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Abstract—Electric vehicles (EV) are rapidly invading the market,
since they are clean, quiet and energy efficient. However, there
are many factors that discourage EVs for current and potential
customers. Among them, driving range is one of the most critical
issues: running out of battery charge while driving results in
serious inconvenience even comparable to vehicle breakdown,
as an effect of long fuel recharging times and lack of charging
facilities.

As a result, the dimensioning of the energy subsystem of an
EV is a crucial activity. The choice of the power components
and of the adopted policies should thus be validated at design
time through simulations, that estimate the vehicle driving range
under reference driving profiles. It is thus necessary to build
a simulation framework that takes into account an EV power
consumption model, dependent on the characteristics of the
vehicle and of the driving route, plus accurate models for all
power components, including batteries and green power sources.

The goal of this paper is to achieve early EV simulation, so that
the designer can estimate at design time the driving range of
the vehicle, validate the adopted components and policies and
evaluate alternative configurations.

I. INTRODUCTION

Electric vehicles (EV) are more and more widespread, but they
have not conquered the vehicle market yet. One of the main
limitations of EVs is indeed the limited driving range, due
both to the limited efficiency per cost, to the limited presence
of charging facilities and to the much longer charging time
[1]. Running out of battery charge while driving results indeed
in serious inconvenience, that can be considered as severe as
vehicle breakdown.

Extending fully charged vehicle range is thus critical to pe-
netrate the vehicle market. On one hand, engineers work on
making vehicles lighter and less power consuming [1]. On the
other, the energy sub-system must be carefully designed, to
ensure that components are well dimensioned and that energy
conversion inefficiencies are reduced to the bare minimum.

To this extent, the simulation of the energy sub-system of EVs
is crucial to improve the effectiveness of EV design. Many
models have been proposed in the literature to simulate the po-
wer consumption of an EV. Hardware-in-the-loop approaches
mix one or more real devices with software simulated models,
to achieve high accuracy [2]. However, such works focus on
the sole power consumption, thus not taking into account
the energy-subsystem. Matlab/Simulink and Modelica models
typically target the mechanics of the EV, thus resulting in long
and complex simulations that focus on the internal components
of the motor [3]-[5]. Thus, both tools incur in long simulation

time with very detailed models of the dynamics of the systems.
This makes unfeasible day-long simulations, that are on the
other hand necessary to estimate the EV driving range and to
validate the dimensioning of the energy components.

This work faces this challenge by simulating the energy sub-
system of an EV through an extension of the framework propo-
sed in [6], [7], that proved to efficiently support the modeling
of energy systems ranging from smart embedded systems to
smart grid [6], [8]. Such a framework formalizes the energy
and information flows in the system, by defining classes of
components and the corresponding interfaces. The components
are then implemented in SystemC-AMS at different levels of
abstraction, thus trading off accuracy and simulation speed.
However, the framework supports only the direct current (DC)
domain, and it does not support mechanical components. As
a result, it does not support the modeling of EVs.

This work extends the framework in [6], [7] to allow the
modeling and simulation of EVs. First of all, the framework
is extended to allow the modeling also of alternate current
(AC) components, by achieving a compromise between the
complex sinusoidal nature of AC and the need for simulation
speed of the framework. Then, the paper identifies a model of
EV power consumption that is suitable for simulation inside
of the framework, due to its system-level view of the EV [1].
An analysis of the model allowed to identify a solution to
include mechanical models in the framework, thus accurately
simulating EV power consumption given any driving range.

The whole simulation has been applied to a custom EV, powe-
red by an electric motor and provided with photovoltaic (PV)
modules to prolong its driving range [1]. The experimental
results prove the effectiveness of the proposed framework at
modeling the EV and its power consumption on actual traces
of environmental information and driving conditions.

The paper is organized as follows. Section II provides the
necessary background. Section III shows how the framework
in [6], [7] is extended to support the modeling of EVs, and
Section IV exemplifies the adoption of the extended framework
on the custom EV. Section V shows how to generate the input
environmental and driving traces. Finally, Section VI shows the
experimental results and Section VII draws our conclusions.

II. BACKGROUND

A. Simulation of EVs

The modeling of electrical energy systems has been widely
investigated in the literature, addressing different application
contexts, vehicle power consumption modeling [1], [9].



Hardware-in-the-loop approaches mix one or more real devices
with software simulated models through sensors and actuators
[2]. The resulting accuracy is higher w.r.t. software simulation,
but application is restricted to small- and mid-scale EESs, and
thus they are very complex to apply to EVs. Matlab/Simulink
and Modelica models typically target the mechanics of the EV,
thus resulting in long and complex simulations that take into
account also the internal components of the motor [3]-[5].
Thus, both tools incur in long simulations with very detailed
models of the dynamics of the systems. This makes on the
other hand unfeasible day-long simulations, that are on the
other hand necessary to estimate the EV driving range.

