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A biconvex analysis for Lasso `1 reweighting
Sophie M. Fosson, Member, IEEE

Abstract—Iterative `1 reweighting algorithms are very popular
in sparse signal recovery and compressed sensing, since in the
practice they have been observed to outperform classical `1 meth-
ods. Nevertheless, the theoretical analysis of their convergence is
a critical point, and generally is limited to the convergence of the
functional to a local minimum or to subsequence convergence. In
this letter, we propose a new convergence analysis of a Lasso `1
reweighting method, based on the observation that the algorithm
is an alternated convex search for a biconvex problem. Based
on that, we are able to prove the numerical convergence of the
sequence of the iterates generated by the algorithm. Furthermore,
we propose an alternative iterative soft thresholding procedure,
which is faster than the main algorithm.

I. INTRODUCTION

In the recent literature on compressed sensing (CS, [1]),
much attention has been devoted to iterative `1 reweighting
(IRL1) techniques, see, e.g., [2], [3], [4], [5], [6], [7], [8], [9].
In the practice, IRL1 algorithms are efficient and accurate; in
theory, their convergence is guaranteed in the sense of local
minimization of a certain non-convex functional, while the
iterates are not proved to converge. This work goes one step
further by proving the numerical convergence of the iterates,
under mild conditions, leveraging a biconvex interpretation of
the problem.

Hereinafter, we review the basics of CS in relation to `1
minimization (Section I-A), we introduce the IRL1 basics
(Section I-B), and we illustrate the related literature along with
the problem of convergence (Section I-C). Based on that, our
contribution will be further specified in Section I-D.

A. Compressed sensing and `1 minimization

CS states that, under certain conditions, a k-sparse sig-
nal x ∈ Rn, i.e., a signal with only k � n non-zero
components, can be recovered from compressed, linear mea-
surements y = Ax (possibly corrupted by noise), where
A ∈ Rm,n, m < n. It is well known that CS can be
re-formulated in a convex framework, using the `1-norm to
approximate `0-norm, i.e., the number of non-zeros in a vector.
In particular, the Basis Pursuit (BP) and the Basis Pursuit
Denoising (BPDN) formulations have been introduced, which
respectively read as follows: minx∈Rn ‖x‖1 s.t. Ax = y
and minx∈Rn ‖x‖1 s.t. ‖y −Ax‖2 < η, where η > 0
is a parameter that takes account of measurement noise.
(see, e.g., [10, Chapter 4] for a thorough review). BP and
BPDN can be solved using classic convex programming al-
gorithms, e.g., the interior points method. A non-constrained
version of BPDN, known as Lasso [11], is often considered:
minx∈Rn

1
2 ‖y −Ax‖

2
2 + λ‖x‖1, with λ > 0.
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Lasso was popular long before CS as variable selection
method: the `1 regularization, in fact, even in overdetermined
problems, can be used to find out the most relevant compo-
nents in a vector. In CS, the Lasso formulation is desirable for
different motivations, e.g., the possibility of solution through
simple iterative methods, such as the iterative soft thresholding
(IST, [12], [13]) and alternating direction method of multipli-
ers (ADMM, [14]). IST and ADMM are easy to implement and
are prone to parallel computation [15] and distributed recovery,
e.g., in sensor networks [16], [17], [18], [19], [20].

B. Enhancing `1 minimization via reweighting

In the seminal work [2], the question arose about how `1-
minimization could be improved, starting from the observation
that `1 is less ”democratic” than `0, that is, it penalizes more
the coefficients with larger magnitude. This originated the
attempt to reweight the `1-norm term in order to improve the
final estimation. The proposal in [2] was to use weights that are
inversely proportional to the magnitudes of the corresponding
coefficients. This was implemented through the following
IRL1 algorithm for BP: given x(0) ∈ Rn, for t = 1, . . . , Tstop,

wi(t) =
1

|xi(t)|+ ε
for any i ∈ {1, . . . , n}

x(t+ 1) = argmin
x∈Rn

n∑
i=1

wi(t)|xi| s.t. y = Ax
(1)

where ε > 0 is necessary to avoid infinite weights, and Tstop
is the time step at which a suitable convergence criterion is
satisfied. This algorithm converges in the sense that given
g(|xi|) := log(|xi| + ε), the functional

