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Abstract 

Recent studies show that the combined use of Large-Volume Metrology (LVM) systems (e.g., 

laser trackers, rotary-laser automatic theodolites, photogrammetric systems, etc.) can lead to a 

systematic reduction in measurement uncertainty and a better exploitation of the available 

equipment.  

The objective of this paper is to present some diagnostic tests for combinations of LVM 

systems that are equipped with distance and/or angular sensors. Two are the tests presented: a 

global test to detect the presence of potential anomalies during measurement and a local test  to 

isolate any faulty sensor(s). This diagnostics is based on the cooperation of sensors of different 

nature, which merge their local measurement data, and it can be implemented in real-time, 

without interrupting or slowing down the measurement process. The description of the tests is 

supported by several experimental examples. 

Keywords: Large-volume metrology, Distributed sensors, Multi-system combination, 

Cooperative diagnostics, Statistical test, Measurement consistency. 

1. Introduction 

The field of Large-Volume Metrology (LVM) deals with objects with linear 

dimensions ranging from several meters to tens of meters (Estler et al., 2002; Peggs et 

al., 2009; Franceschini et al., 2011; Schmitt et al., 2016). Typical industrial 

applications concern dimensional verification and assembly of large-sized mechanical 

components, in which levels of uncertainty of several tenths of millimetre are 

generally tolerated (Maropoulos et al., 2014; Chen et al., 2015). These applications are 

typically performed using technologically advanced LVM systems, which are very 
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expensive and may require time consuming set-up and measurement operations 

(Franceschini and Maisano, 2014). 

LVM systems are usually equipped with sensors able to perform local measurements 

of distances and/or angles. Depending on the sensor layout, LVM systems can be 

classified into: (i) centralized, if sensors are grouped into a unique stand-alone unit 

(e.g., a laser tracker), or (ii) distributed, if sensors are spread around the measurement 

volume (e.g., a set of rotary-laser automatic theodolites (Maisano et al., 2008)). Even 

though the existing measuring systems may differ in technology and metrological 

characteristics, two common features are: (i) the use of some targets to be localized, 

which are generally mounted on a hand-held probe for localizing the points of interest 

or in direct contact with the measured object’s surface, and (ii) the fact that target 

localization is performed using local measurements by sensors. 

For distributed LVM systems, sensors are arranged around the measured object and 

there are three possible approaches for target localization (Franceschini et al., 2011): 

 Multilateration, using the distances between targets and sensors; 

 Multiangulation, using the angles subtended by targets with respect to sensors; 

 Hybrid techniques, which are based on the combined use of angles and distances 

between targets and sensors. 

Although several types of LVM systems are (not rarely) available in the same 

industrial workshop or metrology laboratory, they are often used independently of 

each other (e.g., a laser tracker is used for certain tasks, a photogrammetric system for 

others, and so on). This is a rather myopic view because it ignores the benefits that 

may result from the combination of multiple systems, including but not limited to: 

 overcoming the limitations of the individual systems; 

 improving measurement accuracy and coverage; 

 reducing the risk of measurement errors, due to measurement redundancy. 

Franceschini et al. (2016) recently proposed a novel approach, in which a combination 

of LVM systems that are equipped with sensors of different nature – i.e., sensors with 

different metrological characteristics and able to measure distances and/or angles – 
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share their measurement data and cooperate for determining a unique localization of 

the target. In other words, data provided by a number of sensors from different LVM 

systems are fused together in order to localize the target (Galetto et al., 2015; 

Franceschini et al., 2016; Maisano and Mastrogiacomo, 2016). According to this 

philosophy, the set of (centralized and/or distributed) LVM systems that are used in 

conjunction can be seen as a single distributed LVM “macro-system”, consisting of 

sensors of different nature. 

The purpose of this article is to present some statistical tests, which provide a practical 

on-line diagnostics functionality. These tests allow to detect possible measurement 

anomalies and, subsequently, isolate any potentially faulty sensor(s). This diagnostics 

can be classified as cooperative, since it is based on the cooperation of sensors of 

different nature.  

In detail, two statistical tests will be discussed: 

 a global test, aimed at evaluating the consistency of the target localization, based 

on the variability of the local measurements by sensors. 

 a local test that – when a target localization is not considered consistent by the 

global test – identifies the potentially faulty sensor(s) and (temporarily) excludes 

them from the target-localization process, without interrupting it. 

These tests can interpreted as a generalization of similar tests that have been 

previously developed: i.e., (i) some tests for distributed LVM systems with distance 

sensors only and (ii) other tests for distributed LVM systems with angular sensors 

only; in this sense, this research represents an important update of (Franceschini et al., 

2009; Franceschini et al., 2014). 

The remainder of this paper is structured into four sections. Section 2 provides some 

background information, which is helpful to grasp the subsequent description of 

statistical tests, precisely: (i) basic concepts concerning diagnostics and (ii) a synthetic 

description of the target-localization mathematical model in use. Section 3 provides a 

detailed description of the statistical tests, with several experimental examples. 

Section 4 summarizes the original contributions of this research, focusing on its 
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implications, limitations and possible future developments. Details on the 

mathematical model for target localization are contained in the appendix. 

2. Background information 

2.1 Basic concepts concerning diagnostics 

In general, the concept of consistency of a measurement is defined as follows. For 

each measurable quantity x, we can define a confidence interval [LL, UL] (where LL 

stands for Lower Limit and UL for Upper Limit). The measure ( x̂ ) of the quantity x is 

considered consistent if  UL,LLx̂  (Gertler, 1998; Franceschini et al., 2011).  

The type-I and -II probability errors (misclassification rates) respectively correspond 

to: 

  
  sourceserror  systematic of presencePr

sourceserror  systematic of absencePr

|UL,LLx̂

|UL,LLx̂







. (1) 

Usually, LL and UL reflect the natural variability of the measurement system (which is 

related to the metrological characteristics of accuracy, reproducibility, repeatability, 

etc.), in the absence of systematic error sources1 (JCGM 200:2008, 2008). 

For distributed systems, local anomalies in one or more sensors can distort or even 

compromise the target localization. On the other hand, when these anomalies are 

recognised, the target-localization results can be corrected by (temporarily) excluding 

malfunctioning sensor(s). This is the reason why distributed systems are – to some 

extent – rather “vulnerable” but can be successfully protected by appropriate 

diagnostic tools. 

