
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Scalable Reduced-Order Modeling Algorithm for the Construction of Parameterized Interconnect Macromodels from
Scattering Responses / Bradde, T.; Grivet-Talocia, S.; De Stefano, M.; Zanco, A.. - ELETTRONICO. - (2018), pp. 650-
655. (Intervento presentato al convegno 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and
Power Integrity (EMC, SI & PI) tenutosi a Long Beach (CA) USA nel 30 July-3 Aug, 2018)
[10.1109/EMCSI.2018.8495287].

Original

A Scalable Reduced-Order Modeling Algorithm for the Construction of Parameterized Interconnect
Macromodels from Scattering Responses

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/EMCSI.2018.8495287

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2717094 since: 2018-11-13T11:51:30Z

IEEE



A Scalable Reduced-Order Modeling Algorithm for

the Construction of Parameterized Interconnect

Macromodels from Scattering Responses

T. Bradde, S. Grivet-Talocia, M. De Stefano, A. Zanco

Dept. Electronics and Telecommunications, Politecnico di Torino

e-mail stefano.grivet@polito.it

Abstract—This paper introduces an algorithm for the construc-
tion of reduced-order macromodels of electrical interconnects
starting from their sampled scattering responses. The produced
macromodels embed in a closed-form an approximate depen-
dence of the model equations on external parameters such as
geometrical dimensions or material characteristics. The resulting
parameterized models are easily cast as parameter-dependent
SPICE netlists, which can be used for system-level Signal and
Power Integrity assessment via numerical simulation, including
sensitivity and optimization tasks. The main novel contribution
of this work is the formulation of the model fitting equations in a
decoupled form, which allows for a very efficient implementation
in case of interconnects with a large number of interface ports,
as typically required in Signal and Power Integrity applications.
The parameterized models are guaranteed stable and passive
for any configuration of the external parameters, thus ensuring
stable transient numerical simulations.

I. INTRODUCTION

The Signal and Power Integrity of electronic systems is

strongly affected by the non-ideal behavior of electrical in-

terconnects. Systematic numerical simulations are therefore

required in both pre-layout and post-layout stages of the

design. In a pre-layout setting, different system topologies

and design scenarios are tested, leading to the choice of the

final configuration that will be realized. During this phase,

various what-if and optimization tasks are in order, so that the

influence of all geometrical and possibly material parameters

is taken into account while assessing the robustness of a

particular configuration. Numerical simulation plays a crucial

role in this phase: all decisions are driven by the results of

some simulation task, from the electromagnetic field down to

the circuit level.

During the past two decades, reduced-order behavioral

macromodeling has become one of the leading approaches for

bridging the gap between the electromagnetic characterization

of interconnects and circuit-level description [1]. Starting

from port responses such as sampled scattering data obtained

from frequency-domain field solvers, a macromodeling tool

computes a frequency-domain rational approximation of such

responses while enforcing the stability and the passivity of the

resulting model. The latter is then synthesized as an equivalent

circuit, which can be run very efficiently by any SPICE solver

for system-level Signal and Power Integrity assessment. In

this framework, the Vector Fitting (VF) scheme [2], [3] is the

standard choice, thanks also to the widespread availability of

the algorithms both as open-source code and as commercial

products integrated into EDA suites.

This work extends the idea of behavioral macromodeling

by embedding in the models the dependence on one or

more external parameters, such as geometrical dimensions

or material characteristics. The model becomes multivariate,

with one independent variable being frequency, and the other

variables being the external parameters. Availability of such

parameterized models opens new scenarios for system opti-

mization, design centering and what-if analysis, which are

parts of the daily work of a Signal and Power Integrity

engineer. Such tasks would be greatly enhanced and simplified

if fast and accurate models in a parameterized SPICE form

were available.

