
18 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Matheuristics for the lot sizing problem with back-ordering, setup carry-overs, and non-identical machines / Ghirardi,
Marco; Amerio, Andrea. - In: COMPUTERS & INDUSTRIAL ENGINEERING. - ISSN 0360-8352. - 127:(2019), pp. 822-
831. [10.1016/j.cie.2018.11.023]

Original

Matheuristics for the lot sizing problem with back-ordering, setup carry-overs, and non-identical
machines

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.cie.2018.11.023

Terms of use:

Publisher copyright

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.cie.2018.11.023

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2717647 since: 2020-04-24T10:57:32Z

Elsevier

Matheuristics for the Lot Sizing Problem with
Back-Ordering, Setup Carry-Overs, and Non-Identical

Machines

Marco Ghirardi1, Andrea Amerio

DIGEP - Politecnico di Torino, Corso Duca degli Abruzzi 24, 10128 Torino, Italy

Abstract

In this study, the capacitated lot-sizing problem (CLSP) with back-ordering,
setup carry-overs between periods, and non-identical parallel machines (CLSP-
BOPM) is considered. The problem is one of the most general extensions of the
well-known economic lot scheduling problems (ELSPs). Three matheuristics
are designed and implemented starting from the ideas of variable neighborhood
local search, local branching, and feasibility pump (FP), adapted and improved
by considering the specific characteristics of the problem. Algorithms are tested
on a set of medium to large problem instances. The FP algorithm outperforms
all other algorithms and two different mixed-integer programming solvers as it
requires a shorter computational time. To test the robustness of the algorithm,
tests on three particular cases of the general problem, belonging to the family
of discrete ELSPs, have been performed. Results from the proposed solver and
a known specific state-of-the-art algorithm demonstrate substantial improve-
ments.

Keywords: Scheduling, Matheuristics, Lot sizing, Back-orders, Setup
carry-over

1. Introduction and literature review

Many production systems are single-stage processes in a manufacturing fa-
cility comprising many production lines or machines. Typically, some of these
lines are focused on the production of single high-demand items whereas the
remaining lines are dedicated to flexible production where sets of medium- or
low-demand items are produced. Each line is characterized by different setup
times, limited capacities in each period (finite production rates), and processing
or setup costs (some of these vary for each item). Moreover, other item-related
costs such as inventory costs or back-ordering costs must be considered. To
achieve an efficient solution, good “batching and sequencing” evaluation of the

1Corresponding author e-mail: marco.ghirardi@polito.it

Preprint submitted to Computers and Industrial Engineering November 20, 2018

production of items on different lines is the core of this type of problem. Typi-
cally, in a flexible system, many different types of jobs are considered; each type
has different processing parameters and jobs of the same type have identical
characteristics. If setup times and setup costs are not important, the problem
leads often to an alternated schedule solution that is more efficient than a sched-
ule with long runs of jobs of the same type. However, usually, setup costs and
setup times must be considered owing to their high economic relevance. Such a
type of production systems are common in several process industries, including
the automotive, chemical, cosmetics, electronics, food, packaging, paper, phar-
maceutical, printing, textile, wood-processing and semiconductor industries.

The problem related to the production of items on a single line, subject to
constant demand rate, is known in the literature as the economic lot scheduling
problem (ELSP). The traditional ELSP is characterized by a continuous time
formulation. It has been widely studied and it is well known to be an NP-hard
problem. Later, the capacitated lot-sizing problem (CLSP) has been considered
as an extension to the ELSP.

• A discrete demand volume for each item, over a predefined number of
periods, is given; the machines have a finite capacity (in time units) for
each period.

• Switching the production between different items introduces setup cost
and setup time is required to set up the machine for production: the
latter consumes machine time.

• If an item is produced before its demand period, inventory cost is incurred.

The objective is the minimization of the overall cost (setup and inventory).
In the same way as the ELSP, the CLSP is also NP-hard. It has been proven
that this is true even when setup times are not considered, whereas if setup times
are included, the problem becomes NP-complete (Bitran and Yanasse, 1982).
Formulations of the standard CLSP can be found in Billington et al. (1983) or
Trigeiro et al. (1989) while an extensive overview of the lot-sizing literature can
be found in Pinedo (2009) and Drexl and Kimms (1997).

The problem faced in this study is the CLSP with back-ordering, setup carry-
overs, and non-identical parallel machines (CLSP-BOPM). Back-order identi-
fies the introduction of a back-ordering policy: the possibility to postpone the
production of one or more items in a different period than its demand in or-
der. Postponing the production introduces new costs, the back-ordering costs.
These costs are also item-related because each item can have its own priority.
Linked lot-sizes or setup carry-over is the capability to carry-over a setup state
through consecutive periods. When, on any machine, the last items produced
in a previous period and the first items produced in the following period are of
the same type, the setup can be avoided. Hence, the setup carry-over allows
to save machine time and cost. Providing parallel machines in a single stage
means the possibility to sort and route the production of each item between a
larger number of machines.

2

Figure 1: Instance and solution example for a CLSP-BOPM instance

A toy example of an instance and a possible solution of the CLSP-BOPM
problem with 3 product types (a,b,c), 2 machines and 4 time periods is given
in Figure 1. The figure above represents the production volumes of the three
products requested at the end of the corresponding period. The figure below
represent a possible solution for the instance. In the first period, all the re-
quested production is manufactured in the period itself (a and c on Machine 1,
b on machine 2, with their corresponding set-up times). In the second period,
product a is requested in a very large quantity. The solution uses both machines
to satisfy the requirement: machine 1 does not need a setup time (setup carry-
over from the previous period), while machine 2 requests a setup. The available
production time is not enough to complete the requested quantity of product a,
hence a small part of the request is back-ordered to the third period (continuing
with a setup-carry over on Machine 1). In the third period, a small quantity of
product b is allocated to machine 2 which is then setup in advance for the large
quantity of product c requested in the forth period. This results in the use of
the inventory for product c between the third and the forth period. At last, in
the forth period, production of the requested quantity of c is completed, and a
smaller quantity of a is allocated to machine 2. Both productions are performed
without a setup time (carry over from the previous periods).