The diagnostics presented in this paper can be classified as cooperative, since the 

sensor local measurements are used in conjunction: not only for localizing the target 

but also for detecting possible measurement anomalies/accidents in this process. As 

mentioned in Sect. 1, this diagnostics includes two tests (global and local), aimed 

                                                 
1 The authors are aware that systematic measurement errors can never be eradicated 
completely; this assumption is therefore not valid in general, even though could be adequate 
for the purpose of diagnostics (Franceschini et al., 2014). 
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respectively at (i) identifying inconsistent localizations and (ii) identifying and 

(temporarily) excluding purportedly faulty sensors. 

2.2 Mathematical model for target localization 

This section briefly recalls a recent mathematical model for target localization, when 

using combinations of LVM systems equipped with sensors of different nature. In 

general, each i-th LVM system (Si) includes a number of sensors; we conventionally 

indicate the generic j-th sensor of Si as sij (e.g., si1, si2, …, sij, …). Sensors can be 

classified in two typologies: 

 distance sensors, able to measure their distance (dij) from the target (see Figure 

A.2, in the appendix); 

 angular sensors, able to measure the azimuth (ij) and elevation (ij) angle 

subtended by the target (see Figure A.2, in the appendix). 

Assuming that P is the point to be localized in the 3D space (e.g., the centre of a 

spherical target), the localization problem may be formulated through the following 

linear (or linearized) model (Galetto et al., 2015; Franceschini et al., 2016): 

0


















ang

dist

ang

dist

B

B
X

A

A
BXA ,    (2) 

where X = [X, Y, Z]T is the position vector of P in a global Cartesian coordinate system 

OXYZ; Adist, Aang and Bdist, Bang are respectively the so-called design and reduced 

measured observation matrices, both referred to OXYZ (Wolberg, 2005). The matrices 

related to distance sensors are labelled with superscript “dist”, while those related to 

angular sensors with superscript “ang”. A and B contain several parameters related to 

each generic (ij)-th sensor: the position/orientation parameters (
ijijij

ZYX 000  , ,  and ij, 

ij,ij) and the distance (dij) and/or angles (ij,ij) subtended by the target, with 

respect to a local Cartesian coordinate system oijxijyijzij. Since the “true” values of the 

above parameters are never known exactly, they can be replaced with appropriate 

estimates: 
ijijij

ẐŶX̂ 000  , , , iĵ , iĵ  and iĵ  resulting from initial calibration process(es), 
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ijd̂  resulting from distance measurements, and iĵ  and iĵ  resulting from angular 

measurements. For details on the construction of A and B, see Sect. A1 (in the 

appendix). 

The unknown coordinates of P are determined solving the system in Eq. 2, which is 

generally overdefined, i.e. there are more equations than unknown parameters: one for 

each distance sensor and two for each angular sensor. 

The equations of the system may differently contribute to the uncertainty in the 

localization of P. Three important factors affecting this uncertainty are: 

1. Uncertainty in the local measurements ( ijd̂ , iĵ  and iĵ ) by sensors, which 

generally depends on their metrological characteristics; 

2. Relative position between P and each sensor; e.g., for angular sensors, the 

uncertainty in the localization of P increases proportionally to the distance between 

P and the sensors (Maisano and Mastrogiacomo, 2016); 

3. Uncertainty in the position/orientation of sensors, resulting from initial calibration 

process(es). 

For simplicity, the proposed mathematical model considers only the first two factors, 

neglecting the third one (Maisano and Mastrogiacomo, 2016). 

Having said that, it would be appropriate to solve the system in Eq. 2 giving greater 

weight to the contributions from the sensors producing less uncertainty and vice versa. 

To this purpose, a practical method is that of Generalized Least Squares (GLS) 

(Franceschini et al., 2011; Kariya and Kurata, 2004), in which a weight matrix (W), 

which takes into account the uncertainty produced by the equations, is defined as: 

    1
 TJξcovJW ,  (3) 

where J is the Jacobian matrix containing the partial derivatives of the elements in the 

first member of Eq. 2 (i.e., A∙X – B) with respect to the sensors’ local measurements 

(contained in the vector ), and cov() is the relevant covariance matrix. For details, 

see Sect. A1 in the appendix.  
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Assuming that sensors work independently from each other and there is no correlation 

between the local measurements related to different sensors, cov() is a diagonal 

matrix containing the variances related to these measurements. Variances can be 

determined in several ways: (i) from manuals or technical documents relating to the 

sensors in use, (ii) estimated through ad hoc experimental tests, or (iii) estimated using 

data from previous calibration processes. We remark that these values should reflect 

the sensors’ uncertainty in realistic working conditions, e.g., in the presence of 

vibrations, light/temperature variations and other typical disturbance factors. 

By applying the GLS method to the system in Eq. 3, we obtain the final estimate of X 

as: 

  BWAAWAX 
 TTˆ 1

.  (4) 

For further details on the GLS method, see (Kariya and Kurata, 2004). 

3. On-line diagnostic tests 

This section is organized into two subsections: Sect. 3.1 describes a global test to 

evaluate the consistency of a target localization, while Sect. 3.2 describes a local test 

that – when a target localization is not considered consistent by the global test – 

identifies the potentially faulty sensor(s) and (temporarily) excludes them from the 

localization process, without interrupting it. 

Before going into the discussion of the tests, we define the residuals of the sensor 

local measurements as the difference between the measured quantities (labelled with 

the symbol “^”) and those calculated using the coordinates of P, resulting from the 

localization process (see Eqs. A3 and A7, in the appendix): 


sensorsangular for   
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In the absence of systematic error causes, it is reasonable to hypothesize that these 

residuals follow zero-mean normal distributions:  2 0,
ijijij ddd ~   , 

 2 0,
ijijij

~     and  2 0,
ijijij

~    ; these hypotheses will be tested 

experimentally. The dispersion of residuals (depicted by the relevant variances 

2
ijd , 2

ij  and 2
ij )  depends on the technical/metrological characteristics of sensors; 

e.g., measurements performed using technologically advanced sensors, such as the 

interferometer or Absolute Distance Meter (ADM) of a laser tracker, are likely to be 

less dispersed than those performed using relatively coarse sensors, such as ultrasonic 

distance sensors or low-end photogrammetric cameras. 

