obtained. Hence,
the parametric uncertainty introduced in the model are of the
same order of O(ρ2/r21) and O(ρ2). When external forces are
acting on the system, in this case due to the correction actions
actuated by the thrusters (Fx, Fy, Fz) of the AOCS subsystem,
we have

d2x

dt2
− 2ω

dz

dt
=

Fx
mCV

,

d2y

dt2
+ ω2y =

Fy
mCV

,

d2z

dt2
+ 2ω

dx

dt
− 3ω2z =

Fz
mCV

.

(21)

Considering only the in-plane motion, here defined by the
x-z plane, and neglecting the terms (−2ωż), (+2ωẋ−3ω2z),
we get double integrators for the translational dynamics

ẍ =
Fx
mCV

z̈ =
Fz
mCV

. (22)

Furthermore, a double integrator is also considered for the
rotational dynamics as θ̈ = τ/Iz , where θ̈ is the angular
acceleration, τ is the control torque and Iz denotes the MOI
about the vertical axis of the chaser FSS. Then, starting
from the definition of the FSS dynamic model, and defining
the state vector as x =

[
x, y, ẋ, ẏ

]T
and the contol vector

u =
[
Fx, Fy

]T
, a continuous-time linearized model of the

form (17). Then, after discretization, we obtained the following
discrete-time representation of the FSS uncertain dynamics as

xk+1 = A(qk)xk +B(qk)uk +Bwwk (23)

where xk ∈ R4 is the state vector at time k, uk ∈ R2 is the
control input, and wk ∈ R4 and qk = [q1, q2, q3, q4] ∈ R4 are
the vectors of the additive disturbance and the parametric un-
certainty, respectively. In particular, the uncertainty vector qk
takes into account the linearization errors previously discussed,
and the parametric uncertainty due to the mass variation. The
corresponding continuous uncertain state and control matrices
are

A(q) =

q1 0 1 0
0 q1 0 1
0 2q2 0 0
0 3q3 −2q2 0

 , B(q) =

 02×2
1
m

+ q4 0
0 1

m
+ q4

 .

(24)
All the described uncertainty sources were taken into ac-
count in.constructing the linearized state and control matrices
defined in (24),. In particular, the parametric uncertainties
q1, q2, q3 take into account linearization effects and are
described as iid random variables with uniform distribu-
tion: q1 ∼ U [5 × 10−5, 5 × 10−4], q2 ∼ U [0.001, 0.0014],
q3 ∼ U [10−6, 1.44 × 10−6], while q4 refers to uncertainty
in the mass, and is expressed as q4 ∼ U [−0.0091, 10−4].
Furthermore, the system is affected by persistent bounded
disturbances w ∈ R4, described as a truncated Gaussian with
zero mean value and unitary covariance, bounded in the set
W .

=
{
w ∈ R4 | ‖w‖∞ ≤ 5 · 10−3

}
.
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Focus of this experimental campaign was to investigate
the performance of the OS-SMPC algorithm in the control
of the translational dynamics of the chaser during the last
part of the rendezvous maneuver. Attitude control of the FSS
was achieved through a Tube-based Robust MPC (TRMPC)
approach, already experimentally validated in [25]. The re-
quirement of (deterministic) robust control for the attitude
was driven by the physical characteristic of the docking
mechanisms, located on both the FSS. Indeed, docking is
ensured by an attractive force generated by the magnets on
the docking interfaces, which requires a fine alignment of the
two vehicles. The TRMPC was hence adopted to align and
maintain the FSS pointing at the desired attitude, with respect
to the target one.

Goal of the translational control is to drive the chaser to
the docking position, where the target is located, while guar-
anteeing the satisfaction of the typical position and velocity
constraints applied to the proximity maneuver. It is important
to precise that the x-y coordinate system of the testbed ”coin-
cides” with the x-z orbital plane of (22). In particular, the tra-
jectories should lie in a desired approach cone (see Figure 4),
i.e. LOS-like constraint, whose polytope vertices are defined
as follows: χ1 = (0, 0), χ2 = (4, 2.25), χ3 = (2.25, 4). The
target is located in the suitable terminal region, determined ac-
cording to Assumption 3. From the state constraint polytopes,
linear inequality constraints can be derived. Additionally, the
approaching and terminal velocities are bounded according to
soft docking constraints. These constraints on the state are
expressed in terms of chance constraints of the form (2a).