The idea of parameterized (multivariate) macromodeling is

not new [4]–[6]. However, a routine application of parame-

terized models in industrial workflows is still not adopted by

design companies, since such parameterized models are not

robust enough when compared to their non-parameterized VF-

based counterpart. One can run into problems due to missing

stability and passivity of the parameterized models for some

parameter value, due to the fact that enforcing stability and

passivity in the parameterized setting is orders of magnitude

more difficult than in the non-parameterized case. Prototypal

codes and research results are available [7], [8], but none of

these results has made it so far in commercial EDA tools.

Another difficulty is related to the scalability of the model

generation algorithms: when the size of the input scattering

data becomes large and especially when the number of ports of

the interconnect to be modeled is large, no existing algorithm

is capable of producing reliable models in a resonable time.

This paper makes one step forward towards the generation

of reliable parameterized macromodels of interconnects, with

emphasis on the efficiency of the model construction algorithm

when a large number of ports is considered. We introduce

and apply a decoupling approach based on a repeated QR

factorization to the main least squares system for model

identification [3]. The result is a numerical scheme that runs

in linear time and memory with respect to the total number

of port responses being concurrently processed. In addition,

we are able to ensure that the parameterized model is stable

for any parameter value within the considered range: although

the model poles depend on the parameters, their real part is



guaranteed to remain negative. Finally, a multivariate passivity

enforcement scheme is applied to guarantee that the models

are also uniformly passive throughout their parameter space.

A preliminary description of the stability and passivity en-

forcement algorithms in the bivariate case are already available

in [7], [8]. Therefore, we focus our presentation here on the

decoupling process and its implementation. We start with a

general problem statement and formulation in Sec. II. The

decoupling scheme is detailed in Sec. III. Finally, Sec. IV

illustrates the performance of the proposed algorithm on

various interconnect examples.

II. PROBLEM STATEMENT

We start with a P -port electrical interconnect structure

characterized by its frequency-dependent scattering responses.

We assume that these responses depend also on ρ additional

parameters collected in a parameter vector ϑ ∈ Θ ⊂ Rρ. For

instance, ϑ1 could be the width of a transmission line, and

ϑ2 the dielectric permittivity of a substrate, etc. An initial

characterization of the system response is first obtained via a

parametric sweep of a frequency-domain field solver, obtaining

a possibly large-sized set of response samples at discrete

frequency and parameter values (sk, ϑm), where k = 1, . . . , k̄
denotes frequency sampling (s = jω is the Laplace variable)

and m = 1, . . . , m̄ spans the parameter space through a global

linear indexing. We denote these original P × P scattering

matrix responses as H̆k,m = H̆(sk;ϑm).
Our objective is the construction of a reduced-order model

whose scattering response H(s;ϑ) approximates this data

through

H(sk;ϑm) ≈ H̆k,m, k = 1, . . . , k̄, m = 1, . . . , m̄. (1)

The requirements on this model should be:

• the approximation error between model responses and

raw data should be smaller than a given threshold δ at

any frequency and parameter sample point, based on a

suitable norm (this norm will be defined later);

• the model response should be a rational function of the

complex frequency s, so that the dynamics of the model

can be cast as Ordinary Differential Equations; the above

should be true for any value of the parameters ϑ;

• the model poles should be functions of the parameters

as p = p(ϑ); in addition, the model should be uniformly

stable ∀ϑ ∈ Θ, i.e., the real part of each model pole

should be negative for any parameter configuration;

• the model should be uniformly passive, in order to enable

stable and reliable transient simulations;

• the model structure should enable its synthesis as a com-

pact SPICE circuit, so that system-level simulations for

Signal and Power Integrity assessment can be performed

with any standard circuit solver.