Assuming that 2
ijd , 2

ij  and 2
ij  are known, residuals can be standardized as follows: 

sensorsangular for  
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.  (6) 

The resulting standardized residuals are, by definition, normally distributed random 

variables with zero mean and unit variance: 
ijijij

zzzd  ,, ~ N(0, 1).  

3.1 Global test 

The first diagnostic criterion is aimed at identifying the non-plausible localizations of 

P. The standardized residuals related to the sensors involved in the target localization 

(see Eq. 6) are aggregated into the standardized residual sum of squares (SRSS) 

indicator: 

    



ang

ij
ang

ij
dist

ij
ang

ijij
dist

ij

IijIijIij

d

IijIij

d zzzzzzPSRSS 222222
 , (7) 
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where Idist and Iang are the sets of index-pair values (ij), relating to the sensors able to 

perform distance and angular measurements respectively. In general, these types of 

local measurements are mutually exclusive, since sensors able to measure distances 

are not able to measure angles and vice versa. 

By definition, SRSS(P) ≥ 0 for all the points (P) in the measurement volume. Since the 

localization problem is overdetermined and sensor measurements are naturally 

dispersed, a solution that exactly satisfies all distance and angular constrains (i.e., 

SRSS(P) = 0) is not realistically possible. 

In a broader perspective, SRSS(P) is the sum of |Idist|, |Iang| and |Iang| squared 

realizations (the symbol “| |” denotes the cardinality of a set) of the zero-mean and 

unit-variance normally distributed random variables 
ijijij

zzzd  ,, . SRSS(P) can 

therefore assume the following form: 

  222
ijijijdPSRSS    , (8) 

where: 

2
ijd , 2

ij  and 2
ij  are three chi-square distributed random variables, with respectively 

|Idist|, |Iang| and |Iang| degrees of freedom (DoF), since they are obtained by summing 

independent terms; 

SRSS(P) is a new chi-square distributed random variable with |Idist| + |Iang| + |Iang| = |Idist| 

+ 2∙|Iang| DoF, since it is obtained by adding the three above chi-square distributed 

variables (Ross, 2009). 

Every time the localization of a target is performed, diagnostics calculates the quantity 

SRSS(P). Assuming a risk  as a type-I error, a one-sided confidence interval for 

SRSS(P) can be calculated in order to test the consistency of the localization; 2
1  ,  is 

the upper limit of this interval, considering a chi-square distribution with  = |Idist| + 

2∙|Iang| DoF and a (1–) confidence level. 

The test drives to the following two alternative conclusions: 
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→ localization is considered consistent; 

→ localization is considered inconsistent, hence it is rejected. 

3.1.1 Set up of test parameters 

The risk level  is established by the user. A high  prevents from dubious 

localizations, although it might drive to reject good ones. On the other hand, a low  

speeds up the localization process, although it might drive to collect wrong data due to 

the consequent increase of the type-II error (). 

The variances of residuals – which are essential for calculating the standardized 

residuals – can be determined empirically, localizing a sample of M points randomly 

distributed in the measurement volume, in the absence of systematic error sources. For 

each k-th point, the three types of residuals defined in Eq. 5 can be calculated: 
ijd , 

ij  and 
ij . The number of residuals of each type may change depending on the 

number of sensors involved in each k-th localization, which is in turn influenced by 

their communication range and relative position with respect to P (Maisano and 

Mastrogiacomo, 2016). 

In the absence of systematic error causes and time or spatial/directional effects, it is 

reasonable to assume that homologous residuals – i.e., residuals concerning the same 

type of measured quantity ( ijd̂ , iĵ  and iĵ ), from sensors of the same (i-th) LVM 

system – are zero-mean normally distributed random variables with the same 

dispersion. This is justified by the fact that the local-measurement dispersion of 

sensors is closely related to their technical and metrological characteristics.  

Therefore, the mean values and variances of the residuals of the problem are reduced 

to: 

residuals  for the

residuals  for the 

residuals  for the 

2

2
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where the subscript “i•” indicates that these parameters are calculated aggregating the 

residuals related to sensors from the i-th LVM system (Si), considering the totality of 

the localizations of the M points available. The resulting mean values can be used to 

test the hypothesis of zero-mean distributions, while the variances can be used to 

determine the standardized residuals for the test (see Eq. 6). 

3.1.2 First experimental example 

In a first example, let us consider a specific combination of two LVM prototype 

systems:  

(S1) MScMS-I, i.e., a system consisting of multiple ultrasonic sensors – denominated 

Crickets (Franceschini et al., 2010) – which are able to measure their distance 

from the target; 

(S2) MScMS-II, i.e., a system consisting of different toy cameras – PixArt/WiiMote 

infrared cameras, with 126∙96 pixels resolution and 100 fps – which are able to 

measure the angles subtended by the target (Franceschini et al., 2011).  

Both systems have been designed and developed at Politecnico di Torino - DIGEP and 

include inexpensive but not very accurate sensors, e.g., the typical distance-

measurement uncertainty of Crickets is of the order of a few millimetres (Franceschini 

et al ., 2010), while the angular-measurement uncertainty of the toy cameras is of the 

order of some tenths of a degree (Maisano and Mastrogiacomo, 2016). 

We set up a distributed LVM “macro-system” consisting of 5 Crickets (i.e., s11, s12, s13, 

s14 and s15) and 3 toy cameras (i.e., s21, s22 and s23) with known positions and 

orientations, which are distributed around the measurement volume, as schematized in 

Figure 1. 