Moreover, the thrusters actuators of the chaser are limited
by a saturation constraint, according to the maximum thrust
available for each cold thruster equipped on the FSS. This is
an hard input constraints of the form (2b), that is

uk ∈ U =
{
u ∈ R2 | ‖u‖∞ ≤ 0.3

}
,

since at most two thrusters can be fired contemporary in the
same direction.

C. Real-time Implementability

In this section, we discuss implementation issues related
to real-time applicability of the proposed scheme, showing
how it is indeed possible to envisage the application of an
OS-SMPC in an embedded implementation. As previously
discussed, this is due to the offline uncertainty approach, which
significantly lowers the online computational effort. On the
other hand, it should be remarked that the computational cost
of the proposed OS-SMPC approach is negatively affected
by the possibly high number of constraints involved in the
optimization problem definition. For this reason, a meticulous
an analysis of the solver to be implemented in the embedded
microcontroller is still mandatory.

To this regard, it should be pointed out that the OS-SMPC
proposed in this work was never implemented for real-time
applications, and more generally the validation in realistic
simulation environments of scenario programs as well as
sampling-based SMPC approaches [9], [5] is rather limited.
For this reason, a deep analysis of the available solvers has

Fig. 4. NPS-POSEIDYN testbed with the cone constraints. The chaser initial
condition has to be chosen within the feasible region (light green) whereas
the target spacecraft can be located within the feasible terminal region (dark
green). φ defines the cone half-angle, whereas θ represents the chaser FSS
attitude with respect to the testbed reference system.

been performed to find the optimal one able to deal with a
very high number of constraints and compliant with online
implementation and low computational power hardware. Sev-
eral solvers have been tested to evaluate their computational
capabilities and limitations with respect to embedded imple-
mentation. Moreover, since hardware GNC software running
on the FSS is developed in a MATLAB/Simulink environment,
the selection criteria for the solver analyzed was driven by the
compatibility with this environment and available MATLAB
interface. The tested solvers were: (i) IBM ILOG CPLEX Op-
timizer [30], (ii) Mosek [31], (iii) Gurobi Optimizer [32], (iv)
MATLAB quadprog (v) fastmpc [33], (vi) quadwright, [34].

(i) IBM ILOG CPLEX Optimizer [30], a decision
optimization software developed by IBM which provides
flexible, high-performance mathematical programming solvers
also for quadratic programming problems; (ii) Mosek [31], a
tool for solving mathematical optimization problems such as
convex quadratic problems based on a powerful state-of-the-art
interior-point optimizer; (iii) Gurobi Optimizer [32], a state-
of-the-art solver for mathematical programming, designed
from the ground up to exploit modern architectures and multi-
core processors, using the most advanced implementations
of the latest algorithms, including a quadratic programming
solver; (iv) quadprog, the interior-point-convex algorithm
provided by the MATLAB Optimization Toolbox to solve
quadratic programming problem; (v) fastmpc exploits the
structure of the quadratic programming that arise in MPC,
obtaining an innovative online optimization tool, based on an
interior-point method, able to evaluate the control action about
100 times than a method that uses a generic optimizer, as
presented in [33]; (vi) quadwright, a quadratic programming
solver developed by J. Currie at al., presented in [34], able
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to speed up the computational capabilities for embedded
applications.