The above requirements can be fulfilled if the model is cast

in a Parameterized Sanathanan-Koerner (PSK) form [4], [9]

H(s;ϑ) =
N(s, ϑ)

D(s, ϑ)
=

∑n̄

n=0

∑ℓ̄

ℓ=1 Rn,ℓ ξℓ(ϑ)ϕn(s)
∑n̄

n=0

∑ℓ̄
ℓ=1 rn,ℓ ξℓ(ϑ)ϕn(s)

, (2)

where Rn,ℓ ∈ RP×P and rn,ℓ ∈ R are the real-valued model

coefficients. Two separate sets of basis functions are used

in (2). Frequency dependence is captured by the standard

partial fraction basis functions, as commonly adopted in

the Vector Fitting (VF) scheme: ϕ0(s) = 1 and ϕn(s) =
(s − qn)

−1 for n > 0, where qn are fixed “basis poles”,

which are either real or occur in complex conjugate pairs [1],

[2]). Parameter dependence is captured by expanding both

numerator and denominator coefficients in terms of suitable

multivariate basis functions ξℓ(ϑ) (here we use a tensor

product of first-kind Chebychev polynomials). Note that ℓ =
(ℓ1, . . . , ℓρ) is a multi-index whose dimension depends on the

number ρ of parameters. In the following, we will define

T =
∏ρ

i=1 ℓ̄i, which corresponds to the cardinality of the

parameter-dependent basis. The model poles, which are the

zeros of the denominator D(s, ϑ), are therefore automatically

(and implicitly) parameter-dependent, given that the param-

eterization is performed not directly on the poles but on

the coefficients of the partial fractions. Note that (2) is the

same starting point for the standard VF scheme (in the non-

parametric case).

A. Model identification

The identification of the model coefficients in (2) is best

achieved through the PSK iteration [4], [8], [9]. We start by

initializing the denominator to a unit value D
0 = 1, and

we setup the following scheme, where superscripts denote

estimates at iteration µ = 1, 2, . . .

min

∥

∥

∥

∥

∥

N
µ(j2πfk, ϑm)− D

µ(j2πfk, ϑm) H̆k,m

Dµ−1(j2πfk, ϑm)

∥

∥

∥

∥

∥

(3)

where minimization is performed over the model coefficient

estimates R
µ
n,ℓ and r

µ
n,ℓ. The cost function adopted in (3) is a

user-defined norm of its P × P matrix argument, which can

be tuned to the specific application scenario (see later). We

recognize that (3) is a simple weighted linear least squares

problem, whose solution is achieved through basic pseudoin-

verse techniques. The iteration terminates when the coefficient

estimates stabilize. Note that, at convergence, the problem (3)

coincides with the original model fitting requirement (1).

III. HANDLING LARGE PORT COUNTS

Despite its simplicity, the PSK iteration becomes intractable

in its standard formulation (3) when the number of intercon-

nect ports P is large. A straightforward calculation shows

that the total number of unknowns that are being solved

for in (3) is Nc = (n̄ + 1)T (P 2 + 1), whereas the total

number of constraints that are simultaneously imposed is

Nr = k̄m̄P 2. The least-squares matrix Ψ of (3) has thus

a size Nr × Nc, which scales badly with the number of

ports P of the interconnect under analysis. A closer look at

this matrix, however, reveals a well-defined structure that we

exploit to enhance the performance of the model identification,

as discussed below.

Let us consider the model structure (2). We collect all the

denominator coefficients rn,ℓ in a column vector d ∈ R(n̄+1)T .



Any ordering of the tensor coefficients through a single global

linear indexing scheme can be adopted, as far as this ordering

is consistent throughout all derivations. Similarly, we collect

all numerator coefficients corresponding to element (i, j) of

the model response in a column vector ci,j ∈ R(n̄+1)T .

A row-vector g(s, ϑ) ∈ C1×(n̄+1)T is then defined, whose

elements collect the values of the multivariate basis functions

ξℓ(ϑ)ϕn(s) at a generic point (s, ϑ). We now evaluate g(s, ϑ)
at the frequency and parameter values (sk, ϑm) that are

available from the original responses from the solver, and we

stack all these vectors (with any suitable ordering) as rows of a

matrix, which we denote as Φ ∈ Ck̄m̄×(n̄+1)T . Collecting now

all raw samples of the (i, j)-th response along the diagonal

of matrix H̆(i,j) and stacking the corresponding values of

{Dµ−1(j2πfk, ϑm)}−1 in a diagonal matrix Wµ−1, we obtain

the compact matrix formulation of (3) as

Ψx ≈ 0, (4)

where

Ψ =











Γ 0 . . . 0 Ξ(1,1)

0 Γ . . . 0 Ξ(2,1)

...
...