The variances of the residuals were estimated empirically, considering a sample of 

about M = 50 points, which are randomly distributed in the measurement volume. The 

localization of these points was performed in a controlled environment (e.g., 

temperature, light and vibrations were kept under control) and the distributions of 

residuals were thoroughly analyzed, in order to exclude measurement accidents, e.g., 

time or spatial/directional effects, or non-random causes of variation in general. 
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Since all the MScMS-I distance sensors as well as the MScMS-II angular sensors are 

nominally identical, residuals can be grouped into 3 sets: one (including the 
jd1

  

residuals) for the distance sensors from S1, and two (including the 
j2  and 

j2  

residuals) for the angular sensors from S2. The zero-mean normal distribution of these 

sets of residuals was verified by the Anderson-Darling normality test at p < 0.05 

(Ross, 2009).  

s11 

Z

Y

X
O

(a) 
s14 

s15 
s13 

s12 

s21 

s22 

s23 

(b) 

X

Y

O Z

s21 

s23 s22 

s13 

s11 s14 

s15 s12 

Key: 

distance sensors of S1 (s1j) 

angular sensors of S2 (s2j) 

 
Figure 1. Representation of the position and orientation of the distance (s1j) and angular (s2j) 
sensors in use in the first experimental example: (a) 3D view and (b) XY plane view. OXYZ is the 
global coordinate system (coordinates in millimetres). The outgoing vectors (in blue) represent the 
sensor orientations. 
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Table 1 reports the mean and standard-deviation values estimated for these sets of 

residuals. 

Residuals Sensors Number Mean value Variance 

jd1
 s11, s12, s13, s14 and s15 5∙50 = 250

1d̂ = -0.05 mm 2
1d̂ = 3.38 mm2 

j2 s21, s21 and s23 3∙50 = 150
2̂ = 0.02 deg 2

2̂ = 0.083 deg2 

j2 idem idem 
2̂ = -0.038 deg 2

2̂ = 0.090 deg2 

Table 1.  Estimated mean value and variance related to the local-measurement residuals, in the first 
experimental example. 

In conditions of maximum visibility – i.e., all the 5 distance sensors and 3 angular 

sensors are able to see the target P – the confidence-interval limit for SRSS, assuming 

a type-I risk level  = 0.05 and  = |Idist| + 2∙|Iang| = 5 + 2∙3 = 11 DoF, becomes: 

719)()( 2
950111 .PSRSSPSRSS .,    . (10) 

Let us now consider a possible accident that can occur using ultrasonic sensors. 

Referring to the representation in Figure 2, suppose that an obstacle, for example an 

operator who performs the measurement, is interposed between P and two of the 

distance sensors (i.e., s12 and s13), blocking them. At the same time, the ultrasonic 

signal reflection on the floor/ceiling of the workshop produces two wrong 

measurements. Consequently, the distance measurements by s12 and s13 are 

significantly overestimated. Also, it is assumed that the remaining sensors are able to 

perform their local measurements correctly; see the example in Table 2(a). 
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s11 
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y11 
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z11 

reflected        
ultrasonic signals
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system 

Z 

X 

O 

obstacle blocking 
s12 and s13 

target (P) 

(Si)  i-th LVM system  
(sij) j-th sensor of the i-th system 
(oijxijyijzij) local coordinate system 
 Crickets (from S1) 
 toy cameras (from S2)  
 correct measurements by s11, s14, s15 and s21, s22, s23

 wrong distance measurements by s12 and s13 

Key: 

 
Figure 2. Scheme of the set-up in the first experimental example. A measurement accident in two 
(ultrasonic) sensors (i.e., s12 and s13) of S1 causes wrong distance measurements (d12 and d13). 

In this case, the mathematical model will produce the following (distorted) 

localization solution: P ≡ (-99.9, 1449.7, 21.2) [mm], which is characterized by a high 

error: SRSS(P) ≈ 1.2∙105 > 19.7. Owing to this result, the global test suggests that this 

localization is inconsistent. 

Sensor (a) Accident present (b) Accident removed 
dij [mm] ij [deg] ij [deg] dij [mm] ij [deg] ij [deg] 

s11 3272.6 N/A N/A 3274.6 N/A N/A
s12   (wrong) 4236.5 N/A N/A  (correct) 2814.9 N/A N/A
s13   (wrong) 3196.3 N/A N/A  (correct) 1970.4 N/A N/A
s14 3314.0 N/A N/A 3318.1 N/A N/A
s15 2857.1 N/A N/A 2856.8 N/A N/A
s21 N/A 13.37 -29.36 N/A 13.42 -29.36
s22 N/A -10.33 -34.35 N/A -10.23 -34.46
s23 N/A 122.80 -35.86 N/A 122.91 -35.83

Table 2. Example of local measurements by the sensors of a combination of two LVM systems (S1 
and S2) in the first experimental example: (a) in the presence of an accident causing wrong distance 
measurements by s12 and s13 and (b) after removing the cause of the accident. 

After removing the obstacle, the new distances related to s12 and s13 are respectively 

d12 = 4236.5 mm and d13 = 3196.3 mm, while the local measurements relating to the 

remaining sensors are almost identical to the previous ones (see Table 2(b)). The new 

localization is: P ≡ (352.7, 698.6, 560.6) [mm]. The corresponding SRSS value is 

SRSS(P) ≈ 4.44 ≤ 19.7. Hence, the new localization can be considered consistent. 
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3.1.3 Second experimental example 

Let us consider a second example in which two LVM systems include sensors with 

relatively high metrological characteristics. Precisely, these two systems are: 

(S1) a distributed photogrammetric system consisting of three Hitachi Gigabit Ethernet 

photogrammetric infrared cameras (s11, s12 and s13) – pixel resolution: 1360x1024, 

frame rate: 30 fps (Hitachi Kokusai Electric Inc., 2016) – using a 38.1 mm 

reflective spherical target. Each camera is able to provide the azimuth (11, 12, 

and 13) and elevation (11, 12, and 13) angular measurements with respect to 

the target P; 

(S2) a laser tracker API RadianTM (API, 2016) with a Spherically Mounted 

Retroreflector (SMR) of the same diameter of the target of S1. S2 is equipped with 

an ADM (s21), providing distance measurements (d21) and an angular sensor (s22), 

providing two angular measurements – i.e., azimuth (22) and elevation (22) – of 

P. The local Cartesian coordinate systems of the two sensors are coincident. 

We set up a distributed LVM “macro-system” consisting of total 5 sensors (i.e., s11, 

s12, s13, s21 and s22) with known positions and orientations, which are distributed 

around the measurement volume, as schematized in Figure 3. 
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s11 
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angular sensors of S1 (s1j) 

sensors of S2 (s2j) 

 
Figure 3. Representation of the position and orientation of the photogrammetric cameras (s1j) and 
the laser-tracker distance (s21) and angular (s22) sensors in use in the second experimental example: 
(a) 3D view and (b) XY plane view. OXYZ is the global coordinate system (coordinates in 
millimetres). The outgoing vectors (in blue) represent the sensor orientations. 