CLSPL-BOPM model formulations studied in the literature consider, in gen-
eral, single machines (Goren et al. (2014), Hindi (1995b), Fiorotto et al. (2017),
Ceschia et al. (2017), Ghaniabadi and Mazinani (2017)) or identical parallel
machines. CLSP on parallel machines with setup carry-over but without back-
ordering is faced in Dillenberger et al. (1993), and extended in Dillenberger et al.
(1994). The authors solve problems with up to 40 products, 6 time periods and
15 machines. Gopalakrishnan et al. (1995) introduce a new mixed integer lin-
ear programming model for CLSP with parallel machines, setup carry over and

3

without back-ordering. Setup times and costs are included but are the same for
all products. Diaby et al. (1992) introduce a Lagrangean relaxation scheme for
a particular CLSP formulation with a single setup time for each time period,
no matter how many resources are being used. Their model includes parallel
machines but does not include carry-overs or back-orders. Hindi (1995a) con-
siders a problem with multiple machines, but without setups and back-orders,
reformulating the model as a transshipment capacitated model. Öznamar and
Birbil (1998) propose heuristics for a particular parallel machine model with
setup times and overtime costs. No back-ordering and setup carry-overs are al-
lowed. The same model is then extended in Öznamar and Barbarosoglu (1999)
to a multiple production stage case. Kang et al. (1999) tackle a particular prob-
lem based on real-life cases, in which setups are allowed to be carried over to a
subsequent period, but no setup times and back-orders are included. Belvaux
and Wolsey (2000) provide a modeling framework for a wide set of lot-sizing
problems, including cases with parallel machines and back-orders. Setup carry-
overs are not handled. The resulting models are solved by XPress-MP solver.
Karimi et al. (2006) propose a tabu search metaheuristic for the CLSP problem
with back-orders. Results near to the optimal solution are found for small test
instances only, up to 4 products, and 6 periods. Quadt and Kuhn (2005) and
Quadt and Kuhn (2009) formulate the CLSP-BOPM as presented in this pa-
per for a multi-stage or single-stage production setting. Moreover, they present
an alternative reformulation for the case the machines are identical, using in-
teger variables instead of boolean ones, obtaining substantial improvements. A
non-identical parallel machine set leads to more interesting practical situations
because each machine has its own unique set of characteristics (for instance,
it often happens that in a production system newer and older machines, with
different speeds, are both available). Processing time, setup time, and setup
cost for all items are machine-related in the problem tackled in this work.

For an extensive literature review of capacitated lot-sizing with extensions,
refer to Quadt and Khun (2009), Quadt and Khun (2008), and references
therein. More recent research has been dedicated to different extensions of
the problem: with setup crossover (Belo-Filho et al., 2014), sequence-dependent
setup times (Menenez et al., 2010), multi-stage production (Caserta et al., 2010),
machines degradation (Xia et al., 2015), stochastic demand (Zhengyang and Hu,
2018), mainteinance (Xia et al., 2018) or deterioration issues (Pahl et al., 2011).
There are no recent results on algorithms for large instances of the general
CLSP-BOPM tackled in this study.

This paper is structured as follows. Section 2 introduces the CLSP-BOPM
mixed integer linear programming model and section 3 presents the implemented
mathematical methods. Section 4 presents three discrete ELSP problems, par-
ticular cases for the CLSP-BOPM. Finally, section 5 presents the computational
campaign results, and section 6 concludes the paper.

4

2. Model Formulation

Given a product portfolio P , a set of non-identical parallel machines M , and
a planning horizon T , the problem is to find a feasible assignment of the entire
production to all the machines, for all the production periods. All demands
must be met before the end of the planning horizon. Anticipate or postponing
production (increasing inventory or back-order volumes) is allowed, therefore it
is not mandatory to meet demands at the end of the connected periods. The
objective is to minimize the overall costs, including inventory, back-order, and
setup costs. It is possible to carry setup states of a machine over consecutive
periods, saving setup costs. In the following, the CLSPL-BOPM model formu-
lation is presented. This model is a slight extension of the one presented in
Quadt and Kuhn (2009) for the particular case with identical machines setup
costs, setup times and processing times.

Model parameters:
cip Inventory holding costs of product p per time period

cspm Setup costs of product p on machine m

cbp Back-order costs of product p per time period
tspm Setup time of product p on machine m
tupm Processing time (per unit) of product p on machine m
Ctm Capacity (available time) of machine m in period t
dpt Demand volume of product p in period t
P Number of products P = {1 . . . P}
M Number of machines M = {1 . . .M}
T Number of periods T = {1 . . . T}
b0p Initial back-order volume of product p
y0p Initial inventory volume of product p
ζ0pm Initial setup state of product p on machine m

z Big number, z ≥
∑

p∈P,t∈T

dpt

Model variables:

bpt Back-order volume of product p at the end of period t (continuous)

xptm Production volume of product p on machine m in period t (continuous)

ypt Inventory volume of product p at the end of period t (continuous)

γptm Binary setup variable for product p on machine m in period t (γptm = 1
if, in period t, a setup is performed for product p on machine m)

ζptm Binary linking variable for product p on machine m in period t (ζptm = 1
if the setup state for product p on machine m is carried over from period
t to t+ 1)

Model CLSPL-BOPM:

min
∑

p∈P,t∈T

(cipypt + cbpbpt +
∑
m∈M

cspmγptm) (1)

5

subject to:

yp,t−1 − bp,t−1 +
∑
m∈M

xptm − dpt = ypt − bpt ∀ p ∈ P , t ∈ T (2)

∑
p∈P

(tupmxptm + tspmγptm) ≤ Ctm ∀ t ∈ T , m ∈M (3)

xptm ≤ z(γptm + ζp,t−1,m) ∀ p ∈ P , t ∈ T , m ∈M (4)∑
p∈P

ζptm = 1 ∀ t ∈ T , m ∈M (5)

ζptm − γptm − ζp,t−1,m ≤ 0 ∀ p ∈ P , t ∈ T , m ∈M (6)

ζptm + ζp,t−1,m − γptm + γqtm ≤ 2 ∀ p, q ∈ P , p 6= q, (7)

t ∈ T , m ∈M
bpT = 0 ∀p ∈ P (8)

bp0 = b0p, yp0 = y0p ∀ p ∈ P (9)

ζp0m = ζ0pm ∀ p ∈ P , m ∈M (10)

xptm ≥ 0 ∀ p ∈ P , t ∈ T , m ∈M(11)

ypt ≥ 0, bpt ≥ 0 ∀ p ∈ P , t ∈ T (12)

γptm ∈ {0, 1}, ζptm ∈ {0, 1} ∀ p ∈ P , t ∈ T , m ∈M(13)

The objective function (1) to be minimized is the sum of the inventory hold-
ing, setup and back-ordering costs. Constraints (2) are ordinary inventory flow
conditions, and ensure that demand is met at every period, through inventory,
production, or back-orders. Equations (3) model the machine capacities: the
time dedicated to processing and setup have to be no longer than the avail-
able time of the machines. Equations (4) state that production can only be
performed on a machine with a setup performed. This is achieved by either
carrying over a setup state from period t − 1 (ζp,t−1,m = 1) or performing a
setup in period t (γptm = 1). Equations (5) impose that the setup state can be
carried over for only one item. Constraints (6) state that if a machine m carries
over a setup state for product p from period t to period t + 1 (ζptm = 1), the
machine must have a setup for product p in period t (γptm = 1) or the setup
state had been carried over from period t − 1 (ζp,t−1,m = 1). Constraints (7)
state that if machine m carries over a setup state for item p from period t−1 to
t and from t to t+ 1 (ζptm = ζp,t−1,m = 1) and, in period t a setup is performed
for another product q (γqtm = 1), then the machine setup to p must be reset up
in period t (γptm = 1).

Equations (8) ensure that the whole demand volume is produced before the
end of the planning periods. Equations (9) and (10) define the initial states.
Equations (11) and (12) define the production/inventory/backorder decision
variables (as common in the lot sizing literature, these variables are supposed
to be continuous), and (13) the boolean decision variables.