. . .
...

...

0 0 . . . Γ Ξ(P,P )











, x =















c(1,1)
c(2,1)

...

c(P,P )

d















, (5)

and Γ = Wµ−1Φ and Ξ(i,j) = −Wµ−1H̆(i,j)Φ. All these

matrices are complex-valued, whereas the unknown vector x

is real-valued.

Application of a standard QR-based least-squares

solver [10] to the overdetermined system (4) would imply a

matrix fill-in during the solution step, leading to a dramatic

increase in memory occupation and requiring long runtime.

However, the bordered block diagonal matrix structure in (5)

enables a very efficient decoupling scheme. First, we compute

the QR factorization

(Γ,Ξν) = QνRν = Qν

(

R11
ν R12

ν

0 R22
ν

)

(6)

where ν denotes any pair (i, j) with ν = 1, . . . , P 2. Once

all the R22
ν blocks have been computed, we solve the least-

squares system










R22
1

R22
2
...

R22
P 2











d ≈ 0. (7)

This procedure amounts to eliminating all the numerator

unknowns in terms of the denominator unknowns in d, which

are the only unknowns that need to be solved concurrently, and

which are the only unknowns that we need to compute in order

to advance through the PSK iterations (3). We also remark that,

since all diagonal blocks Γ are identical, the QR factorization

can be further optimized by orthogonalizing the columns of Γ

upfront, and using the result within a loop over ν in order to

determine all blocks in (6). Details are omitted due to lack

TABLE I
COMPARISON OF ASYMPTOTIC CPU AND MEMORY COSTS (PER

ITERATION) FOR THE STANDARD PSK AND THE PROPOSED FPSK
SCHEMES. SEE TEXT FOR DETAILS.

CPU cost Memory cost

PSK k̄m̄(n̄+ 1)2T 2
P

6 2k̄m̄(n̄+ 1)TP
2(P 2 + 1)

FPSK k̄m̄(n̄+ 1)2T 2
P

2 (n̄+ 1)2T 2(P 2 + 4) + 4k̄m̄(n̄+ 1)T

of space. At the end of the PSK iterations, the numerator

coefficients are computed through another least squares system

with multiple right-hand sides

ΓC ≈ B, (8)

where

C = (c(1,1), . . . , c(P,P )) (9)

B = (−Ξ(1,1)d, . . . ,−Ξ(P,P )d). (10)

The proposed decoupling scheme was proposed for the first

time in [3], applied to the standard VF scheme. In this work,

we are basically extending the same idea to the general

multivariate (parameterized) modeling, where VF cannot be

applied as is.

A. Computational savings

An asymptotic estimation of the number of floating point

operations and memory occupation required by the standard

PSK and the proposed decoupled scheme, henceforth denoted

as Fast-PSK or FPSK scheme, can be carried out. The results

are collected in Table I, which demonstrates that the proposed

FPSK scheme is characterized both CPU and memory costs

that scale linearly with the total number of responses being

processed, i.e., as O(P 2). Conversely, the CPU and memory

cost of the standard PSK scheme scale as O(P 6) and O(P 4),
respectively. These results demonstrate that only with the

proposed decoupled FPSK scheme we can deal with realistic

Signal or Power Integrity problems characterized by a possibly

large number of ports P . We remark that additional CPU cost

savings can be applied by distributing the P 2 QR factorizations

on different CPU cores in parallel. This optimization is left for

future investigations.

