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Abstract — The Method of Moments (MoM) is an efficient way
of obtaining solutions of integral equations for 2D and 3D elec-
tromagnetic structures by subdividing them into simple shapes
such as triangles and rectangles and using suitable polynomial
basis functions to describe fields or currents. In the presence of
sharp edges and corners, the currents may be unbounded and the
accuracy of the solution may be poor due to the inappropriate
model provided by a polynomial basis. Attempts to improve the
accuracy by increasing the number of cells or the polynomial
order of the basis functions may fail as a result. In this paper new
basis functions are proposed with unbounded behavior, to more
efficiently model edge and corner singularities for quadrilateral
cells.

Keywords — Method of Moments, scattering, numerical meth-
ods.

I. INTRODUCTION

Modern electromagnetic design relies on numerical field
solvers to predict field behavior in a wide variety of problems.
Solvers based on integral equations usually treat the surface
current density as the primary unknown to be determined.
However, in the vicinity of conducting or penetrable edges and
corners of structures of interest, the surface current density
is often singular and sometimes infinite [1]. Although this
behavior is localized at the edge or corner, it reduces the
quality of the solution and degrades the efficiency of the
numerical solvers. Attempts to adaptively refine the cell sizes
(h-refinement) in the neighborhood of the singular region
[2] can improve the numerical results but are seldom used
with integral equation formulations because of the cost of
error estimation and repeatedly re-solving the dense MoM
system matrices. An alternate approach known as p-refinement
involves selectively increasing the polynomial order of the
representation in certain parts of the domain [3], [4]. The
p-refinement approach requires hierarchical bases, where the
functions used for order p − 1 are a subset of those used for
order p. However, p-refinement usually fails in the vicinity of
singularities if the expansion is based entirely on polynomials.
In this paper a different approach is proposed based on the use
of singular basis functions to more appropriately represent the
unbounded currents and fields. The authors’ long-term goals
include the development of hierarchical representations that
can accurately model singular behavior while providing expo-
nential convergence through the use of adaptive p-refinement
algorithms. In the present paper, basis functions are proposed
for quadrilateral cell shapes with that goal in mind.

Singular basis functions have been used since the 1970s
[5], [6], and most existing singular basis functions can be clas-
sified as either substitutive or additive functions. Substitutive
expansions involve replacing some of the polynomial bases
with new functions containing appropriate singularities. The
additive representation is obtained by retaining the full poly-
nomial basis set and augmenting it with additional independent
degrees of freedom to model the singular field behavior [7],
[8], [9]. In the scalar case, it has been demonstrated that high-
order basis functions of the additive kind provide improved
accuracy and additional flexibility compared to substitutive
bases, since one can model appropriate field behavior even if
the expected singularity is not excited by the source. The new
functions under consideration are vector bases; hierarchical
polynomial families of vector bases have been previously
developed by the authors and in this work we extend the
idea to singular vector bases. We observe that there are
ancillary issues associated with using this type of basis that
must be addressed, including integration techniques used to
compute the MoM matrix entries for singular functions, and
the possible deterioration of the matrix condition number due
to the presence of singular basis functions in the representation.

Although the basis functions are defined for general wedge
angles, we restrict our examples to conducting plates and
disks, modeled by (curved) quadrilateral cells. The circular
disk exhibits an edge singularity around its circumference,
while the plate exhibits both edge and corner singularities.
Edge singularities are well-characterized by the exact solution
of the wedge problem [10], which for the case of plates and
disks involves only wedge angles of zero. Corner singularities
may be modeled by the behavior at the tip of a plane angular
sector (a flattened elliptic cone) [11]. Singularity exponents for
rectangular corners have been computed from the eigenvalues
of Lame equations and are reported in [12]. Incidentally, the
disk offers an exact solution that can be used for comparison
purposes [13].