The proposed localization model is able to estimate the 3D position of each measured 

point, based on the 9 local measurements available (i.e., two angular measurements for 

each of the three photogrammetric cameras; two angular measurements and one 

distance measurement for the laser tracker). 
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The mean values and variances related to the local-measurement residuals were 

estimated on the basis of the localization of M = 50 points, which are randomly 

distributed in the measurement volume. The resulting values are reported in Table 3. 

Residuals Sensors Number Mean value Variance 

j1
 s11, s12 and s13 3∙50 = 150

1̂ = 1.9∙10-4 deg 2
1̂ = 2.5∙10-4 deg2 

j1  idem 3∙50 = 150
1̂ = 2.0∙10-4 deg 2

1̂ = 2.6∙10-4 deg2 

jd2
  s21 50 

1d̂ = -4.5∙10-7 mm 2
1d̂ = 9.1∙10-11 mm2 

j2
 s22 50 

2̂ = 1.1∙10-3 deg 2
2̂ = 3.7∙10-3 deg2 

j2  idem 50 
2̂ = 8.7∙10-3 deg 2

1̂ = 1.7∙10-3 deg2 

Table 3.  Estimated mean value and variance related to the local-measurement residuals, in the 
second experimental example. 

In conditions of maximum visibility (i.e., when the totality of the sensors can see the 

target) and assuming a type-I risk level  = 0.05 and  = 2∙3 + 1 + 1∙2 = 9 DoF, the 

confidence-interval limit for SRSS becomes: 

9162
95019 .)P(SRSS)P(SRSS .,    . (11) 

Suppose that a possible accident produces a distortion in the angles measured by the 

angular encoder of the laser tracker (s22), while the distance sensor (s21) performs the 

measurement correctly (see the representation in Figure 4). Moreover, suppose that the 

three photogrammetric cameras (s11, s12 and s13) are able to measure the angles 

subtended by P correctly (see Table 4).  

In this case, the localization algorithm will produce the following (distorted) 

localization solution: P ≡ (1964.9, 1254.5, 946.5) [mm], characterized by a high error, 

i.e., SRSS(P) ≈ 3.6∙103 > 16.9. This diagnostic test therefore suggests to reject the 

localization result. 
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.

 

(Si)  i-th LVM system  
(sij) j-th sensor of the i-th system 
(oijxijyijzij) local coordinate system 
 photogrammetric cameras (from S1) 
 correct measurements by s11, s12, s13 and s21

 wrong angular measurements by s22 

Key: 
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O 
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z21   z22 

y21   y22 

target (P) 

 

Figure 4. Scheme of the set-up in the second experimental example. A measurement accident in the 
laser-tracker angular sensor (s22) causes the wrong measurement of the azimuth (22) and elevation 
(23) angles. 

 

Sensor (a) Accident present (b) No accident 
dij [mm] ij [deg] ij [deg] dij [mm] ij [deg] ij [deg] 

s11 N/A 62.16 -13.91 N/A 62.17 -13.79 
s12 N/A 96.95 -47.04 N/A 96.91 -47.07 
s13 N/A -14.82 -27.82 N/A -14.79 -27.80 
s21 559.2 N/A N/A 559.2 N/A N/A 
s22 N/A (wrong) 25.96 (wrong) -7.39 N/A (correct) 30.96   (correct) -3.39 

Table 4. Example of local measurements by the sensors of a combination of two LVM systems (S1 
and S2) in the second experimental example: (a) before and (b) after removing the cause of the 
measurement accident. 

Repeating the measurement after having eliminated the anomaly in s22, the new angles 

measured by s22 are 22 = 30.96 degrees and 22 = –3.39 degrees respectively, while 

those relating to the remaining sensors are almost identical to the previous ones (see 

Table 2(b)). The new localization is: P (1952.3, 1250.3, 966.9) [mm]. The 

corresponding SRSS value is SRSS(P) ≈ 5.23≤ 16.9. Hence, the new localization can 

be considered consistent. 

3.2 Local test 

If the global test fails, a local test can be performed for failure isolation. The 

philosophy of this other test is to correct the results of a dubious localization, by 
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excluding the purportedly faulty sensor(s), without losing the observations from the 

remaining sensors. In this way, the target localization process is not interrupted, even 

in the presence of local anomalies. 

Referring to the local measurements by each (ij)-th sensor, we now consider the three 

types of standardized residuals, which are defined in Eq. 6 (
ijijij

zzzd  and,, ). These 

residuals can be used for outlier detection with uncorrelated and normally distributed 

observations: if the local measurement is not an outlier, then the corresponding 

standardized residual will be normally distributed ~ N(0, 1). Each standardized 

residual is compared to a /2-quantile and a (1 – /2)-quantile of the standard normal 

distribution (i.e., z and z), with the significance level . The null-hypothesis, 

which denotes that the (ij)-th local measurement is not an outlier, is rejected if the 

standardized residual is not included in the [z, z1-] symmetrical confidence 

interval. An outlier in one standardized residual generally causes ones other residuals 

to be increased in absolute values.  

Local testing is easy under the assumption that there is only one purportedly faulty 

sensor (or outlier) in the current localization: the local measurement with the largest 

(absolute value of the) standardised residual, provided that it is beyond the confidence 

interval, is regarded as an outlier and the corresponding sensor (sij) is excluded from 

the localization problem. 

The assumption that there is only one outlier is a severe restriction in the case 

measurements from more than one sensor are degraded. However, the procedure can 

be extended to multiple outliers iteratively: after the exclusion of a potentially faulty 

sensor, the statistical test and the rejection of one other sensor can be repeated until no 

more outliers are identified (Wieser et al., 2004). 

3.2.1 Set up of test parameters 

The standardized residuals that are used in this test are the same that are used in the 

global test; therefore they can be calculated according to the procedure described in 

Sect. 3. 
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3.2.2 First application example 

Returning to the example presented in Sect. 3.1.2 – in which two distance sensors (s12 

and s13) perform distorted measurements – the relevant standardized residuals are 

reported in Table 5(a). These standardized residuals were determined using the 

residual variances estimated in Sect. 3.1.2. 