6

3. Matheuristic Approaches

Recently, meta-heuristics and exact methods have been hybridized, leading
to a branch of algorithms called matheuristics (see, for instance, Ball (2011),
Della Croce et al. (2013), and Boschetti et al. (2009)), exploiting the combina-
tion of mathematical programming and heuristics approaches to solve combina-
torial optimization problems, usually embedding a general mixed-integer linear
programming (MILP) solver as a subroutine of a heuristic algorithm, with the
task of solving subsets of the general problem. Two improvement procedures
based on variable partitioning local search (VPLS) and local branching are pre-
sented in section 3.1 and a constructive feasibility-pump-based algorithm FP is
introduced in section 3.2.

3.1. Improvement Procedures

3.1.1. Variable Partitioning Local Search

VPLS was developed from the classical local search algorithms. According
to Della Croce et al. (2013), VPLS is an iterative procedure that runs, at each
iteration, the mixed-integer programming (MIP) solver to perform a local search
inside a variable neighborhood of a current solution. The subproblem is a per-
mutation problem where a certain number of binary variables can be commuted
to obtain an improving solution with respect to the current one. In particular,
referring to a general linear programming with binary variables of a solution
X, define S as a subset of a defined size of variable indices {1, 2, . . . , n}. All
the solutions belonging to a neighborhood N(X) are those that maintain all the
jth binary variables equal to the jth in X, for all j /∈ S. Furthermore, to add
differentiation to the search, the algorithm is randomized: at each iteration,
variables involved are chosen randomly. The algorithm described here is actu-
ally inspired both by the general VPLS formulation and by the matheuristic
method in Bollapragada et al. (2011) applied to a simpler discrete time ELSP.

The pseudocode of the algorithm is presented in algorithm blocks 1. The
first part of the algorithm is dedicated to the choices of the neighborhood.
The FREEITEMS and FREEMACHINES parameters represent the number of
items and machines that can be changed in the subproblem. After preliminary
tests, to speed up the algorithm, we chose to dynamically reduce the neighbor-
hood size with respect to the running iteration. FREEITEMS is always set to
value P

4 , whereas FREEMACHINES is set to P∗M∗T
8 first, and then reduced to

P∗M∗T
12 and finally to (P∗T

2). The indexes to fix are selected randomly by the
algorithm and stored in the arrays i fix and j fix, marking the items/machines
pairs (i, j). The second part of the algorithm fixes the real variables. The vari-
ables γ and ζ identified by the pairs (i, j) are set free for all the periods t ∈ T .
All other variables are blocked to their values assumed in the current solution.
When a setup binary variable γ(i, j, t) is set free (or blocked), the corresponding
carry-over binary variable ζ(i, j, t) is also freed (or blocked) to avoid unfeasible
neighbors. Finally, in the last part of the algorithm, a call to the MIP solver is
performed. Then, if the current best solution is updated, the iteration counter

7

Algorithm 1 VPLS pseudocode
Require: Starting Solution
1: Begin(VPLS)
2: Current Solution = Starting Solution
3: while iteration ≤ MAX iterations do
4: if iteration ≤ MAX iterations/3 then
5: FREEITEMS = P/4; FREEMACHINES = PMT/8
6: else if MAX iterations/3 < iteration ≤ 2MAX iterations/3 then
7: FREEITEMS = P/4 ; FREEMACHINES = PMT/12
8: else
9: FREEITEMS = P/4; FREEMACHINES = PT/2

10: end if
11: Set i fix(i) = 1 for FREEITEMS randomly selected items i , 0 otherwise.
12: Set j fix(j) = 1 for FREEMACHINES randomly selected machines j, 0 otherwise.
13: for all the items i ∈ P , the machines j ∈M , the periods t ∈ T do
14: if i fix(i) = 1 and j fix(j) = 1 then
15: Free the corresponding γ(i, j, t) and ζ(i, j, t) variable
16: else
17: Set γ(i, j, t) and ζ(i, j, t) value as in Current Solution
18: end if
19: end for
20: Current Solution = Solve(MILP)
21: if totalcost(Current Solution) ≤ totalcost(Best Solution) then
22: Best Solution = Current Solution
23: iteration = 0 . Restart counting iterations
24: end if
25: if Current Time ≥ Time Limit then
26: iteration = MAX iterations . Jump to the last iteration to abort the procedure
27: else
28: iteration ++
29: end if
30: end while
31: End(VPLS)

8

is set newly to 0 to restart the iteration count. If the time limit is reached, the
procedure ends.

3.1.2. Improved Local Branching Technique

Local branching is another well-known improvement matheuristic procedure
(Fischetti et al., 2004). It consists of an iterative local search, where each
iteration is composed of three phases (DRT structure): diversification, refining,
and tight refining. The binary set B is organized to identify the subsets B1

and B2, corresponding to the first-level and second-level variables, respectively.
Beginning from an initial solution X, the DRT structure is iterated until a time
limit is reached.

1. Diversification: Dynamically adding a constraint that forces a move away
from the current solution for a (Hamming) distance between kmin

D and a
maximum kmax

D :
kmin
D ≤ ∆1(X,X) ≤ kmax

D (14)

The subscript 1 means that the constraint is set on the first-level variables
set only. The exclusion of the current solution from the new search space
is done by adding a static tabu constraint that hides this solution for the
entire iteration cycle:

∆1(X,X) ≥ 1 (15)

The (kmin
D , kmax

D) range can be modified on the run.

2. Refining : The solution X is refined by removing the dynamic diversifica-
tion constraint (14) and by adding the new dynamic refining constraint :

∆1(X,X) ≤ kR (16)

If the local optimum solution of this new problem is not reached before
the time limit, a tight refining step will be performed.

3. Tight refining : The dynamic refining constraint (16) on the first-level
variable is maintained. An additional dynamic constraint (17) is added,
affecting only second-level variables

∆2(X,X) = kTR (17)

Re-optimization is then performed for different values of kTR.

Parameters kmin
D , kmax

D , kR, kTR, and kstepD must be chosen reasonably small
to allow a fast solution search by the MIP solver.

In our case, the setup carry-over variables ζ have a greater influence over
the setup variables γ rather than the contrary. We have chosen to consider ζ as
the first-level variables set and γ as the second-level variables set. To summa-
rize the DRT procedure, diversification and refine steps add constraints on the
ζ variables, whereas the tight-refine step works on γ variables. The algorithm
pseudocode 2 shows the main scheme of the DRT procedure structure. The exit

9

Algorithm 2 Local branching pseudocode
Require: Starting Solution
1: Begin(LocalBranching)
2: Current Solution = Starting Solution
3: no improv counter = 0
4: while Current Time ≤ Time Limit do
5: Add the TABU constraint (15) with respect to Current Solution
6: if no improv counter ≥ no improv threshold then
7: no improv counter = 0 . Erase the no-improvements counter
8: DIV(Current Solution,BIG) . Do a BIG Diversification
9: else

10: DIV(Current Solution,Normal) . Do a Normal Diversification
11: end if
12: REF(Current Solution) . Refine the new Current Solution
13: if the refinement step reached its time limit then
14: TREF(Current Solution) . Do a Tight Refining
15: end if
16: if totalcost(Current Solution) ≤ totalcost(Best Solution) then
17: Best Solution = Current Solution
18: no improv counter = 0
19: else
20: no improv counter ++ . Count iterations without improvements
21: end if
22: Remove the Refining, Tight Refining and Tabu constraints (16), (17), and (15)
23: end while
24: End(LocalBranching)

condition for the loop is a time limit total-time limit on the execution time. A
tabu constraint (15) to hide the entering current solution is added, valid for the
entire current DRT cycle. The diversification step is performed by calling the
DIV() function. When no improv counter consecutive iterations performing a
normal diversification do not produce improvements, a BIG diversification is
performed. The current solution is then refined. If the solver has not been able
to find the optimal solution for the refining (REF) subproblem, the procedure
proceeds into the tight refining (TREF) step. Then, an update for the best
solution found is performed. If the current solution improved the, until now,
best solution found, the no-improvement counter is reset; otherwise, it is in-
creased. Before the next iteration, all the REF (16), TREF (17), and tabu (15)
constraints are removed.