A. Singular Basis for Edges

The representation order of the proposed additive quadri-
lateral basis used to provide the edge singularity is defined
by three integers [p, s,m], where p is the degree of the
hierarchical vector polynomial basis subset, s is the number
of fractional exponents included in the singular part of the
representation (the so-called Meixner subset), and m is the



order of the Meixner subset [5]. The fractional exponents are
those associated with a wedge of some interior angle (zero
for plates and disks); in general these can be expressed as an
ordered series of non-integer singularity coefficients

ν = {ν1, ν2, . . . , νj , . . . , νs} (1)

The coefficients in (1) are the smallest non-integer exponents
that appear in the infinite set that forms the complete expansion
of the electromagnetic field near the singular edge. These are
used to build singular scalar factors of the form

fa(ν) = ν ξν−1
i − 1 + Pas−1(ξ) (2)

fb(ν) = ξν−1
i − 1 + Pbs−1(ξ) (3)

which in turn are used to construct the basis functions be-
longing to the Meixner subset. In the preceding equations, ξi
is the parent cell variable that vanishes on the singular edge
(the edge lying along the coordinate-line ξi = 0). Polynomials
Pas−1(ξ) and Pbs−1(ξ) have maximum degree (s − 1) and
are introduced to orthogonalize fa and fb.

The third integer, m, specifies the maximum order of
the orthogonal polynomials of the second independent parent
variable (in the direction orthogonal to ξi) used to construct
the Meixner functions. The vector functions of the Meixner set
are then obtained by multiplying singular scalar factors with
the zeroth-order regular vector basis functions [5]. The poly-
nomial and the Meixner vector subsets are actually built using
orthogonal polynomials to maintain the linear independence of
the basis functions and improve the condition number of the
MoM matrices.

B. Singular Basis for Corners
We assume that all the quadrilateral vector basis functions

of the rectangular patch are used to provide the proper poly-
nomial behavior and the proper edge singularities; now we
also add the dominant corner singularities in the form of two
singular vector basis functions defined on a triangle having two
edges and the singular tip in common with the quadrilateral
cell. The variable ξi is the parent cell variable on the triangle
that vanishes on the diagonal of the quadrilateral and has unit
value at the tip. The current is divided into an even component
(vanishing at the tip) and an odd component (unbounded at the
tip); these two components introduce two different non-integer
exponents into the representation of the current density at the
corner [1], [11], [12].

1) Even Function for Corner Singularities
The even component Λce that represents the singular radial

current is proportional to:

Λce = fe(ξ) (1− ξi)νeΛi (4)

where
Λi =

1

J
(ξi+1`i−1 − ξi−1`i+1) (5)

fe(ξ) is a radial function and (1 − ξi) is the radial distance
from the tip. The term νe depends on the corner angle and
can be determined by the procedure in [11]; Fig. 1 shows the
behavior of the even component of the currents on the tip.

Fig. 1. Even singular function for the corner

Fig. 2. Odd singular function for the corner

2) Tangential Function for Corner Singularities

The odd component, which ”turns around the tip” is
modeled by:

Λco = ξi fo(ξ) (1− ξi)νo−1 (6)

where fo(ξ) is the tangential function. The term νo depends
on the corner angle and can be derived from [1]; Fig. 2 shows
the behavior of the odd component of the currents on the tip.

Note that the integrals of these corner functions needed to
compute the MoM system must account for the unbounded
nature of the current density in (6) and the charge density
associated with (4). The functions fe(ξ), fo(ξ) and (1−ξi)νo−1

are all singular.



Fig. 3. Jx component along x = 0. In solid line results obtained with the
[1, 1, 0]-order base, and in dotted line results obtained with rooftop only base.

Fig. 4. Jx component along y = 0. In solid line results obtained with the
[1, 1, 0]-order base, and in dotted line results obtained with rooftop only base.