IBM CPLEX and Gurobi are commercial softwares that
provide quite easy MATLAB interfaces, enabling the user
access to higher performing state-of-the-art solvers. However,
both optimizers are not hardware-driven even if they provide
embedding methods, and they showed bad memory leaks when
calling the solver many times. Mosek is a tool for solving
mathematical optimization problems, and in particular, convex
quadratic problems. The software provides replacements for
some MATLAB functions, including quadprog, and showed a
rather high computational time when facing the large number
of constraints involved in our setup. The MATLAB quad-
prog gives the possibility to choose between two different
approaches: (i) an interior-point-convex method; and (ii) an
active-set method. The first algorithm handles only convex
problems whereas the second one, identified as trust-region-
reflective algorithm, is able to manage problems with only
bounds, or only linear equality constraints, but not both. In
both cases, MATLAB quadprog showed slower performance
than Mosek, and moreover it cannot be C-compiled. For what
concerns the fastmpc solver, it has been developed to speed
up MPC computational time and it has been proved to be able
to compute in approximately 5ms the control actions for a
problem with 12 states, 3 inputs, 30 as prediction horizon and
about 1300 constraints. However, even if the number of states
and inputs was lower for our problem, as well the prediction
horizon is smaller, the much higher number of constraints
resulted in a degeneration of its performance.

Our final choice fell on the quadratic programming solver
quadwright. This very fast solver, developed with a focus on
efficient memory use, ease of implementation, and high speed
convergence, is based on the optimization algorithm proposed
in [35]. This approach has been specifically developed to
handle the core problem in MPC, namely control of a linear
process with quadratic objectives subject to general linear
inequality constraints. In particular, the algorithm does not
exploit sparsity and it has been refined by pre-factorizing
where possible, using the Cholesky Decomposition factoriza-
tion when required, and heuristic for warm start, as reported
in [34].

As described in [28], a real-time operating system (OS)
represents the core of the FSS software architecture and the
desired real-time requirement is ensured by the adoption of a
Ubuntu 10.04, 32-bit server-edition OS and its Linux kernel
2.6.33. The multirate GNC software runs atop of this and the
Simulink model is autocoded into C, compiled and sent from
the ground station to the FSS via Wi-Fi, loading the software
on the FSS on-board computer.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present both simulation and experimental
results related to the application of the OS-SMPC scheme
to control the uncertain FSS system dynamics in the last-
part of the ARVD phase. To this end, we first set the
probabilistic parameters of the state chance constraints as

εα = εβ = εγ = 0.05 and δ = 10−3 (they should be
satisfied with probability of 95% and confidence 99.999%).
The ensuing number of samples Ntot = Nx + Nu + NT is
equal to 32, 370. Then, MPC cost weight matrices were set to
Q = diag

{
104, 104, 108, 108

}
and R = diag

{
106, 106

}
, and

the prediction horizon to T = 10. An appropriately robustly
stabilizing feedback gain matrix K was designed offline using
classical robust tools.

The main sample times set for the FSS model are reported
in Table II. The initialization settings introduced here have
been adopted both for simulations and experiments, to be
as conservative as possible and obtain comparable results.
In particular, the sample time for OS-SMPC has been set
in compliance with the real-time implementability for the
experimental validation.

TABLE II
MODEL INITIALIZATION SETTINGS.

Parameter Sample Time [s]

Sensors, Actuators, Telemetry 0.01

Navigation, G&C 0.02

TRMPC, SMPC 5

Samples of the uncertainty and of the noise sequence were
extracted offline and the constraint sets (9), (11), and (12)
were derived offline, leading to a total of 956,752 linear
inequality constraints. Then, an iterative reduction procedure
was applied leading to a final reduced constraint set of the
form (13), composed by only 10,125 constraints. Once the first
step constraint (15) has been obtained and intersected with
(13). This completed the offline part of the OS-SMPC scheme.

The OS-SMPC algorithm was first validated by MATLAB
simulations, and subsequently applied to the NPS-POSEIDYN
system. It should be remarked that preliminary simulation
results were presented in [36] in which 100 trajectories, each
one for a feasible random initial condition (IC), were simu-
lated. In this paper, considering the NPS-POSEIDYN setup
and the diagonal symmetry of both the granite monolith and
the cone constraint, the ICs for the OS-SMPC simulated and
experimental validation were set only in one half of the plane.
Thus, three case studies corresponding to three relevant ICs
were chosen due to their peculiarities: (i) the first IC represents
the diagonal case, in which the chaser FSS is farthest from the
cone boundaries (case A); (ii) the second IC is the most critical
IC, since the FSS is very close to cone constraint (case B);
(iii) the last case represents the halfway condition (case C).