∑n
i=1 g(|xi(t)|) con-

verges to a (local) minimum of
n∑
i=1

g(|xi|) s.t. Ax = y. (2)

This was proved exploiting a Minimization-Maximization
(MM, [21]) perspective, as explained in [2, Section 2.3].
Nevertheless, the iterates x(t) are not guaranteed to converge.
In the practice, this is a drawback, because it requires the
algorithm to compute

∑n
i=1 g(|xi(t)|) to evaluate Tstop. If the

iterates x(t) were known to converge, one should simply check
|xi(t)− xi(t− 1)| < δ for a given tolerance δ, singularly for
each i, without computing the whole functional.

C. Review of the literature and the convergence problem

Beyond [2], reviewed in the previous section, other works
have focused on iterative reweighting in the last decade.

It is worth to mention that a popular class of reweighting
methods is the so-called iteratively reweighted least squares
(IRLS, [22]). IRLS techniques perform an `2 reweighting,
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i.e., they adaptively modify the weights of a least squares
functional, which has been proved to be efficient for sparse
recovery [23], [24], [25]. Their convergence is a tricky point:
in general, they converge only to a set of points [26], while
stronger convergence has been proved only in specific settings.

Coming back to `1 reweighting, in [27] the approach of
[2] was analyzed in the noisy case. In [3], algorithm (1)
was re-elaborated using weights (|xi(t)| + ε(t))q−1, with
q ∈ (0, 1) and non-increasing ε(t). [3, Proposition 4.2] proves
the existence of a convergent subsequence. Convergence to
the correct sparse signal was shown in numerical experiments.
The same method was analyzed in [8], which provided some
further characterization of the accumulation points.

In [5], a unified theoretical analysis was proposed for a large
class of IRL1 methods for noise-free, underdetermined linear
systems. Convergence analyses were proposed for different
concave merit functions Fε(x) =

∑
i gi(|xi|+ ε) [5, Eq 2.1],

under some technical assumptions [5, Assumption 2.1]. In
general, convergence of the functional to a local minimum and
subsequence convergence were achieved. For Fε(x) bounded
below for any |xi| > 0 and ε > 0, numerical convergence
was also proved for an IRL1 procedure with decreasing ε [28,
Algorithm 2.2, Corollary 3.4]. However, this is not valid in
classical cases, e.g., for algorithm (1). Moreover, vanishing
parameters are generally not desired in all those applications
where the signal is not finite in time and processing/recovery
must be performed continuously.

In [7], homotopy strategies were elaborated for the problem
min

∑n
i=1 wi|xi|+

1
2‖Ax−y‖

2
2, whose efficiency was verified

via numerical experiments. Finally, in [9], composite regular-
ization was considered, and convergence was proved in the
sense of asymptotic stationary point condition [29, Definition
2.4], leveraging an MM interpretation.

In conclusion, to the best of our knowledge, previous
convergence analyses for IRL1 algorithms generally achieved
the convergence of the functional to a stationary point or local
minimum, while numerical convergence was shown only in a
specific case with decreasing parameter ε [5]. We refer the
interested reader to [4], [6] for further comparisons between
`1 (IRL1) and `2 (IRLS) reweighting methods.

We finally notice that problem (2) is concave. In the
following, we will see that `1 reweighting can tackle sparse
optimization problems with concave penalization. The interest
on sparse optimization with concave penalization has sub-
stantially increased in the last few years, and novel non-
reweigthing techniques have been proposed [30], [31], [20],
[33]. However, most of this literature [30], [31] does not
envisage the compressed case (as it requires a non-singular
ATA). For reasons of space, we leave for future work an
extended analysis of non-compressed case along with the
comparison to novel non-reweighting approaches.