Diversification. The DIV() algorithm (3) receives as input the current solution
and the normal/BIG parameter that regulates the size of the diversification
subproblem. Here kmin

D /kmax
D represent the minimum/maximum number of

variables that must be changed during the re-optimization of the problem (the
minimum/maximum distance between the current solution and the new one). If
a new solution is found, it is returned to the main procedure. In each iteration,
the DIV search space is augmented by the kstepD parameter and bounds kmax

D

and kmD in are updated. The diversification procedure ends if a time limit has
been reached, a limit on the maximum iterations (parameter kMAX

D limit) has
been reached, or an improved solution has been found.

10

Already during the preliminary computational testing, the classical diversi-
fication step has been proven to be slow, even with a small kstepD , mainly due
to the fact that the diversification subproblems remain too large and the op-
timal solutions are hardly reached by the solver. Hence, the classical DIV()
method has been hybridized with the VPLS-based procedure given in the previ-
ous section, obtaining substantial speed improvements. Two fixing parameters
(FREEITEMS, FREEMACHINES) and two index arrays (i fix, j fix) are in-
troduced. For all the pairs, if (i, j) indexes are marked as free over the entire
periods set, all the corresponding first-level (ζ) and second-level (γ) variables
are let free. All the other variables are blocked to their values with reference to
the current solution.

Algorithm 3 Local branching: diversification
1: Begin(DIV(Current Solution, Type))
2: Entering Time = Current Time
3: if Type = BIG then
4: kstepD = BIG step
5: else
6: kstepD = Normal step
7: end if
8: while (Current Time ≤ Entering Time + DIVTime Limit) and (kMAX

D ≤ kMAX
D limit)

and (a solution has not yet been found) do

9: kMAX
D = kmin

D + kstepD
10: Add the Diversification constraint (14) with respect to the Current Solution
11: Set i fix(i) = 1 for FREEITEMS randomly selected items i, 0 otherwise.
12: Set j fix(i) = 1 for FREEMACHINES randomly selected machines j, 0 otherwise.
13: for all the items i ∈ P , the machines j ∈M , the periods t ∈ T do
14: if i fix(i) = 1 and j fix(j) = 1 then
15: Free the corresponding γ(i, j, t) and γ(i, j, t) variables
16: else
17: Set γ(i, j, t) and ζ(i, j, t) as in Current Solution
18: end if
19: end for
20: Current Solution = Solve(MILP) . Run the solver
21: Remove the Diversification constraint (14)

22: kmin
D = kmin

D + kstepD
23: end while
24: if totalcost(Current Solution) ≤ totalcost(Best Solution) then
25: Best Solution = Current Solution
26: end if
27: Return(Current Solution)
28: End(DIV)

Refining and Tight Refining. The REF algorithm is described by the algorithm
pseudocode 4. First-level variables are now interested by the refining constraint
(16) with respect to the current solution but always remembering the tabu
constraint (15) referring to the original current solution of the main iteration
cycle. This constraint is dynamically added, but it is also maintained for the
eventually performed tight refining step. The TREF step (algorithm 5) is
composed by a main loop. During each iteration, the size of the corresponding

11

Algorithm 4 Local branching: refining procedure, pseudocode
1: Begin(REF)
2: Add the Refining constraint (16) with respect to the Current Solution
3: Current Solution = Solve(MILP)
4: Return(Current Solution)
5: End(REF)

Algorithm 5 Local branching: tight refining procedure, pseudocode
1: Begin(TREF)
2: Entering Time = Current Time
3: kTR = 0 . Set the initial Hamming Distance
4: while (kTR ≤ kTR limit) and (Current Time ≤ Entering Time + REFtime Limit) do
5: Add the Tight Refining constraint (17) with respect to the Current Solution
6: New Solution = Solve(MILP)
7: if totalcost(New Solution) ≤ totalcost(Current Solution) then
8: Current Solution = New Solution
9: kTR = 0

10: else
11: kTR = kTR + kstepTR . Increase the non-improvements counter
12: end if
13: end while
14: Return(Current Solution)
15: End(TREF)

subproblem is expanded by a step parameter kstepTR . The TREF constraint (17)
is added to the model with respect to the second-level variables and the current
solution. The current solution is updated every time the new solution provided
by the MIP solver improves it. In that case, the TREF constraint must be
adapted to that solution for the next iteration. At each improvement, kTR is
also reset; otherwise, it is augmented by adding kstepTR . The main loop is time
limited by a kmax

TR threshold.

3.2. The Proposed FP Algorithm

The feasibility pump (Fischetti et al., 2005) aims to find a feasible integer
solution starting from the optimal (or almost-optimal) solution for the LP-
relaxation of the problem. The procedure is structured in an iterative way.

(I) Given a continuous solution obtained by relaxing the binary variables γ
and ζ, a nearest-integer rounding is performed. The obtained integer
solution in general is not feasible for the MIP problem.

(II) Search for a new relaxed optimum close to the rounded solution.

The two steps are repeated until a feasible solution for the MIP problem is
found. This happens when the rounded solution in (I) and the LP-relaxation
optimum generated by (II) match.

In our case, good solutions have a 0-structure that is largely in common with
the starting continuous solution. Moreover, all the ζ variables should always

12

be set free to avoid unwanted infeasibility situations. Re-optimization is then
performed on the entire ζ set and on a certain number of selected γ variables.

The matheuristic procedure is structured as follows.

1. Obtain the continuous solution from the LP-relaxation of the problem.
Assume it is the current solution (MIP-infeasible).

2. Select the first pair of periods (1, 2).

3. • With respect to the current solution: fix the γ variables assuming 0
value; set free all the non-zero γ variables and all the ζ variables.

• Set free all the γ variables belonging to the selected pair of periods.

• Re-optimize the MIP subproblem and update the current solution.

• Select the next pair of periods and repeat until the iterations limit is
reached.

Hence, re-optimizations are performed inside a “freedom region” that re-
flects the non-zero region of the continuous solution, plus the iteration-related
additional γ variables.