Each case study was simulated and subsequently experimen-
tally reproduced several times, to validate the behavior of the
controller. The results obtained are represented in Figure 5,
which depict 20 repetitions for each IC, both for simula-
tions and experiments. Comparing the simulation trajectories
(Figure 5(a)) with the experimental ones (Figure 5(b)), we
observed a rather good adherence of the results. In particular,
in all experiments the chaser FSS is always driven from the
IC to the terminal region, where the target FSS is located.
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(a) Simulation Results

(b) Experimental Results

Fig. 5. Simulation and experimental results for 3 different ICs, considering
20 repetitions for each one.

A zoom-in of the terminal region, both for simulations and
experiments, is reported in Figure 6. We notice a relevant
difference between Figure 6(a) and Figure 6(b) with respect
to the stopping condition. In the simulations, the chaser stops
when the relative distance with respect to the virtual target
Center of Mass (CoM) is lower than a certain threshold (0.18
m). On the other hand, in the experimental setup, the target
is a real FSS, which is equipped with a female magnetic
docking mechanism. Similarly, the the chaser FSS has a male
interface. Hence, the end of the docking phase between the
spacecraft is due to the magnetic force generated between the
two magnets. The effects of this force are evident in Figure
6(b), where trajectories are not funneled as in Figure 6(a) but
they are distributed around the target docking interface. This
discrepancy is mainly due to the fact that the magnetic force

(a) Simulation Results

(b) Experimental Results

Fig. 6. Zoom on the terminal region of both simulation and experimental
results.

was not introduced in simulation.

Once the OS-SMPC scheme has been validated for the real-
time implementability point-of-view, the results were analyzed
also with respect to the following performance parameters:

1) Time-to-dock ttd, defining as the time required to the
chaser FSS to reach and dock the target one, starting
from the initial condition;

2) Control effort fc, an estimate of the fuel consumption
required for the maneuver, which represents also the
efficiency of the control approach from an application
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point-of-view. The control effort can be evaluated as

fc =

ttd∑
k=0

‖uk‖1∆t, (25)

where ∆t represents the system sample time.
Figure 7 depicts the control effort for all 60 experiments as
a function of the time-to-dock. As we can notice, in all three
cases the maneuver lasted about 120− 200s, with an average
control effort between 4Ns and 5Ns.

Fig. 7. Control effort with respect to the time-to-dock results for 60
experiments.

In order to assess the effectiveness of the proposed OS-
SMPC approach, the average control effort for all the ex-
periments can be compared with the control effort obtained
applying other two MPC approaches validated for the same
maneuver and using the same testbed: a LQMPC and a
TRMPC. In particular, in [25], the performance of a robust
MPC controller has been evaluated and compared with a
classical LQMPC scheme, both in simulations and on an
experimental setup. A Linear Matrix Inequalities (LMI) ap-
proach is applied to In Table III, the average control effort
of the three MPC approaches are reported. We notice that
the robust MPC scheme represents the most fuel-consuming
approach, with a fuel demand about three times higher than the
classical and stochastic MPC, which instead are characterized
by comparable fuel consumption, in the order of 5Ns. The
fact that OS-SMPC has much lower fuel consumption than
TRMPC is somehow surprising, but it can be explained by
the much lower conservatisms of the stochastic approach.