Some attempts have been made to adopt the standard SystemC
framework also in the context of electrical energy systems [6],
[7], [10], [11]. However, none of these approaches target the
modeling of EVs. The only exception is [12], that on the other
hand restricts the focus to the battery management sub-system.

B. SystemC and its AMS extension

SystemC extends C/C++ with libraries to describe HW con-
structs [13], and it is widely deployed in digital design
for early-stage analyses and design-space explorations. Its
AMS extension for modelling and simulating interacting
analog/mixed-signal subsystems [14] proved over time to allow
the adoption of a SystemC-based environment to simulate also
non-functional, continuous time domains [15], [16].

SystemC-AMS provides different abstraction levels to cover
a wide variety of domains. Timed Data-Flow (TDF) features
the modeling of discrete time processes, that are scheduled
statically by considering their producer-consumer communica-
tion dependencies. Linear Signal Flow (LSF) supports the mo-
deling of continuous time behaviors as mathematical relations
between quantities through a library of pre-defined primitive
modules (e.g., integration, or delay), each associated with
a linear equation. Electrical Linear Network (ELN) models
electrical networks through the instantiation of predefined
linear network primitives, e.g., resistors or capacitors, where
each primitive is associated with a corresponding electrical
equation. The SystemC-AMS AD solver analyzes the ELN and
LSF system to derive the equations modeling system behavior,
that will be solved to determine system state at any simulation
time. ELN is conservative, i.e., the AD solver guarantees that
energy conservation laws are satisfied by the equation system.
The same does not apply to LSF.

Despite of its nature, mainly focused on digital and AMS
systems, SystemC-AMS has been applied in a number of ex-
tremely heterogeneous domains, ranging from fluidic systems
[17] to chemical sensors [18] and power electronic modeling
[6], [19]. However, there is no work in the literature targeting
the modeling of complex and large scale mechanical systems
like EVs. The focus of state-of-the-art research is indeed on
the modeling of MEMS systems, that do require complex
constructs and techniques such as Laplace transfer functions,
model order reduction and state space equations to take into
account their non-linearities, the presence of resistive effects
and the inter-dependence of the mechanical and electrical
domains [20], [21].

III. PROPOSED FRAMEWORK

This work builds upon the framework presented in [6], [7], that
supports the modeling of energy systems ranging from smart

embedded systems to smart grid. The current framework does
not support physical modeling. Vice versa, modeling an EV
(electric vehicles) requires to trace its physical and mechanical
evolution together with the energy flows and the environmental
characteristics: EV power consumption (during movement) and
production (during regenerative breaking) are indeed highly
dependent on the mechanics of the vehicle (e.g., motor power
rating and efficiency) and on its operating conditions (e.g.,
motor torque and angular speed). Additionally, the framework
supports only DC components, while the power consumed by
EVs is in AC. It is thus necessary to extend the framework to
cover also AC components.

A. Framework for electrical energy systems simulation

The goal of the framework proposed in [6], [7] is the simula-
tion of electrical energy systems, restricted to the DC domain.
Components naturally have different roles w.r.t. the power flow,
i.e., they either consume, generate, distribute, or store energy.
Thus, the framework classifies the components, and formalizes
the relevant signals for each class of components and the
typical adopted models. The identified classes of components,
together with the corresponding relevant signals, are reported
in the first half of Table I. Each component has a V' port and
an [ port for DC voltage and current. Additionally, energy
storage devices (e.g., batteries) feature a SOC port to export
their state of charge, and components may feature an enabling
signal En, used to activate an energy storage device or a power
source according to a certain charge allocation policy.

Table 1. CLASSIFICATION AND MAIN CHARACTERISTICS OF EACH
CLASS OF COMPONENTS IN THE PROPOSED FRAMEWORK.

[ Component | Power interface [ Domain
Load ()
ESD V., 1,50C, E, En)
Power source V, I, En) Electrical (DC)
Converter WV, I,V, 1
Bridge V., LV, D
Electrical (AC)
AC load () + Mechanical
Inverter P, V, 1) Electrical (AC and DC)

The framework has been implemented by using the HW
description language SystemC [13], [14], that supports models
at mixed levels of accuracy (ranging from circuit-equivalent
models to higher level functional models). SystemC proved
to guarantee fast yet accurate simulation w.r.t. state-of-the-
art tools like Matlab/Simulink, with speedups of up to two
orders of magnitude and a high level of accuracy (errors lower
than a single simulation. This is enabled by the support for
multiple models of computation provided by SystemC and
by its solver, that handles different domains and levels of
abstraction in a single simulation run. This proved to be a
winning strategy w.r.t. state-of-the-art solutions, that either rely
on a single tool (that restricts support to specific domains)
[22], simulate specific properties independently by executing
ad-hoc simulators sequentially [23], or build co-simulation
frameworks [24], that may introduce time misalignments and
data sharing overheads.