II. RESULTS

A. Square Plate

An infinitely thin metal 1λ × 1λ square plate centered in
the (x, y)-plane was modeled with a 10× 10 mesh of square
cells and illuminated by a plane wave propagating along z-
axis with unit magnetic field on y-axis. Fig. 3 shows the Jx
component computed at the x = 0 line, while Fig. 4 shows
the Jx component computed at the y = 0 line. The solid
line represents the results obtained with polynomial order 1
plus one singular function (ν = 0.5, the dominant), that is the
[1, 1, 0] order base, while dotted line represents the results for
a pure polynomial basis of order 0 (i.e. rooftop functions). The
reader can see that the Jx component along x = 0 which is
unbounded cannot be represented correctly with rooftop basis.
Fig. 5 shows the unbounded currents at y = ±0.5λ. The price
paid is the increase of the MoM matrix condition number from
40 to 6600.

B. Circular Disk

A circular, perfectly conducting disk is one of only a
few three-dimensional geometries amenable to exact electro-
magnetic (EM) analysis [12]. As such, the disk offers the
potential to serve as a benchmark for validating EM modeling
software, and specifically for studying the performance of
special numerical techniques for accurately modeling edge
singularities. A disk of radius a can be discretized by (curved)
rectangular cells as shown in Fig. 6.

Fig. 5. Magnitude of the Jx-component on a 1λ×1λ square plate as induced
by a normally incident plane-wave with Hy = 1 A/m.

Fig. 6. A typical quadrilateral-cell mesh used to model the disk.

Fig. 7 shows the normalized magnitude of the co-polarized
current component induced on disk with ka = 4π by a
normally incident plane wave with unity magnitude H-field,
for two cuts through the disk center along the x and y axes.
The results, compared with the exact solution, are obtained
with a zeroth order pure polynomial basis subset (roof top
basis functions) augmented with singular basis functions that
model only the first (dominant) singular coefficient ν = 1/2.
This figure clearly shows that very good results are obtainable
with low p-order basis by adding just the functions that model
only the first dominant singularity. The good convergence
to accurate results is shown also in Fig. 8 that reports the
backscatter RCS for a disk with ka = 4π, for a range of mesh
sizes while using a zeroth-order basis functions subset.

III. CONCLUSIONS

Hierarchical vector basis functions are proposed for mod-
eling edge singularities in quadrilateral cells. The functions
are very efficient, and results for perfectly conducting square
plates and circular disks are used to illustrate the improved
accuracy and efficiency of the bases. The increase in matrix
condition number resulting from the use of singular functions
is also reported.



 
 
 
Figure 5.  Co-polarized current induced on disk with ka = 4π by a normally incident 
plane wave with unity magnitude  H -field.  The numerical result incorporating singular 
basis functions in the edge cells for a 341-cell mesh is shown over half the range, for a 
cut through the disk center along the y axis. 

 
 
 
Figure 6.  Co-polarized current induced on disk with ka = 4π by a normally incident 
plane wave.  The numerical result incorporating singular basis functions in the edge cells 
is shown over half the range, for a cut through the disk center along the x axis. 
 

Fig. 7. The figures show the co-polarized current induced on disk with ka = 4π by a normally incident plane wave with unity magnitude H-field. The numerical
result incorporating singular basis functions in the edge cells for a 341-cell mesh is shown over half the range, for a cut through the disk center along the y-axis
(at top) and x-axis (at bottom).

 
 
 
Figure 8.  Backscatter RCS for a disk with ka = 4π, for a range of mesh sizes.  Numerical 
results based on polynomial basis functions (p = 0.5) and a mixture of polynomial and 
singular basis functions (p = 0.5 + 1 singular) is compared to the exact solution. 
 
 
 

Fig. 8. Backscatter RCS for a disk with ka = 4, for a range of mesh
sizes. Numerical results based on polynomial basis functions (p = 0.5) and a
mixture of polynomial and singular basis functions (p = 0.5 + 1 singular) is
compared to the exact solution.
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