Table 1: FP free variables example
Machines 1 2 M

Items 1 2 3 P 1 2 3 P 1 2 3 P
Period 0 0 0 0 0 0 0 0 0 0 0 0 0
Period 1 x x x x x x x x x x x x
Period 2 x x x x x x x x x x x x
Period 3 0 0 x x 0 x 0 0 x 0 x 0
Period 4 x 0 x 0 0 0 x 0 0 0 0 x

Period T 0 x 0 0 0 x 0 x 0 x 0 0

An example of the re-optimization problem mask at the first iteration is
represented in Table 1. Period 0 is related to the initial states. All the iteration
freed variables are marked by an “x” character. It can be seen as variables
related to the first pair of periods (t = 1, 2) are all freed.

At each iteration, the pair of “freeing-periods” moves. During the first cycle
(a complete scan of the periods set), the advancing step is set to be 1 period.
When the first cycle is finished, a new cycle is run, with the step augmented to
FREEPERIODS. Extensive preliminary tests showed that it was unnecessary
to continue after the second cycle.

Algorithm block 6 presents the detailed pseudocode of the algorithm. The
first part of the algorithm solves the LP-relaxed problem. The next steps are
inside a loop, in which exiting conditions are iterations and time limits together
with a maximum cycle limit. To begin iterations, some parameters have been
defined. The FREEPERIODS = 2 parameter gives the number of periods in
which the rest of the procedure will work. Maximum iterations are set through
preliminary tests to one-third of the planning horizon (T

3). In the main loop,

13

Algorithm 6 FP matheuristic
1: Begin(FP)
2: Current Solution = Solve(relaxed LP)
3: if Current Solution is an integer feasible solution then
4: Return(Current Solution)
5: end if
6: cycle = 0; FREEPERIODS = 2; MAX Iterations = T/3; t t = 1
7: while (iteration ≤ MAX Iterations) and (Current Time ≤ Time Limit) and (cycle < 2)

do
8: for all Items i ∈ P , Machines j ∈M , Periods t ∈ T do
9: if γ(i, j, t) = 0 then

10: Set constraint γ(i, j, t) = 0
11: else
12: Free the γ(i, j, t) variable
13: end if
14: Add constraints γ(i, j, t) ∈ {0, 1} and ζ(i, j, t) ∈ {0, 1}
15: end for
16: Define FP Range as [t t, t t+ FREEPERIODS)
17: for all Periods t ∈ FP Range do
18: for all Items i ∈ P , Machines j ∈M do
19: Free the γ(i, j, t) variable
20: end for
21: end for
22: Free all the ζ variables
23: Current Solution = Solve(MILP)
24: if totalcost(Current Solution) ≤ totalcost(Best Solution) then
25: Best Solution = Current Solution
26: if (cycle = 1) then MAX Iterations ++
27: end if
28: end if
29: if in the next iteration FP Range exceeds T then
30: t t = 1; Cycle++ . New Cycle
31: else
32: if cycle = 0 then t t++ . Small step
33: else if cycle = 1 then t t = t t + FREEPERIODS . Large step
34: end if
35: end if
36: iteration ++
37: end while
38: End(FP)

14

every setup relaxed variable γ, which in the current solution assumes a value
equal to 0, is constrained to this value. All the other γ variables, together
with the entire ζ variables set, are maintained free. Moreover, all the γ and
ζ variables are now constrained to binary values. The new MIP subproblem
constraints define a sort of “LP-relaxation mask.” Then, re-optimization is
defined by all the already-free variables ζ and γ (hence, those γ variables outside
the zeros grid); in addition, all the γ variables belonging to periods from t t and
t t+FREEPERIODS−1. In the first iterations, the selected t t period is the
first one in the periods set. This means that at the first while-loop iteration,
γ variables corresponding to periods from 1 and 2 are set free and added to all
the other already-free variables. Iteration advancing moves these period pairs
inside the set of planning periods.

Tests have demonstrated that the best solution is almost always found in one-
third of the first cycle. Hence, the iteration limit has been set to T

3 . However,
it has been proven that this can be improved by applying the following rule:
every time an improvement is found, the iterations limit is increased by one. On
average, the algorithm will run a little bit more than the original T

3 iterations
but, in general, will stop before the end of the first cycle. This reflects the fact
that FP finds a feasible solution in a very limited computational time.

As stated previously, several tests have been performed before defining the
presented algorithm structure. In particular, this approach has also been tested
when defining some FREEITEMS and FREEMACHINES parameters as triplet-
based (i ∈ P , j ∈ M , t ∈ T) variables freeing as in the VPLS approach.
However, the best results have been obtained with the presented algorithm
scheme. However, the hybridization idea has been successfully used for the
particular case problems described in section 4.

4. Discrete ELSP

In Bollapragada et al. (2011) a particular case of the discrete ELSP was
dealt with that has many points in common with the CLSPL-BOPM. Three
models (A,B,C) were presented, which differ from CLSPL-BOPM basically by
the addition of production costs contributions, the avoidance of setup carry-
over, and the possibility of late delivery or lost sales penalties. Refer to the
original paper for the complete models and the recovering beam search (RBS)
algorithm presented to solve them. Here, only the main differences with the
CLSPL-BOPM are highlighted. FP has been tested with them to evaluate
the effect of matheuristic structure behavior on some problem characteristics
and to compare our algorithm results with the state-of-the-art algorithm for
those specific subcases. In the following and in Table 2, the differences between
CLSP-BOPM and the three models are presented and computational results are
presented in section 5.5.

Model A. With respect to the CLSPL-BOPM model (2), model A differs in the
following ways.

15

Table 2: Differences between CLSP-BOPM and ELSP in the three proposed versions
CLSP-BOPM ELSP-A ESLP-B ELSP-C

Non-identical parallel machines X X X X
Unitary production costs X X X

Setup carry-overs X
Lost sales X

Back-orders X X

• Setup carry-over has been forbidden. Constraint (5) becomes∑
p∈P

ζptm = 0 ∀ t ∈ T , m ∈M (18)

• A production costs parameter has been added to the model and the pro-
duction contribution has been added to the objective function 19

cspm Production costs of product p on machine m

• Back-orders have been removed.

Hence, the objective function (1) has been modified as

min
∑

p∈P,t∈T

(cipypt +
∑
m∈M

(cspmγptm + cupmxptm)) (19)

Model B. Model A is extended with the hazard of lost sales at the end of each
period. This introduces lost-sales penalty costs into the objective function.

• Lost sales volume variable Lpt: lost sales volume of product p at the end
of period t.

• Lost sales costs parameter clp: lost sales penalty costs of product p.

The objective function is

min
∑

p∈P,t∈T

(cipypt + clpLpt +
∑
m∈M

(cspmγptm + cupmxptm)) (20)

Model C. The Model C removes the lost sales penalties and re-introduces the
back-orders policy into the objective function:

min
∑

p∈P,t∈T

(cipypt + cbpbpt +
∑
m∈M

(cspmγptm + cupmxptm)) (21)

16

5. Computational Testing

5.1. Generating Instances

Tests have been performed on groups of CLSPL-BOPM instances of different
sizes (P-M-T) (considered number of items, machines, and periods): (20, 20, 20),
(25, 25, 20), (25, 25, 25), (30, 30, 25), and (30, 30, 30). A total of 20 instances for
each dimension have been generated. All the results tables list the average result
over all the instances of a dimension, and detailed results for the larger group
only. The choice of a mostly balanced value in the three problem sizes P , M and
T has been made according to the following consideration. Being the number of
binary variables of the model 2 · P ·M · T we expect that increasing one of the
other dimension will have a very similar impact on the solver/algorithms per-
formances. The number of continuous variables is instead usually less influent.