Sensor 
ijdz

ij
z

ij
z

(a) Initial data 
s11 136.49 N/A N/A
s12   (wrong) -149.21 N/A N/A
s13   (wrong) -206.22 N/A N/A
s14 -47.54 N/A N/A
s15 145.95 N/A N/A
s21 N/A 65.46 -41.44
s22 N/A -80.61 -32.47
s23 N/A -13.96 4.22

(b) s13 excluded 
s11 48.04 N/A N/A
s12   (wrong) -241.97 N/A N/A
s14 -121.6 N/A N/A
s15 66.74 N/A N/A
s21 N/A 56.36 -24.54
s22 N/A -71.01 -13.74
s23 N/A -10.18 17.63

(c) s12 and s13 excluded
s11 0.76 N/A N/A
s14 0.79 N/A N/A
s15 0.25 N/A N/A
s21 N/A -0.03 -0.05
s22 N/A 1.33 -0.73
s23 N/A 1.21 0.92

Table 5.  Standardized residuals for the measurement exemplified in Sect. 3.1.2: (a) initial data, (b) 
data after the exclusion of sensor s12, and (c) data after the exclusion of sensors s12 and s13. 

Assuming  = 5%, the confidence interval is [z = -1.96, z1- = 1.96]. All the  

residuals are outside this interval, but the “prime suspect” is s13, being the sensor with 

the highest residual (absolute) value. s13 is then excluded and, repeating the 

localization, the new output is P (-81.2, 1345.3, 358.2) [mm]. Despite this 

exclusion, all the residuals continue to be outside the confidence interval. In this other 

case the sensor with the highest residual (absolute) value is s12, which is in turn 

excluded and the localization is repeated (see Table 5(b)). The new output is 
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P (353.5, 694.9, 562.6) [mm] and all the standardized residuals are eventually 

contained within the confidence interval (see Table 5(c)). 

Not surprisingly, the global test – which can be performed using the local 

measurements from the six remaining sensors only – is satisfied; precisely, 

91695 2
95019 ..)P(SRSS .,    . 

3.2.3 Second application example 

Returning to the example presented in Sect. 3.1.3 – in which the two angles measured 

by the laser-tracker angular sensor (s22) are distorted – the relevant standardized 

residuals are reported in Table 5(a). For this standardization, we used the residual 

variances ( 2
1d , 2

2  and 2
2 ) that are reported in Sect. 3.1.3. 

 

Sensor 
ijdz

ij
z

ij
z

 

(a) Initial data 
s11 N/A 2.15 -9.67 
s12 N/A 39.15 -32.44 
s13 N/A -19.87 -22.01 
s21 -0.01 N/A N/A 
s22 N/A (wrong) 74.64 (wrong) 36.11 

(b) s22 excluded 
s11 N/A 0.69 -1.23 
s12 N/A -0.57 -0.11 
s13 N/A -0.31 1.66 
s21 -1.2*10-4 N/A N/A 

Table 6.  Standardized residuals for the measurement exemplified in Sect. 3.2.2: (a) initial data and 
(b) data after the exclusion of sensor s22. 

Assuming  = 5%, the confidence interval is [z = -1.96, z1- = 1.96]. All the 

residuals are outside this interval, but the “prime suspect” is s22, being the sensor with 

the highest residual (absolute) value. s22 is then excluded and, repeating the 

localization, the new output is P (1952.3, 1250.3, 966.8) [mm] and all the 

standardized residuals are now contained within the confidence interval (see Table 

5(b)). 
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Not surprisingly, the global test – which can be performed using the local 

measurements from the four remaining sensors – is also satisfied: 

14.1914 2
95017   .,.)P(SRSS  . 

4. Conclusions 

The on-line diagnostics presented in the paper makes it possible to monitor the target-

localization consistency in real time, on the basis of some statistical tests. Tests are 

deliberately general and can be applied to any combination of LVM systems in which 

sensors (of different nature) perform distance and/or angular measurements. An 

important characteristic of these tests is their ability to selectively exclude faulty 

sensor(s), without interrupting the measurement process.  

The proposed tests require the estimation of some parameters; primarily the variances 

related to the local-measurement residuals. These parameters can be evaluated 

empirically by performing some preliminary measurements under controlled 

conditions, according to the reasonable assumption of absence of time or 

spatial/directional effects. Data collected during the system set-up and calibration can 

be used for this purpose, with no additional effort (Bar-Shalom, et al., 2001). 

Since the on-line implementation of these tests requires a certain computational 

capacity, it could slow down the target-localization process. However, this 

consequence is minimized due to (i) the high capacity of existing processors, (ii) the 

fact that the localization model in use is linearized, and (iii) test segmentation (i.e., the 

local test is performed only after the global test has detected the presence of potential 

anomalies). Some experimental tests showed that the response time required to 

implement these tests for individual measurements is in the order of magnitude of a 

few tenths of a second. 

The proposed diagnostic tests can be applied in the localization of a unique target, 

which is seen by the sensors in use. In the absence of a universal target – i.e., a target 

able to be seen by sensors of different nature simultaneously (such as a laser tracker 

and a set of photogrammetric cameras) – it is possible to perform the localization 
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using different targets (such as a SMR for a laser tracker and a reflective spherical 

target for a set of photogrammetric cameras), repositioning them separately on the 

same support base. In this way, the local-measurement collection process is split into 

different phases, which involve sensors of different nature separately (e.g., the local 

measurements by photogrammetric cameras are collected in one phase, while those by 

laser tracker are collected in another one). This operation is not problematic for static 

measurements – in which the target(s) support base is fixed – but it is not feasible for 

dynamic measurements. Regarding the future, we plan to extend these tests and the 

proposed mathematical model for target-localization to the so-called 6-DOF probes 

equipped with multiple targets, which are visible from sensors of different nature 

(Maisano and Mastrogiacomo, 2018a; 2018b). 
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Appendix 

A1. Details on the mathematical model for target localization  

This section presents a detailed description of the mathematical model for target 

localization, when adopting combinations of LVM systems.  

Let us consider a set of LVM systems (Si, being i = 1, 2, …), each of which is 

equipped with a number of sensors (sij, being j = 1, 2, …) that are positioned around 

the object to be measured, with a local Cartesian coordinate system (oijxijyijzij), which 

is roto-translated with respect to a global Cartesian coordinate system OXYZ (see 

Figure A.1). The single LVM systems can be centralized or distributed; in the former 

case, sensors are rigidly connected to each other, while in the latter, they are not. 
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Figure A.1. Schematic representation of the combination of three LVM systems: S1 is a distributed 
system with two sensors (s11 and s12), while S2 and S3 are two centralized systems with one sensor 
(s21) and two sensors (s31 and s32) respectively. 