V. CONCLUSIONS

An offline sampling-based Stochastic Model Predictive
Control (OS-SMPC) algorithm is proposed for discrete-time
linear systems subject to both parametric uncertainties and ad-
ditive disturbances, and its theoretical properties are assessed.
Real-time implementability of guidance and control strategies
for automated rendezvous and proximity operations between

TABLE III
COMPARISON OF THE AVERAGE CONTROL EFFORT FOR THREE DIFFERENT

MPC APPROACHES ADOPTED TO CONTROL THE FSS DURING A
RENDEZVOUS MANEUVERS ON THE NPS-POSEIDYN TESTBED: (I)

LQMPC; (II) TRMPC; (III) OS-SMPC.

MPC approach Control Effort [Ns]

LQMPC 4.99

TRMPC 14.24

OS-SMPC 4.69

spacecraft is proven and validated on an experimental testbed.
Parametric uncertainties due to the mass variations during op-
erations, linearization errors, and disturbances due to external
space environment are simultaneously considered. The offline
sampling approach in the control design phase is shown to
reduce the computational cost, which usually constitutes the
main limit for the adoption of SMPC schemes, especially for
low-cost on-board hardware, and to provide a very effective
control in terms of time-to-dock and fuel consumption. These
characteristics are demonstrated both through simulations and
by means of experimental results.

APPENDIX A
QUADRATIC COST MATRIX DEFINITION

Simple algebraic manipulations show that the terms in (6)
can be written as follows

Φ0
`|k(qk) = Acl`−1|k(qk)Acl`−2|k(qk) · · ·Acl0|k(qk),

Φv`|k(qk) =


Acl`−1|k(qk) · · ·Acl1|k(qk)B0|k(qk)

...
B`−1|k(qk)
0n×(T−`)m


T

,

Φw`|k(qk) =


Acl`−1|k(qk) · · ·Acl1|k(qk)Bw0|k(qk)

...
Bw`−1|k(qk)
0n×(T−`)mw


T

,

Γ` = [0m×`m Im 0m×(T−`−1)m].

Then, defining the matrix

ΦT (qk)
.
=

Φ0
0|k(qk) Φv0|k(qk) Φw0|k(qk)

...
...

...
Φ0
T |k(qk) ΦvT |k(qk) ΦwT |k(qk)

 ,
and considering Q̄ = IT ⊗Q, R̄ = IT ⊗R, K̄ = IT ⊗K, and
defining Γ = [0mT×n ImT 0mT×mwT ], the two terms, QE
and RE of the explicit cost matrix S̃

S̃ = E {(QE +RE)} , (26)

can be written as:

QE = MTΦTT (qk)

[
Q̄ 0nT×n

0n×nT P

]
ΦT (qk)M
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RE = MT [K̄ΦT (qk) + Γ]T R̄[K̄ΦT (qk) + Γ]M

where the matrix M is

M =

 In 0n×mT 0n×nT
0mT×n ImT 0mT×nT

0mwT×n 0mwT×mT wImwT



APPENDIX B
PROOF TO ASYMPTOTIC BOUND

If the candidate solution does not remain feasible, the cost
increase can be bounded through the matrices in Assump-
tion 4. Let VT (xk) = JT (xk, v∗k) be the optimal value of
(2) at time k and consider the optimal value function of the
online optimization program as stochastic Lyapunov function.
Hence, if the candidate solution ṽ remains feasible, we have

E {VT (xk+1) | xk, ṽk+1 feasible} − VT (xk)

≤ E {JT (xk+1, ṽk+1) | xk } − VT (xk)

≤ E

{
T−1∑
l=0

(‖x̃`|k+1‖2Q + ‖ũ`|k+1‖2R) + ‖x̃T |k+1‖2P

}

− E

{
T−1∑
l=0

(‖x∗`|k‖
2
Q + ‖u∗`|k‖

2
R) + ‖x∗T |k‖

2
P

}
= E

{
‖x∗T |k‖

2
Q+KTRK−P + ‖Acl(qk)x∗T |k +Bw(qk)w∗T |k‖

2
P

− ‖x∗0|k‖
2
Q − ‖u∗0|k‖

2
R

}
≤ E

{
‖x∗T |k‖

2
Q+KTRK−P + ‖Acl(qk)x∗T |k‖

2
P + ‖Bw(qk)w∗T |k‖

2
P

+ 2(Acl(qk)x∗T |k)TP (Bw(qk)w∗T |k)− ‖x∗0|k‖
2
Q − ‖u∗0|k‖

2
R

}
.