In order to randomly generate the problem instances, we relied on the data
value generation described in Bollapragada et al. (2011), where the generation
scheme was based on a randomized perturbation of values inspired from real
productive systems. That scheme has been adapted to our case adding the few
missing values. The time unit is 1 day; hence, 1 period corresponds to 1 working
day (daylength). Data have been generated as follows:

• inventory holding costs cip =
∑

m∈M cspm
M · rand(0.2, 0.4);

• setup costs cspm = rand(200, 800);

• back-order costs cbp =
∑

m∈M cspm+cip
M ;

• setup times tspm = rand(0.05, 0.25);
• processing times tupm = rand(0.001, 0.01);
• capacity Ctm = rand(0.75, 1.00) · daylength ;

• AverageCapacitym =
∑

t∈T Ctm

T ;

• AverageSetupT imep =
∑

m∈M tspm
M ;

• ProductionRatep = M · AverageCapacitym

tupm+[AverageSetupTimep·(P
M−intrand[0,1])]

;

• demand volumes dpt = ProductionRatep · rand(0.8, 1.3);
• initial states have been considered null, b0p = y0p = ζ0pm = 0.

5.2. Algorithms settings

Initial solutions have been obtained by selecting, for each instance, the best
solution provided by two pre-solving methods. The first method comprised a
truncated application of the MIP solvers (both Xpress and Cplex), providing
two partial solutions. The second method was a heuristic method comprising
a five-iteration cycle where, starting from the LP-relaxation of the problem,
the two solvers perform a partial rounding on one-fifth of the variables at each
iteration, while all variables have been rounded to integer values.

Time limitations for each stage have been set according to the problem sizes,
as described in table 3.

Note that all the algorithms (standalone or initial solution + improvements)
have the same total time limits on a given dimension so that the results are
comparable. Time limits have been chosen in order to give the solver enough

17

Table 3: Procedures time limits with respect to problem size [s]

20-20-20 25-25-20 25-25-25 30-30-25 30-30-30
XPRESS/CPLEX/FP 150 500 500 1500 3000

Initial sol. for VPLS/LB 50 200 200 600 1000
VPLS/LB 100 300 300 900 2000

time to provide a good solution. Setting a larger time limit may clearly result
in an improving solution. Anyway, on the largest tested instances, this would
happen very slowly. In fact, the computer RAM would begin to be filled by the
open nodes of the search tree and hence the operative system would begin using
hard disk as virtual memory, resulting in a very slow behavior.

Computational tests have been performed on a 64-bit system Intel R©Core
i5 @2.5 GHz with 8 GB of RAM. Both solvers (FICO Xpress 7.6 and ILOG
Cplex 12.5) have been tested. The total estimated computational time spent
was about 284 h of non-stop computations.

Parameters have been tuned by preliminary testing and are summarized as
follows.

• VPLS fixing parameters have been set as explained in section 3.1.1.

• LB k-parameters have been set as follows:
kmin
D = 1
kstepD = 2 (normal) or 10 (big)
no improv threshold = 5 iterations.
FREEITEMS = P/4; FREEMACHINES = M/4
kR = 1
kstepTR = 2, kmax

TR = 10.

• The solver time limit has always been set to the maximum between 10
s and the moment when Xpress finds the first feasible solution to the
problem.

5.3. MIP solvers results

Tables 4 and 5 report the results achieved by the two solvers on the test
instances. The first table contains the detailed report of testing on the largest
problems, whereas the second presents the average results on all tested sizes.
The bold cells, in this table and all the subsequent ones, refer to the best
solution value obtained on each line/instance of the table. The “Best LB”
column contains the higher of the lower bounds found by the MIP solvers. The
average (AVG) row contains the average values for each column. Note that
on this specific problem Xpress performs better than ILOG Cplex. Xpress has
reached the optimal solution for five of the largest problem instances under
test, whereas Cplex never did. Even if Xpress seems to perform better than
its opponent, it also highlights a floating behavior. In contrast, whereas the
average result is worse than its opponent’s, the Cplex solver seems to have more

18

Table 4: 30-30-30: solver results

INSTANCE Best LB
Solution

Xpress Cplex
1 7976.066 9870,428 12638235,714
2 7475.758 3204125,421 3091508,596
3 7480.759 32357976,880 4426832,901
4 7614.791 3143287,988 6509580,352
5 7533.408 133617,369 2543112,400
6 7372.601 7372,601 4275878,973
7 7699.353 41994111,900 4622219,545
8 8481.065 8481,065 12389799,237
9 7836.178 266436,978 11904963,864
10 7846.872 1203094,028 11989134,554
11 6996.676 27678157,610 4847169,981
12 7473.605 7473,605 5383834,206
13 7491.706 5819587,822 3880130,075
14 7341.890 4402038,568 4353532,645
15 7092.496 1614167,891 5397827,863
16 7380.767 7380,767 12080254,361
17 7922.878 2081899,725 9253161,207
18 7994.171 7994,171 4785393,293
19 7534.016 595345,446 4391619,242
20 7466.557 174507,954 3406922,308

AVG 7600.581 6235846,410 6608555,566

stable behavior. As a result of this computational campaign, the results in the
following sections refer to the algorithms implemented with Xpress.

Table 5: Solver results: average performance
Dimension Xpress Cplex
(20-20-20) 1321390,830 5776237,768
(25-25-20) 269906,546 2070374,969
(25-25-25) 1617744,753 5794782,803
(30-30-25) 14296892,571 6270828,099
(30-30-30) 6235846,410 6608555,566

5.4. Matheuristic approaches

Table 6 collects tests results of the matheuristics application on the large
problem instances (30-30-30). Clearly, FP widely outperforms the other matheuris-
tics. Among the other algorithms, the VPLS approach wins. Table 7 lists the
average results for all instance sizes. All the previous considerations hold. Re-
garding computational time, all the matheuristics have a fixed time limit, except
for the FP approach and Xpress (in the case it produces an optimal solution).
Table 8 lists the average computational time on all instances dimensions. All
time values are expressed in seconds. It can be seen how the end times of
matheuristic FP were considerably lower than the Xpress end times (and of all
other matheuristic approaches). Hence, FP also outperforms the other proce-
dures with regards to CPU time.