 

A general transformation between a local and the global coordinate system is: 
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Rij is a rotation matrix, which elements are functions of three rotation parameters: 
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coscossinsincoscossincossincossinsin

cossinsinsinsincoscoscossinsinsincos

sinsincoscoscos

ijR ,(A2) 

where ij represents a counterclockwise rotation around the xij axis; ij represents a 

counterclockwise rotation around the new yij axis, which was rotated by ij; ij 



27 
 

represents a counterclockwise rotation around the new zij axis, which was rotated by 

ij and then ij; for details, see (Franceschini et al., 2014).  

 T
ijijij

Z,Y,X 000
ij0X  are the coordinates of the origin of oijxijyijzij, in the global 

coordinate system OXYZ. 

The (six) location/orientation parameters related to each (ij)-th sensor (i.e., 

ijijij
Z,Y,X 000 , ij, ij,ij) are treated as known parameters, since they are measured in 

an initial calibration process. This process, which may vary depending on the specific 

technology of the individual measuring systems, generally includes multiple 

measurements of calibrated artefacts, within the measurement volume (Bai et al, 

2014). 

The above considerations apply to both distributed and centralized LVM systems. In 

the latter case, sensors are rigidly connected (e.g., consider a photogrammetric 

tracking bar with three cameras), i.e., the position vectors of the individual sensors 

(
ij0X ) are linked to the respective Rij matrices (rigid-body constraint). 

The problem of localizing the point P = [X, Y, Z]T can be decomposed by considering 

distance and angular sensors separately, as discussed in Sects. A1.1 and A1.2 

respectively. 

A1.1 Distance sensors 

From the local perspective of a generic (ij)-th distance sensor, the distance between 

P = [X, Y, Z]T and a local observation point – which is assumed to be coincident with 

the origin oij = [
ij

X 0 , 
ij

Y0 , 
ij

Z0 ]T of the local coordinate system oijxijyijzij – can be 

calculated as (see Figure A.2): 

     20
2

0
2

00 ijijij
ZZYYXXdij 

ij
XX . (A3) 



28 
 

ijy

ijz

ij

ij

P 

ijo

ijx

sensor sij 
P’ 

ijd

 

Figure A.2. For a generic sensor (sij), a distance (dij) and two angles – i.e., ij (azimuth) and ij 
(elevation) – are subtended by a line joining the point P (to be localized) and the origin oij of the 
local coordinate system oijxijyijzij. 

Squaring both terms, we obtain  

      022
0

2
0

2
0  ijdZZYYXX

ijijij
. (A4) 

Considering a point 
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X that is reasonably close to X, Eq. A4 can be 

linearized by a first order Taylor expansion2:  
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The above equation can be expressed in matrix form as: 

0 dist
ij

dist
ij BXA ,    (A6) 

where 

T

ij

ij

ij

ZZ
ˆ̂

YY
ˆ̂

XX
ˆ̂
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22
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ˆ̂
dij dist

ijB . 

                                                 
2 The “double-hat” symbol “  ̂̂ ” indicates that a point close to X can be obtained through a 
rough estimate of the (final) estimate of X itself (i.e., X̂ ). We will illustrate how to determine 

X
ˆ̂

 later. 
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A1.2 Angular sensors 

From the local perspective of a generic (ij)-th angular sensor, two angles – i.e., ij 

(azimuth) and ij (elevation) – are subtended by the line passing through P and oij (see 

Figure A.2). Precisely, ij describes the inclination of segment oijP with respect to the 

plane xijyij (with a positive sign when zij > 0), while ij describes the counterclockwise 

rotation of the projection (oijP’) of oijP on the xijyij plane, with respect to the xij axis. 

Referring to the local coordinate system of the (ij)-th sensor, the following 

relationships hold: 



 


















22
sin

2

3

2
then0if

22
then0if

tan

1

1









ij
ij

ij
ij

ijij

ijij

ij

ij
ij

Po

z

x

x

x

y

.  (A7) 

Given that: 
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ij
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 ,  (A9) 

Eq. A7 can be reformulated as: 

0coscossin

0cossin
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In matrix form, Eq. A10 becomes: 
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coscos0sin
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The system of two equations in Eq. A11 can be expressed as a function of the global 
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coordinates of point P. Reversing Eq. A1, for switching from the local to the global 

coordinates, and considering that Rij is orthonormal – therefore T
ij

1
ij RR  (Hartley and 

Zisserman, 2003) – we obtain: 

   
jj

T
ii 0ij0ijij XXRXXRx  1 .  (A12) 

Combining Eqs. A11 and A12, we obtain: 

  0
ij0ijij XXRM T ,  (A13) 

from which: 

0
ij0iiijij XRMXRM T

jj
T .  (A14) 

We note that the equations of this system are linear with respect to the three 

(unknown) coordinates of P. Eq. A14 can be expressed in compact form, as: 

0 ang
ij

ang
ij BXA ,  (A15) 

being T
ijij

ang
ij RMA   and 

ij0ijij
ang
ij XRMB T . 

The matrix expression in Eq. A15 is similar to the one related to distance sensors (in 

Eq. A6). However, in the case of distance sensors, it encapsulates a single equation, 

while in the case of angular sensors, it encapsulates two equations. 

A1.3 Note on hybrid sensors 

A particular case is represented by hybrid sensors, which can be seen as special 

sensors integrating a distance sensor and an angular sensor (e.g., the sensors of a laser 

tracker/tracer). For these sensors, the usable equations for the localization problem are 

three: one related to a distance measurement ( ijd̂ ) and two related to angular 

measurements ( iĵ , iĵ ). These equations can be aggregated into a single linear 

system: 
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where the superscript “hyb” stands for hybrid and dist
ijA , dist

ijB , ang
ijA  and ang

ijB  are 

the same matrices illustrated in Sects. A1.1 and A1.2. 