B. Weighting schemes and accuracy optimization

The above derivation of the FPSK scheme assumes that

the matrix Γ in (5) is repeated identically along the main

diagonal of Ψ. This case occurs when the cost function that

is minimized in (3) is the standard euclidean norm applied

to evaluate the model vs data error for any response (i, j)
of the system. In some cases, however, if may be necessary

to use a different norm. For instance, when some responses

are very small (such as crosstalk responses on loosely coupled

interconnects), a relative error measure is more appropriate for

an accurate characterization of such responses. This is readily

achieved through an additional weighting factor wk,m;i,j that

can be frequency-, parameter- and response-dependent. In

case of a relative error minimization, we simply define this
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Fig. 1. Cross-section of the partially-coupled multiconductor interconnect
(case of M = 8 differential pairs displayed).

weight as the inverse magnitude of the system responses.

This weight is applied to every row in matrix Ψ, obtaining

a form similar to (5) but with all diagonal blocks now being

different from each other. It can be shown that the scaling

of CPU and memory cost with the number of ports P is the

same as for the non-weighted FPSK scheme, but with a larger

constant multiplier, since the QR factorization (6) has now to

be performed in full for all independent blocks.

C. Enforcing model stability

We conclude this section by showing how the proposed

decoupled FPSK scheme can be modified in order to enforce

the stability of the parameterized model by construction. This

is a fundamental requirement, since unstable models cannot

be used for any practical application. Note that the stability

requirement is far from being trival in the parameterized case,

differently from the standard VF case [1], [2] where stability

is enforced simply by ”flipping” the unstable poles (which

are not parameterized). In the parameterized case, all the

model poles are available as a post-processing from the model

equations (by finding the zeros of the denominator in (2)).

Without an explicit enforcement, there is no guarantee that

these poles will be stable for any parameter value.

We solve this issue by exploiting a strong theoretical result.

It can be proved [8] that the zeros of D(s, ϑ) in (2) have

a negative real part if the real part of D(s, ϑ) is strictly

positive for all frequencies s = jω and for all parameter

values ϑ ∈ Θ. This condition basically corresponds to enforc-

ing the denominator function D(s, ϑ) to be a Positive Real

function [1] for all ϑ. Since only the denominator is involved

in this requirement, we are able to embed in the least-squares

system (7) that is solved at each iteration a set of constraints

Re {D(sk, ϑm)} > α, where α > 0 is a strictly positive

constant. These constraints play the additional role of ruling

out the trivial solution d = 0, thus ensuring a well-behaved

and well-conditioned model estimation process.

IV. NUMERICAL RESULTS

We first consider a template interconnect problem, designed

for testing the scalability properties of the proposed FPSK

scheme when the number of interconnect ports increases. We

consider a set of M differential pairs, each consisting of two

parallel identical wires (conductor radius rw = 0.5 mm, radius

of dielectric insulation rd = 0.8 mm with relative permittivity

ǫr = 4.2, center-to-center separation D = 1.61 mm). Each

differential pair (vertically-oriented) is placed next to each

other horizontally, as in Fig. 1, with all center-to-center

separations of all wires equal to D. The number of pairs

M ranges from 2 to 20, obtaining a number of (differential)

ports P ranging from 4 to 40. This corresponds, in the largest

case, to a total number of P 2 = 1600 responses that are

concurrently fitted during model construction. The overall

length of the interconnect is L = 10 cm. Each differential

pair is considered to be an independent scalar transmission line

over a length L−Lc, whereas over a length Lc all conductors

are coupled forming a 2M -wire multiconductor transmission

line with differential ports. The coupling length ϑ = Lc is

the free parameter for our multivariate model construction.

Note that this parameter choice, due to the close vicinity of

the conductors, induces very large variations in the scattering

responses, making this an ideal test case for our algorithm.

For each value of M , we considered 11 linearly spaced

values of Lc from 20 mm to 40 mm, and for each config-

uration we computed the scattering responses starting from

the (frequency-dependent) per-unit-length matrices computed

through an integral equation solver. This set of data was

fed to the FPSK scheme. Some of the results are shown in

Fig. 2, where various responses of the model for two different

interconnect sizes are compared to the original scattering

parameters for the entire set of Lc values. We see that the

match is excellent, demonstrating that the model accuracy is

not affected by the complexity of the structure under modeling.