19

Table 6: 30-30-30: matheuristic approaches
Instance Xpress VPLS LB+VPLS FP

1 9870,428 13640,687 61555,743 8003,546
2 3204125,421 13556,447 28743,641 7544,201
3 32357976,880 25203,821 78095,925 8172,668
4 3143287,988 22630,797 52307,588 7869,087
5 133617,369 16342,582 43634,644 7558,202
6 7372,601 18109,324 49351,231 7372,601
7 41994111,900 31137,724 168272,137 8023,548
8 8481,065 28717,844 76531,295 8481,065
9 266436,978 21551,097 61947,777 7926,621
10 1203094,028 20592,150 61163,984 7935,282
11 27678157,610 21114,695 71964,399 7585,174
12 7473,605 14643,093 72006,738 7473,605
13 5819587,822 24472,170 51417,744 7913,804
14 4402038,568 26911,995 159238,531 7579,515
15 1614167,891 19277,196 82295,904 8058,504
16 7380,767 12849,165 69852,748 7380,767
17 2081899,725 26395,745 170260,410 7933,104
18 7994,171 12392,444 42269,187 7994,171
19 595345,446 15122,808 47907,301 7617,988
20 174507,954 14953,313 65588,910 7549,962

AVG 6235846,410 19980,754 75720,291 7798,670

Table 7: Matheuristic methods: average performance
20-20-20 25-25-20 25-25-25 30-30-25 30-30-30

XPRESS 1321390,830 269906,546 1617744,753 14296892,570 6235846,410
VPLS 9610,257 17076,715 20558,658 20091,626 19980,754

LB 27942,582 37181,497 60390,967 59752,297 75720,291
FP 4610,885 5655,585 5721,848 6858,179 7798,670

Table 8: XPRESS versus FP matheuristic: average time comparison [s]

Algorithm 20-20-20 25-25-20 25-25-25 30-30-25 30-30-30
FP 33 64 135 391 1607

Xpress 101 372 464 1405 2819
Others (time limit) 150 500 500 1500 3000

20

To further improve the FP results, a test has been performed providing the
solution returned by FP to the VPLS improvement procedure. For all tested
instances, no improvements have been observed by VPLS after 100 procedure
iterations. Hence, no results are presented for the FP + VPLS algorithm.

Table 9: ELSP - Model A
Instance Xpress RBS FP FPb FPb+VPLS

1 804995 805656 808685 799656 799616
2 750217 748343 746087 733696 733528
3 752902 755343 757689 739907 739561
4 946569 947555 949460 922287 916632
5 814168 813602 813558 798440 798186
6 671428 671436 671374 665392 665392
7 896759 895439 891762 871615 865864
8 884018 894323 893211 878233 878072
9 835057 837541 826246 797197 795565
10 728850 732344 734830 725024 723770
11 891080 905340 902116 883368 883014
12 736038 746555 746953 731350 731047
13 770684 771225 769857 766610 766525
14 925677 925723 925027 899649 898605
15 981553 919344 915185 885475 875181
16 744118 743133 744331 735478 735467
17 844764 843520 843975 819737 819571
18 842519 845439 846519 830957 827981
19 914245 919233 921793 898177 898112
20 1084913 1064522 1012814 983664 982272

AVG 841028 839281 836074 818296 816698

5.5. Discrete ELSP Results

A set of 20 instances of size (20-20-25) have been created with the same
data characteristics seen in section 5.1 but adding the new parameters required,
according to Bollapragada et al. (2011):

• production costs cppm = rand(3, 9) + rand(2, 6) + 1/(100 + tupm);

• lost sales penalty costs clp = 10 ∗ cbp.

Tables 9, 10, and 11 list the testing results with a time limit of 500 s. It
can be seen that FP outperforms both Xpress and RBS for models A and B,
whereas RBS is performs best on model C, where FP is also outperformed by
Xpress.

FP was then adapted slightly to perform better for the specific problems,
generating algorithm FPb. In particular, it has been shown that the best con-
figuration for the algorithm was to remove the iteration limit and consider a
time limit only. Then, to allow a direct comparison, the time limit has been
set to 500 s. Then, it has been noted that subproblems sizes are often too
large for the solver to obtain an optimum solution for each re-optimization.
Hence, another hybridization with VLSP has been implemented, selecting a

21

Table 10: ELSP - Model B
Instance Xpress RBS FP FPb FPb+VPLS

1 811227 810239 815707 799300 799081
2 748732 752361 751733 734791 733494
3 750730 756323 755713 740081 739807
4 937384 939400 939406 922878 914796
5 812769 812232 811972 802557 801941
6 671371 670343 673716 665475 665475
7 910072 899436 898430 873544 867983
8 899345 889454 898430 873544 867983
9 827485 912334 895379 878966 878688
10 733671 805456 833386 808726 799474
11 911555 833123 734911 723328 723328
12 744653 894544 901295 882475 881834
13 771188 761003 748431 731155 730917
14 927213 843455 773137 766340 766340
15 978098 954001 924038 902302 901138
16 750684 875456 910115 882875 875755
17 837029 810226 747982 735242 734907
18 845079 844344 846843 820150 819387
19 911884 888419 846316 826484 826228
20 1038871 1042293 914761 899437 899189

AVG 840952 849722 831085 813483 811387

Table 11: ELSP: model C
Instance Xpress RBS FP FPb FPb+VPLS

1 805064 802543 815600 799579 799342
2 745991 739232 751437 734582 734312
3 749672 773491 757573 740661 740621
4 931497 933452 953437 1006057 919378
5 819909 815433 819270 800142 800040
6 668301 671211 676677 665581 665581
7 899984 887451 901834 870748 865490
8 888110 878342 892172 879471 879397
9 823535 835451 833304 803978 797739
10 733850 741232 744930 723622 723504
11 899442 900012 904332 886479 882799
12 737443 739121 748825 730440 730117
13 772325 769433 778333 769168 767153
14 910042 915436 926214 902264 899607
15 951895 915659 922359 889800 878159
16 742584 741234 751563 735471 735286
17 842620 839454 847585 820451 819658
18 840484 841322 846981 916808 829436
19 913185 914192 917338 901534 900965
20 1034147 1034345 1024537 992074 983354

AVG 835504 834402 840715 828445 817597

22

smaller number of variables for the re-optimization problem. Again, the param-
eters FREEITEMS, FREEMACHINES, and FREEPERIODS as in the
VLSP description, indicating the number of items/machines/periods that can
be set as free, have been introduced and set as follows:
• FREEPERIODS = 2;
• FREEITEMS = a · P ;
• FREEMACHINES = b ·M ;

where a and b are randomly drawn from the uniform distribution U(0.8, 0.9).
As can be seen in the final columns of tables 9, 10, and 11, FPb outperforms

all the previous methods. Moreover, differently than with the CLSP-BOPM
problem, results can be further improved by applying a VPLS improvement
phase after the FPb algorithm (column FPb+VPLS), at the expense of some
additional computational time.

6. Conclusions

In this study, an extension of the well-known CLSP considering back-order,
setup carry-overs, and parallel machines has been investigated. Three matheuris-
tics have been developed, starting from the basic schemes of the well-known
variable neighborhood local search, local branching, and feasibility pump algo-
rithms. Computational testing has been performed comparing the results of the
three algorithms and two different MIP solvers. The best-performing algorithm
was the FP algorithm. The strengths of this algorithm have been confirmed
by an additional computational test on three different problems, particularly,
cases of the CLSP-BOPM. A slightly modified version of FP outperformed both
the solver and a specialized algorithm from the literature. Future studies will
be devoted to adapting the algorithmic approaches to more general production
problems (i.e. multi-stage production, setup crossover, and sequence-dependent
setups).

M. O. Ball. Heuristic based on mathematical programming. Surveys in Opera-
tion Research and Management Science, 16:21–38, 2011.