D. Contribution

In this letter, we propose a biconvex interpretation of a
Lasso `1 reweighting method. This new perspective allows
us to prove the numerical convergence of the iterates, that
is, limt→∞ ‖x(t)− x(t− 1)‖2 = 0. This is not sequence

convergence, i.e., we are not proving that x(t) → x? ∈ Rn.
However, numerical convergence is sufficient for practical
purposes, for example to evaluate Tstop.

The remainder of the letter is organized as follows. In
Section II, we state the main problem, the main algorithm,
the biconvex interpretation, and our convergence results. Af-
terwards, in Section III, we will propose a simplified algorithm
which overcomes the problem of nested loops in the main
algorithm and requires less iterations.

II. PROBLEM STATEMENT AND THEORETICAL ANALYSIS

As mentioned in [2], problem (2) can be formulated for any
concave, non-decreasing g(|xi|) [34]. In addition to log |xi|+ε,
other popular g’s are `q , with q ∈ (0, 1) [24], [22], [25], [34];
smoothly clipped absolute deviations (SCAD) [35]; minimax
concave penalty (MCP) [36], [34], [20], [37]. Extending [2]
to generic concave, non-decreasing g’s, the following algo-
rithm can be implemented to achieve a (local) minimum
of
∑n
i=1 g(|xi|) s.t. y = Ax: given x(0) ∈ Rn, for any

t = 1, . . . , Tstop

wi(t) = g′(|xi(t)|) for any i ∈ {1, . . . , n}

x(t+ 1) = argmin
x∈Rn

n∑
i=1

wi(t)|xi| s.t. y = Ax
(3)

The analytical justification provided in [2] is as follows. Since
G =

∑n
i=1 g(|xi|) is concave, thus below its tangent, one

can improve on a guess v ∈ Rn by locally minimizing a
linearization of G around v. In this way, one obtains an MM
procedure which corresponds to the algorithm (3). Leveraging
this interpretation, the convergence of the algorithm can be
proved using the Global Convergence Theorem [38, Chapter
7], as also illustrated in [39]. As remarked in [2, Section
2.3], convergence is here intended to a local minimum of the
functional, while the iterates of the algorithm are not proved
to converge. Following this philosophy, let us reformulate the
Lasso problem using a concave penalty (from now onwards,
R+ = [0,+∞)):

min
x∈Rn

1

2
‖y −Ax‖22 + λ

n∑
i=1

g(|xi|), λ > 0

g : R+ → R+ concave, non-decreasing in |xi|.
(4)

To tackle problem (4), we propose Algorithm 1, which is an
analogous for Lasso of the algorithm (3) for BP. The conver-

Algorithm 1 Lasso IRL1

1: Initialize: x(0) ∈ Rn; λ > 0

2: for all t = 1, . . . , Tstop do
3: wi(t) = g′(|xi(t)|) for any i ∈ {1, . . . , n}
4: x(t+ 1) = argmin

x∈Rn

1
2 ‖y −Ax‖

2
2 + λ

∑n
i=1 wi(t)|xi|

5: end for

gence of Algorithm 1 cannot be derived with the techniques
used for algorithm 3, as the functional (4) is the sum of a
convex and a concave terms, thus in general it is neither convex
nor concave. The minimization on the local linearization then
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does not guarantee the descent. We now provide a convergence
proof for Algorithm 1, based on biconvex minimization tools.

A. Biconvex perspective

Following the notation in [40], we remind that a function
f : X × Y → R is biconvex if it is convex in y (respectively,
in x) for any fixed x ∈ X (respectively, y ∈ Y ). The problem

min f(x, y) (x, y) ∈ B, B ⊆ X × Y, B biconvex

is called a biconvex optimization problem if f is biconvex on
B. We say that (x?, y?) ∈ B is a partial optimum of f on B
if f(x?, y?) ≤ f(x, y?), for any x ∈ By? , and f(x?, y?) ≤
f(x?, y), for any y ∈ Bx? where Bx and By respectively are
the x-section and the y-section of B.