B. Extending support to AC components

Simulating the power perspective of a system requires to trace
its power flows, that are represented in terms of voltage (V')



and current demand/production (I), or by power demand/-
production (P) over time of its components. This holds for
any energy system despite of its scale (e.g., smart embedded
system or smart grid).

Under this point of view, the main distinction is between DC
(direct current) components, featuring a unidirectional flow
of electric charge, and AC components, whose current and
voltage curves periodically reverse direction. The framework
in [6], [7] supported only DC components, whose I signal
represents the DC current produced/consumed by the compo-
nent. However, this limitation is too tight to model EVs: any
motor indeed produces and consumes power in AC.

C. Modeling AC power signals

Explicitly modeling the sinusoids of AC current and voltage
would be very time consuming, and thus would slow down
simulation time. Vice versa, simulating an EV requires day-
long simulations, to validate the driving range of the EV and
to explore the behavior of its constituting components. The
modeling of AC power must thus abstract from the sinusoidal
behavior of current.

First of all, we abstract the sinusoidal by representing the
moving average of power over time, i.e., the root mean
square (RMS) of the sinusoidal, where using a moving average
allows to take into account variations in the amplitude of the
sinusoidal over time. This implies that the involved quantities
can be represented by a single value over time, as done for
the DC domain.

Additionally, it is important to consider that AC power is
made of two main components: active power, i.e., power that
performs work (e.g., is used by the motor to move the EV),
and reactive power, i.e., power dissipated by the presence of
a phase ¢ between the I and V sinusoids, even if the load
device consumes no energy itself. The sum of the two is called
apparent power, that is the power that must be taken into
account at simulation time: although the current associated
with reactive power does no work at the load, it still must
be supplied by the power source. From Figure 1 it is evident
that reactive power can be simply derived from active power by
multiplying it by a factor cos ¢ (called also power factor). As
a result, the power demand of an AC load can be represented
by a single port P, representing the RMS of apparent power
over time.

REACTIVE
POWER

ACTIVE POWER

Figure 1. The power triangle: the AC load must be fed not only with active
power (producing work) but also with reactive power, caused by the presence
of a phase between the sinusoids. AC loadare thus modeled as the evolution
of apparent power over time, that includes both.

D. Converting between AC and DC

The conversion to the DC domain is realized by inverters, that
convert power between the DC and the AC domains. Once
again, explicitly modeling the conversion circuitry would be
a tight bottleneck for the simulation. Interestingly, even data-
sheets of inverters give a quite abstract measure of conversion

losses: they characterize inverters in terms of efficiency, i.e.,
of ratio between the generated power (including conversion
losses) w.r.t. the input power. This efficiency tends to be
constant and almost independent on the amount of input power
(when this is at least 15% of rated power) [25]. Thus, it is
possible to approximate inverter behavior as its efficiency, that
is function of the sole input power. The framework is thus
extended with an additional class of components, i.e., inverters.
Each inverter features a P port for the AC domain, and a
couple of V' and I ports for the DC domain.

E. Extending support to mechanical and physical models

An EV power model consists of physics equations and motor
efficiency equations, that must be populated with data and
coefficients derived from EV specification provided by vehicle
manufacturers (e.g. rolling coefficient, drag coefficient, motor
efficiency, etc.) [26], [27]. Such models are accurate, as they
rely on the mechanics of the system. However, it might be
difficult to populate the model unless the vehicle components
have already been bought and configured. Additionally, me-
chanical simulations incur in very long simulation times. This
prevents an effective evaluation of the energy sub-system, as
the dynamics of the energy components (e.g., of batteries) have
much longer times than the simple mechanics. Additionally,
such models complex equations and the support for dynamic
systems, e.g., bond graphs [5], [28]. SystemC-AMS does not
provide any support for dynamic systems, and its extension to
bond graphs remained in a very preliminary version [21], [29].