Fig. 3 shows instead the responses of a model constructed

using a relative error norm. We see that the accuracy for

small crosstalks is greatly enhanced with respect to the usual

absolute error minimization.

The scalability of the proposed algorithm when increasing

the number of ports P is demonstrated in Fig. 4, where both

measured CPU times and their asymptotic estimates are com-

pared. The linear dependence on the number of concurrently

fitted responses for the FPSK is thus confirmed by the slope

of the dashed lines. The figure shows also the measured and

estimated cost of the standard PSK scheme applied to the same

example. We see that, with respect to the asymptotic estimate,

the adopted solver performs better. This is due to the sparsity

of the least squares matrix in (5). However, even with this

sparse solver, it was impossible to run a problem involving

more than 6 ports due to memory requirements (although we

used a server with 24 GB of memory).

We illustrate the robustness of the proposed approach by

performing a parameterized transient SPICE run. An instance

of the above-described coupled interconnect model with P = 6
ports was syntesized as a parameterized SPICE netlist [8]. The

three near-end ports were closed in 2.5Ω resistances, with the

first line excited by a 2 V, single pulse (duration 1 ns, rise and

fall times 200 ps). The far end ports were terminated into RC

loads with two shunt overvoltage protection diodes. Transient

results are displayed in Fig. 5, demonstrating that the proposed

models (thanks to their uniform stability and passivity) run

smoothly in any legacy circuit solver (we used LTSpice on

a standard laptop, with a total runtime for the parameteric

transient sweep of 21 seconds ).



0 1 2 3 4 5

Frequency [Hz] 109

0

0.2

0.4

0.6
S(4,4), Magnitude

Data Model

0 1 2 3 4 5

Frequency [Hz] 109

0

0.1

0.2

0.3

0.4

0.5
S(18,18), Magnitude

Data Model

0 1 2 3 4 5

Frequency [Hz] 109

0

0.1

0.2

0.3

S(5,4), Magnitude

0 1 2 3 4 5

Frequency [Hz] 109

0

0.1

0.2

0.3

S(19,18), Magnitude

0 1 2 3 4 5

Frequency [Hz] 109

0.75

0.8

0.85

0.9

0.95

1
S(10,4), Magnitude 

0 1 2 3 4 5

Frequency [Hz] 109

0.85

0.9

0.95

1
S(14,28), Magnitude 

0 1 2 3 4 5

Frequency [Hz] 109

0

0.05

0.1

S(11,4), Magnitude 

0 1 2 3 4 5

Frequency [Hz] 109

0

0.05

0.1

S(5,18), Magnitude 

Fig. 2. Validation of selected parameterized model responses of the partially-coupled multiconductor line. Left panels: P = 12; right panels: P = 28.
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V. CONCLUSIONS

We presented an improved numerical scheme for the con-

struction of behavioral macromodels of interconnect stuctures,

including an explicit model dependence on additional parame-

ters such as geometrical dimensions or material characteristics.

The main objective of this research activity is to enable fast

transient simulation for Signal and Power Integrity assessment

via parameterized SPICE runs, including what-if, optimization

and design centering.

Our new approach is based on a modification of a standard

PSK scheme, based on a decoupling scheme through repeated

QR factorizations. We demonstrated that the proposed FPSK

scheme scales very favorably with the complexity of the inter-

connect under analysis, specifically in terms of total number of

ports P . Therefore, we believe that the proposed formulation

is the only existing parameterized macromodeling scheme that

is able to deal with model extraction and macromodel-based

simulation problems of practical industrial interest.

Our future research will investigate specialized data and

model compression algorithms for dealing with structures

characterized by many external parameters, with the main

objective of circumventing the unavoidable curse of dimen-
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Fig. 5. Parametric transient analysis of a nonlinearly loaded interconnect
model. Top panel: received signal; bottom panel: far end crosstalk voltage for
different parameter configurations.

sionality induced by high-order parameter spaces.
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