The same system can be formulated in an alternative way. The  (unknown) coordinates 

of P, with respect to the (same) local reference system related to the distance and the 

angular sensors, are given by (see Figure A.2): 













ijijij
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ijijijij
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sin

sincos

coscos

. (A17) 

Combining Eqs. A1 and A17 we obtain:  

 Tijijijijijijijij
TT ddd  sinsincoscoscos 

ij0ijij XRXR . (A18) 

We note that the equations of this system are linear with respect to the three 

(unknown) coordinates of P and can be expressed in compact form as: 

0 hyb
ij

hyb
ij BXA , (A19) 

 where T
ij

hyb
ij RA   and 

 
ij0ij

hyb
ij XRB TT

ijijijijijijijij ddd   sinsincoscoscos . 

The expression in Eq. A19 is certainly simpler and more compact than that in Eq. 

A16; however, it has a significant limitation: the three equations that it encapsulates 

(shown in Eq. A17) are coupled to each other, as they require the simultaneous 

knowledge of dij, ij and ij. For example, in the case dij only is available, while ij 

andij not, none of the three equations can be used. For this reason, it seems more 

practical to use the formulation in Eq. A163, in which the distance and angular 

measurements are treated separately. 

                                                 
3 Extending this reasoning, we also might find the way to decouple the equations relating to the 
angles (ij andij) that are measured by angular sensors (see Eq. A7). However, this would 
unnecessarily complicate the formulation of the problem, without any practical reason: in fact, 
it is very unlikely that the same angular sensor provides a correct measurement for one angle 
and a wrong one for the other one. 
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A1.4 Weighting and solution 

Considering a generic combination of LVM systems that are equipped with distance 

and/or angular sensors, the resulting linearized target-localization model is: 
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ang
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 , (A20) 

where blocks Adist, Aang, Bdist and Bang are defined as: 
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ang
ij

ang BB , 

where Idist and Iang are the sets of index-pair values (ij) relating to the distance and 

angular sensors respectively. 

The system in Eq. 20 can be solved when at least three equations are available (e.g., P 

is seen by at least three distance sensors, or one distance sensor and one angular 

sensor, or two angular sensors, etc.). Since this system is generally overdefined (more 

equations than unknown parameters), there are several possible solution approaches, 

ranging from those based on the iterative minimization of a suitable error function 

(Franceschini et al., 2014) to those based on the Least Squares method (Wolberg, 

2005). 

It is worth remarking that the equations of the system may differently contribute to the 

uncertainty in the localization of P. Specifically, two of the main factors affecting this 

uncertainty are: 

 Uncertainty in the local measurements ( ijd̂ , iĵ  and iĵ ), which generally depends 

on the metrological characteristics of sensors; 

 Relative position between the point to be localized (P) and each (ij)-th sensor; e.g., 

assuming that the uncertainty in angular measurements is fixed, the uncertainty in 

the localization of P tends to increase proportionally to the distance between P and 

the angular sensors (Maisano and Mastrogiacomo, 2016); 
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 Uncertainty in the position/orientation of sensors (
ijijij

ẐŶX̂ 000  , , , iĵ , iĵ  and iĵ ), 

resulting from initial calibration process(es). 

For simplicity, the proposed mathematical model considers only the first two factors, 

neglecting the third one (Maisano and Mastrogiacomo, 2016). 

The sensors that mostly contribute to uncertainty in the localization of P are therefore 

the less accurate and/or the more distant from P. 

Returning to the system in Eq. A20, it would be appropriate to solve it giving greater 

weight to the contributions from sensors that produce less uncertainty and vice versa. 

To this purpose, an elegant and practical method is that of the Generalized Least 

Squares (GLS) (Kariya and Kurata, 2004), in which a weight matrix (W), which takes 

into account the uncertainty produced by the equations of the system. One of the most 

practical ways to define W is the application of the Multivariate Law of Propagation of 

Uncertainty to the system in Eq. A20, referring to the parameters affected by 

uncertainty (Hall, 2004). Assuming that such parameters are the distances or angles 

measured by each (ij)-th sensor, we collect them in a vector : 
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ξ . (A22) 

We remark that  is a vector containing the sensor local measurements, which can be 

decomposed in the two sub-vectors, dist and ang, the former relating to distance 

sensors and the latter to angular sensors. For simplicity, we do not take into account 

the uncertainty related to the estimates of the location/orientation parameters of the 

sensors, which are contained in 
ji0X  and Rij (Franceschini et al., 2011). 

Propagating the uncertainty of the equations in Eq. A20 with respect to the elements in 

, we define W as: 



34 
 

    1
 TJξcovJW . (A23) 

Let us now focus the attention on the elements in the second member of Eq. A23. J is 

the Jacobian (block-diagonal) matrix containing the partial derivatives of the elements 

in the first member of Eq. A20 with respect to the elements in : 
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, (A24) 

where blocks dist
ijJ  and ang

ijJ  are defined as 
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, (A25) 

and the remaining elements of the matrix are all zeros. 

Returning to the description of Eq. A22, cov() is the covariance matrix of , defined 

as:  
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, (A26) 

where blocks  dist
ijξcov  and  ang

ijξcov  are defined as 
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. (A27) 

We notice that the diagonal elements of cov() are the variances related to the 

distances and angles measured by the individual sensors (Sect. 3.1.1 illustrates some 

practical ways to estimate these parameters). The off-diagonal entries of these blocks 

are zeros, assuming no correlation between the local measurements by a generic 

sensor; the off-block-diagonal entries are zeros, assuming that sensors work 

independently from each other and there is no correlation between the local 

measurements related to different sensors. 

By applying the GLS method to the system in Eq. A20, we obtain the final position 

estimate of P as: 

  BWAAWAX 
 TTˆ 1

.  (A28) 

For further details on the GLS method, see (Kariya and Kurata, 2004). 

We emphasize that an (at least rough) initial estimate of X is required to define some 

elements of the blocks dist
ijA  (see Eq. A6) and ang

ijJ  (see Eq. A25). This problem can 

be overcome applying the formula in Eq. A28 recursively: (i) setting no-matter-what 

initial X
ˆ̂

, in order to determine the elements of blocks dist
ijA  and ang

ijJ , (ii) obtaining 

a not very accurate localization of P, and (iii) iterating the localization using the result 

of the previous one as a new X
ˆ̂

. We verified that the localization tends to converge to 

the correct solution after no more than five-ten iterations. 