We name alternated convex search (ACS, [40, Algorithm
4.1]) the algorithm that iteratively minimizes f(x, y) with
respect to x and y. Each iteration corresponds then to
the solution of a convex problem, namely, x(t + 1) =
minx∈By(t)

f(x, y(t)); y(t+1) = miny∈Bx(t+1)
f(x(t+1), y).

We can now prove our main results.

Theorem 1. Let g(|xi|) be strictly concave, increasing, and
differentiable in its domain D ⊆ R+ (for |xi| = 0, the right
derivative is considered). Let us define the functional:

F : X × Y → R, X ⊆ Rn, Y ⊆ Rn+

F(x,w) := 1

2
‖y −Ax‖22 + λ

n∑
i=1

[wi|xi|+ h(wi)]
(5)

where h : H ⊆ R+ → R+ is defined by h′ = −(g′)−1,
(·)−1 indicating the inverse function. Then, F is biconvex and
Algorithm 1 is an ACS for it.

Before proving the theorem, let us discuss the definitions
of h, X , Y for some popular g’s.

a) If g(|xi|) = log(|xi|+ε) [2], [32], g′(|xi|) = (|xi|+ε)−1.
Computing its inverse, we easily get h′(wi) = ε − 1

wi
, from

which h(wi) = εwi−log(wi), modulus an integration constant
which can be arbitrarily set (for instance, one can choose
it so that h(wi) ≥ 0 to have a non-negative F). Since the
corresponding F is bounded below, continuous and coercive,
given any compact set S ⊂ Rn × Rn of starting points,
Algorithm 1 evolves in the compact set {(x,w) : F(x,w) ≤
maxs∈S F(s)}. We can then assume that X = [−β, β]n for
some sufficiently large β > 0; thus, Y =

[
(β + ε)−1, ε−1

]n
.

b) If g(|xi|) = (|xi|+ε)q , q ∈ (0, 1) [3], we obtain h(wi) =
εwi +

1−q
(wi/q)q/(1−q) . Again, we can set X = [−β, β]n, Y =[

q/(β + ε)1−q, q/ε1−q
]n

.
c) If g(|xi|) = α|xi|− 1

2 |xi|
2 with α > 0 and X = [−α, α]n

[36], [20], we can obtain h(wi) = 1
2 (α− wi)

2, Y = [0, α]n.

Proof. First of all, since g is strictly concave, the derivative g′

is strictly monotonically decreasing. Therefore g′ is invertible
and h′ is well defined. Moreover, h′ turns out to be strictly
monotonically increasing, thus h is strictly convex. As a
consequence, F is convex in w. As the convexity in x is
evident, we conclude that F is biconvex.

Regarding the ACS of F , we notice that the minimization
with respect to x simply is a (weighted) Lasso, as in the

first step of Algorithm 1. To minimize with respect to w, we
derive with respect to wi, i ∈ {1, . . . , n}, and observe that the
gradient is equal to zero whenever |xi| = −h′(wi) for any i.
By inversion we obtain wi = g′(|xi|), which corresponds to
the second step of Algorithm 1. This proves the thesis.

We specify that (5) is not derived from (4), and the two
functionals are not said to be equivalent. The properties of (5)
as cost functional are not of our interest: we instead exploit
(5) to study the convergence properties of Algorithm 1.

The fact that Algorithm 1 is an ACS for a biconvex
functional yields to the following theorem.

Theorem 2. Let F be as defined in (5). Let us assume that X
and Y are closed, and that Lasso in Algorithm 1 has a unique
solution. Then, Algorithm 1 achieves a partial optimum of F .
Moreover, the iterates of Algorithm 1 numerically converge,
that is, limt→∞ ‖(x(t+ 1), w(t+ 1))− (x(t), w(t))‖2 = 0.

Theorem 2 is a consequence of the following result.

Theorem 3. ([40, Theorem 4.9]) Let f : X × Y → R be
biconvex, continuous, and let X and Y be closed. If the
sequence generated by ACS is contained in a compact set,
then it has a least one accumulation point (x?, y?). Moreover,
if the convex problems minx f(x, y

?) and miny f(x
?, y) both

admit unique solutions, then all the accumulation points are
partial optima and they form a connected compact set, and
the sequence is numerically convergent.