According to the definition of Terminal Set (Assumption 3),
we obtain

E
{
‖x∗T |k‖

2
Q+KTRK−P+Acl(qk)TPAcl(qk)

+ ‖Bw(qk)w∗T |k‖
2
P

− ‖x∗0|k‖
2
Q − ‖u∗0|k‖

2
R

}
≤ E

{
‖Bw(qk)w∗T |k‖

2
P − ‖x∗0|k‖

2
Q − ‖u∗0|k‖

2
R

}
≤ E

{
‖Bw(qk)w∗T |k‖

2
P

}
− ‖xk‖2Q − ‖uk‖2R.

On the other hand, if the candidate solution is not feasible,
we get

E
{
VT (xk+1) |xk, ṽT |k+1 not feasible

}
− VT (xk)

≤ max
(A(qk),B(qk))∈G, w∈W

‖A(qk)xk +B(qk)uk +Bw(qk)wk‖2Pu

− ‖xk‖2P`

≤ max
(A(qk),B(qk))∈G, w∈W

(
‖Acl(qk)xk +B(qk)vk‖2Pu

+ ‖Bw(qk)wk‖2Pu
+ 2‖(P 1/2

u (Acl(qk)xk

+ B(qk)vk))T (P 1/2
u Bw(qk)wk)‖

)
− ‖xk‖2P`

.

Applying Cauchy-Schwarz Inequality first, and then Young
Inequality, we have

max
(A(qk),B(qk))∈G, w∈W

(
‖Acl(qk)xk +B(qk)vk‖2Pu

+ ‖Bw(qk)wk‖2Pu

+ 2‖(P 1/2
u (Acl(qk)xk +B(qk)vk))

T (P 1/2
u Bw(qk)wk)‖

)
− ‖xk‖2P`

≤ max
(A(qk),B(qk))∈G, w∈W

(
2‖Acl(qk)xk

+ B(qk)vk‖2Pu
+ 2‖Bw(qk)wk‖2Pu

)
− ‖xk‖2P`

≤ 2 max
(A(qk),B(qk))∈G

(
‖Acl(qk)xk +B(qk)vk‖2Pu

+ 2max
w∈W
‖Bw(qk)wk‖2Pu

− ‖xk‖2P`

)
.

Let λmin(qk) be a lower bound on the smallest eigenvalue
of

U(qk) =Q−
2εf
1−εf

(A(qk)
TPuA(qk)− 1

2
P`) − 2εf

1−εf
A(qk)

TPuB(qk)

− 2εf
1−εf

B(qk)
TPuA(qk) R− 2εf

1−εf
B(qk)

TPuB(qk)

 ,

(32)
that is λmin ≤ minqk∈Q ( mini=1,...,n+m λi(U(qk))). Hence,
applying the law of total probability

E
{
VT (xk+1) |xx, ṽT |k+1

}
− V (xk)

≤ (1− εf )
(
E
{
‖Bw(qk)w∗T |k‖

2
P

}
− ‖xk‖2Q − ‖uk‖2R

)
+ εf

(
2 max
(A(qk),B(qk))∈G

‖Acl(qk)xk +B(qk)vk‖2Pu

+ 2max
w∈W
‖Bw(qk)wk‖2Pu

− ‖xk‖2P`

)
≤ − (1− εf )λmin‖xk‖22 + (1− εf )E

{
‖Bw(qk)w∗T |k‖

2
P

}
+ 2εfmax

w∈W
‖Bw(qk)wk‖2Pu

≤ − ‖xk‖22 +
1

λmin
E
{
‖Bww‖2P

}
+

2εf
λmin(1− εf )

max
w∈W
‖Bw(qk)wk‖2Pu

≤ −‖xk‖22 + C.

The final statement follows taking iterated expectations. �
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