M. Belo-Filho, F. Toledo, and B. Almada-Lobo. Models for capacitated lot-
sizing problem with backlogging, setup carryover and crossover. Journal of
the Operational Research Society, 65, 2014.

G Belvaux and LA Wolsey. bc-prod: a specialized branch-and-cut system for
lot-sizing problems. Management Science, 46(5):724–738, 2000.

PJ Billington, JO McClain, and LJ Thomas. Mathematical programming ap-
proaches to capacity-constrained mrp systems: review, formulation and prob-
lem reduction. Management Science, 29(10):1126–1141, 1983.

GR Bitran and HH Yanasse. Computational complexity of the capacitated lot
size problem. Management Science, 28(10):1174–1186, 1982.

23

R. Bollapragada, F. Della Croce, and M. Ghirardi. Discrete-time, economic
lot scheduling problem on multiple, non-identical production lines. European
Journal of Operational Research, 215(1):89–96, 2011.

A. Boschetti, M., V. Maniezzo, M. Roffilli, and A. Boluf Rohler. Matheuristics:
Optimization, simulation and control. Lecture Notes in Computer Science,
5818:171–177, 2009.

M. Caserta, A. Ramirez, and S. Voß. A math-heuristic for the multi-level ca-
pacitated lot sizing problem with carryover. In European Conference on the
Applications of Evolutionary Computation, EvoApplications 2010: Applica-
tions of Evolutionary Computation, pages 462–471, 2010.

S Ceschia, L Di Gaspero, and A Schaerf. Solving discrete lot-sizing and schedul-
ing by simulated annealing and mixed integer programming. Computers &
Industrial Engineering, 114:335–343, 2017.

F. Della Croce, A. Grosso, and F. Salassa. Matheuristics: embedding MILP
solvers into heuristic algorithms for combinatorial optimization problems. In:
Heuristics, Theory and Applications. NOVA Publisher, 2013.

M. Diaby, HC Bahl, MH Karwan, and S Zionts. A lagrangean relaxation ap-
proach for very-large-scale capacitated lot-sizing. Management Science, 38
(9):1320–1340, 1992.

C Dillenberger, LF Escudero, A Wollensak, and W Zhang. On solving a
large-scale resource allocation problem in production planning. In G Fandel,
T Gulledge, and A Jones, editors, Operations research in production planning
and control, pages 105–119. Springer, Berlin, 1993.

C Dillenberger, LF Escudero, A Wollensak, and W Zhang. On practical resource
allocation for production planning and scheduling with period overlapping
setups. European Journal of Operational Research, 75(2):275–286, 1994.

A. Drexl and A. Kimms. Lot sizing and scheduling survey and extensions.
European Journal of Operational Research, 99:221–235, 1997.

DJ Fiorotto, R Jans, and SA de Araujo. An analysis of formulations for the
capacitated lot sizing problem with setup crossover. Computers & Industrial
Engineering, 106:338–350, 2017.

M. Fischetti, C. Polo, and M. Scantamburlo. A local branching heuristic
for mixed-integer programs with 2-level variables, with an application to a
telecommunication network design problem. Networks, 44(2):61–72, 2004.

M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming, 104, 2005.

M Ghaniabadi and A Mazinani. Dynamic lot sizing with multiple suppliers,
backlogging and quantity discounts. Computers & Industrial Engineering,
110:67–74, 2017.

24

M Gopalakrishnan, D Miller, and C Schmidt. A framework for modelling setup
carryover in the capacitated lot sizing problem. International Journal of
Production Research, 33:1973–1988, 1995.

G. Goren, H., S. Tunali, and R. Jans. A hybrid approach for the capacitated
lot sizing problem with setup carryover. International Journal of Production
Research, 50(6):1582–1597, 2014.

KS Hindi. Algorithms for capacitated multi-item lot-sizing without set-ups.
Journal of the Operational Research Society, 46:465–472, 1995a.

KS Hindi. Solving the single-item, capacitated dynamic lot-sizing problem with
startup and reservation costs by tabu search. Computers & Industrial Engi-
neering, 28(4):701–707, 1995b.

S Kang, K Malik, and LJ Thomas. Lotsizing and scheduling on parallel machines
with sequence-dependent setup costs. Management Science, 45(2):273–289,
1999.

B Karimi, SMT Fathemi Ghomi, and JM Wilson. A tabu search heuristic
for solving the clsp with backlogging and set-up carry-over. Journal of the
Operational Research Society, 57(2):140–147, 2006.

A. Menenez, A., A. Clark, and B. Almada-Lobo. Capacitated lotsizing and
scheduling with sequence-dependent, period overlapping and not triangular
setups. Journal of Scheduling, 14(2):209–219, 2010.

L Öznamar and G Barbarosoglu. Hybrid heuristics for the multi-stage capac-
itated lot sizing and loading problem. Journal of the Operational Research
Society, 50:810–825, 1999.

L Öznamar and SI Birbil. Hybrid heuristics for the capacitated lot sizing and
loading problem with setup times and overtime decisions. European Journal
of Operational Research, 110(3):525–547, 1998.

G.. Pahl, S. Voß, and L. WoodRuff, D. Discrete lot-sizing and scheduling with
sequence-dependent setup times and costs including deterioration and per-
ishability constraints. In Proceedings of the 44th Hawaii International Con-
ference on System Sciences, 2011.

L. Pinedo, M. Planning and Scheduling in Manufacturing and Services.
Springer, xviii ed. edition, 2009.

D. Quadt and H. Khun. Capacitated lot-sizing with extensions: a review. 4OR,
6:61–83, 2008.

D. Quadt and H. Khun. Capacitated lot-sizing and scheduling with parallel
machines, back-orders and setup carry-over. Naval Research Logistics, 56(4):
366–384, 2009.

25

D Quadt and H Kuhn. A conceptual framework for lot-sizing and scheduling
of flexible flow lines. International Journal of Production Research, 43(11):
2291–2308, 2005.

D Quadt and H Kuhn. Capacitated lot-sizing and scheduling with parallel
machines, back-orders, and setup carry-over. Naval Research Logistics, 56(4):
366–384, 2009.

WW Trigeiro, LJ Thomas, and JO McClain. Capacitated lot sizing with setup
time. Management Science, 35(3):353–366, 1989.

T Xia, X Jin, L Xi, and J Ni. Production-driven opportunistic maintenance
for batch production based on mamapb scheduling. European Journal of
Operational Research, 240(3):781–790, 2015.

T Xia, L Xi, S Du, L Xiao, and E Pan. Energy-oriented maintenance decision-
making for sustainable manufacturing based on energy saving window. Jour-
nal of Manufacturing Science and Engineering, 140(5):1–12, 2018.

H Zhengyang and G Hu. A multi-stage stochastic programming for lot-sizing and
scheduling under demand uncertainty. Computers & Industrial Engineering,
119:157–166, 2018.

26

	Introduction and literature review
	Model Formulation
	Matheuristic Approaches
	Improvement Procedures
	Variable Partitioning Local Search
	Improved Local Branching Technique

	The Proposed FP Algorithm

	Discrete ELSP
	Computational Testing
	Generating Instances
	Algorithms settings
	MIP solvers results
	Matheuristic approaches
	Discrete ELSP Results

	Conclusions