Concerning the closedness of X and Y , we have previously
discussed in the examples a)-b)-c) the fact that for popular g’s
we can work on compact sets. Moreover, uniqueness for the
Lasso step is guaranteed for most used sensing matrices, e.g.,
random sensing matrices generated from continuous distribu-
tions (see [41]). On the other hand, h(wi) is strictly convex,
hence F has a unique minimum with respect to each wi.

In conclusion, Theorem 2 is valid for a wide class of popular
IRL1 methods.

III. A SIMPLE IST VARIANT

The first step of Algorithm 1 requires to solve a Lasso
problem, which can be performed via iterative methods like
IST and ADMM. This however entails a nested loop structure,
which is generally not desired. We then propose a variant,
summarized in Algorithm 2, in which the solution of Lasso
is substituted by a single IST step. Sλw indicates the soft
thresholding operator [13] with componentwise threshold λwi.

Algorithm 2 Lasso IRL1 IST

1: Initialize: x(0) ∈ Rn, λ > 0 τ > 0

2: for all t = 1, . . . , Tstop do
3: wi(t) = g′(|xi(t)|) for any i ∈ {1, . . . , n}
4: x(t+ 1) = Sλw(t)[x(t) + τAT (y −Ax(t))]
5: end for

Proposition 1. Assume that τ‖A‖22 < 1 in Algorithm 2.
Given a sequence (x(t), w(t)) generated by Algorithm 2, then
F(x(t), w(t)) converges to a partial optimum.
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Figure 1: Lasso (via ADMM) vs Algorithms 1 and 2; n = 256, m = 100.

Proof. Algorithm 2 corresponds to the alternating minimiza-
tion of the tri-convex surrogate functional H(x,w, b) =
F(x,w)+ 1

2 ‖x− b‖
2
2−

τ
2 ‖A(x− b)‖

2
2 adding the step b(t) =

x(t) (see [13], for a review on the surrogate functional idea).
For any block sub-problem, the minimum is unique under
conditions discussed above, therefore H(x(t), w(t), b(t)), and
thus F(x(t), w(t)), is strictly decreasing outside the solution
set. This implies the thesis.

In [42], [43], more insight on alternating minimization/block
coordinate descent of multi-convex or non-convex, non-
differentiable problems can be found.

A. Numerical experiment

We finally show a numerical experiment to practically verify
the efficiency of our algorithms.1 We consider the experiment
proposed in [2, Section 3.1], whose setting is as follows:
n = 256, m = 100, k ∈ [15, 55]; the unknown sparse signal
has support generated uniformly at random, while its non-zero
positions are randomly generated from a standard Gaussian
distribution N (0, 1); the entries of the sensing matrix A are
randomly generated from a Gaussian distributionN (0, 1

m ). We
consider the penalties g’s defined in a), b), and c) in Section
II-A with ε = 10−1, q = 1/2, α = 2.

We use ADMM to solve the classical Lasso and the Step
3 of Algorithm 1. We set x(0) = (0, . . . , 0)T , τ = 2.5 ×
10−1. We consider the noise-free case and the case when the
signal-to-noise ratio is SNR=25dB; λ is respectively set to
10−5 and 10−4. The algorithms are stopped whenever ‖x(t)−
x(t − 1)‖2 < 10−5. At most two reweighting iterations are
performed for Algorithm 1. As noticed in [2], in fact, the most
of the enhancement is obtained within the first few reweighting
iterations. The shown results are averaged over 100 runs.

1The code to reproduce this experiment is available on
https://github.com/sophie27/Lasso-l1-reweigthing.

In Figure 1 we show the performance of the proposed
algorithms compared to Lasso, varying the sparsity level. Let
x̃ and x̂ be the original signal and the estimation, respectively.
The performance metrics are: the empirical probability of
recovery for the noise-free case (as in [2], we define recovery
the case ‖x̃− x̂‖∞ < 10−3); the relative square error ‖x̃−x̂‖

2
2

‖x̃‖22
;

the total number of iterations and run time. Simulations are
performed on an AMD Opteron 6276, 2.30 GHz Processor.

In Figure 1, we can appreciate a general improvement
obtained by Algorithms 1 and 2 with respect to Lasso in terms
of recovery and relative square error, in particular using the
log penalty a). In the noise-free case, the smaller λ generates a
more precise solution, but yields to slower convergence. In the
noisy case, the larger λ helps to tolerate noise and at the same
time accelerates the procedure. Figure 1(d) shows the ranges
(in seconds) of the mean run times for each considered k. This
is consistent with the number of iterations (Figure 1(c)-(e)).

Clearly, Lasso requires less iterations than Algorithm 1,
which is more accurate at the price of a longer run time.
Algorithm 2 reduces the run time without substantial loss of
accuracy. Algorithm 2-a is the best choice for the proposed
experiment: it has the best recovery accuracy in the noise free
case (see Figure 1(a)) and run time very close to Lasso; it only
loses some accuracy for large k in the noisy setting.

IV. CONCLUSIONS

In this letter, we have proved that a Lasso iterative `1
reweighting algorithm corresponds to the alternating mini-
mization of a biconvex functional. This allows us the prove
the numerical convergence of the iterates of the algorithm,
that is, the distance between two successive iterates goes to
zero. This is a stronger convergence with respect to previous
results on iterative `1 reweighting methods. Moreover, we have
proposed an IST-based alternative algorithm, which converges
to a partial optimum and is practically very fast.
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[31] Ã. Bayram, “On the convergence of the iterative shrinkage/thresholding
algorithm with a weakly convex penalty,” IEEE Trans. Signal Process.,
vol. 64, no. 6, pp. 1597–1608, 2016.

[32] M. Calvo-Fullana, J. Matamoros, C. Antón-Haro, and S. M. Fos-
son, “Sparsity-promoting sensor selection with energy harvesting con-
straints,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2016, pp. 3766–3770.

[33] I. Selesnick, “Sparse regularization via convex analysis,” IEEE Trans.
Signal Process., vol. 65, no. 17, pp. 4481–4494, 2017.

[34] J. Woodworth and R. Chartrand, “Compressed sensing recovery via
nonconvex shrinkage penalties,” Inverse Problems, vol. 32, no. 7, pp.
75 004–75 028, 2016.

[35] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood
and its oracle properties,” J. Amer. Statist. Assoc., vol. 96, no. 456, pp.
1348–1360, 2001.

[36] C.-H. Zhang, “Nearly unbiased variable selection under minimax con-
cave penalty,” Ann. Statist., vol. 38, no. 2, pp. 894–942, 2010.

[37] X. Huang and M. Yan, “Nonconvex penalties with analytical solutions
for one-bit compressive sensing,” Signal Process., vol. 144, pp. 341–351,
2018.

[38] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 4th ed.
Springer International Publishing Switzerland, 2016.

[39] M. Fazel, H. Hindi, and S. Boyd, “Log-det heuristic for matrix rank
minimization with applications to Hankel and Euclidean distance matri-
ces,” in IEEE Proc. American Control Conference (ACC), vol. 3, 2003,
pp. 2156–2162.

[40] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimiza-
tion with biconvex functions: a survey and extensions,” Mathematical
Methods of Operations Research, vol. 66, no. 3, pp. 373–407, 2007.

[41] R. J. Tibshirani, “The Lasso problem and uniqueness,” Electronic
Journal of Statistics, vol. 7, pp. 1456–1490, 2013.

[42] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor factor-
ization and completion,” SIAM J. Imaging Sci., no. 6, pp. 1758–1789,
2013.

[43] ——, “A globally convergent algorithm for nonconvex optimization
based on block coordinate update,” J. Sci. Comput., vol. 72, no. 2, pp.
700–734, 2017.