On the other hand, the goal of this work is not to accurately
reproduce the mechanical behavior of an EV, including e.g.
models of suspensions and of the steering subsystem. The goal
is to rather have a quick estimation of the power consumption
given a driving cycle, so that the designer can get a quick
feedback on battery lifetime and on the autonomy of the
EV. For this reason, our choice fell on the model proposed
by [9], that is the current reference in the domain of EV
energy simulation. The model derives EV power consumption
based on road slope, vehicle speed and acceleration over
time, and it results in a good trade off in terms of accuracy
and simulation speed: the empirical polynomial equations
ensure good simulation performance, and the model takes into
account mechanical phenomena, such as loss on the motor and
drivetrain that heavily impact on vehicle power consumption.

1) Instantaneous power consumption: The instantaneous po-
wer consumption of an EV is dominated by the propulsion
power of the EV, and the dynamics equation Pgy,, is a
function of road slope, EV acceleration, EV mass and EV
velocity, such that:

ds

dena:Fa:FU:(FR+FG+F[+FA)U

1
Fr x C.. W, Fg x Wsin#l, Fr < ma, and F4 ipCdAv2

Piyna =~ (a+ Bsinf + vya + sv?)mu
(n

where Fr, Fg, Fr, and F4 respectively are rolling resis-
tance, gradient resistance, inertia resistance, and aerodynamic
resistance. C,.., W, 0, m, a, Cyg, A in each resistance are
rolling coefficient, weight, road slope, vehicle mass, accele-
ration, drag coefficient, vehicle facial area, respectively. The
power consumption by dynamics is modelded by a function of
coefficients «, 3, v and §, derived as in [1].



2) Mechanical efficiency: The model is additionally enriched
by considering the efficiency of the motor and of the drivetrain:

Ppy = —— @)
n

_ dena
dena + CO + Clv + CQ'U2 + C3T2

where Cy, Cq, C5, and C3 mean coefficients for constant
loss, iron and friction losses, drivetrain loss, and copper loss,
respectively. All coefficients in the hybrid model are derived
experimentally [1].

Nev

3) Regenerative breaking: EVs exploit breaking periods to
produce power, i.e., whenever the torque applied to the motor
is in the opposite direction of the rotation, the kinetic energy of
the EV can be converted to electric energy. This phenomenon,
called regenerative breaking, is linear to the increase of EV
velocity: regenerative energy comes from the electromagne-
tic induction between the rotor and the stator. When rotor
speed increases, so does also the amount of electromagnetic
induction of the stator. Simplifying, the relation is:

Pregen =elv+ C

where ¢ is the coefficient corresponding to regenerative force
and ¢ is the minimum power to generate regenerative power.
The coefficients for the motor loss and regenerative braking
are obtained from driving experiment results with a custom
EV [1], [9].

F. Resulting extended framework

The bottom half of Table I summarizes the extensions to the
framework applied by this work. We defined two new classes
of components, i.e., AC loads and inverters, so to allow the
modeling of EV. AC loads are modeled with one output P
port for AC power, and they span across mechanical and
electrical domain. Inverters convert from AC power (P) to
DC voltage and current (V' and I). It is important to note
that these extensions were possible thanks to the flexibility
of SystemC-AMS, that allows to simultaneously simulate
environmental evolution, physical and mechanical phenomena,
energy distribution and the application of cyber aspects, e.g.,
the necessary charge allocation policies.

It is important to note that the model presented in Section
III-E, together with the abstraction of AC signals in Section
III-B, allow to ease the modeling of the mechanics of the
EV as a C++ function. Thus, the EV mechanics and power
consumption can be reconciled inside of the SystemC-AMS
framework.

IV. APPLICATION TO AN EV

The proposed framework is validated on a custom EV, presen-
ted in [1] and shown in Figure 2. The EV is a pipe buggy,
powered by an electric motor and provided with photovoltaic
(PV) modules to prolong its driving range. The EV sub-system
under simulation is depicted in Figure 3 and includes:

e A model of the EV mechanical power, estimated through
an advanced dynamics model;

e A model converting EV mechanical power into EV elec-
trical power demand, expressed in terms of voltage and
current;

Figure 2.

The EV case study.

A 48Ah 3.7kWh battery pack, provided of a battery
management system that performs protection from over
charging/discharging and monitors the state of charge;

e A battery charger, managing battery charge when con-
nected to a charging facility;

e A PV panel made of 10 PV modules, that cover the EV
roof top and back panel;

o A DC-DC bus enriched with a cyber portion implementing
a charge allocation policy.

Note that the schema in Figure 3 is an abstract representation
of the system, and it represents the main blocks included
in the simulation framework, together with their interfaces.
Each block includes also the circuitry necessary to convert the
voltage level of the component to that of the DC-DC bus.

MECHANICAL DOMAIN
s} 4l 9 O
EV MECHANICAL BATTERY
POWER CHARGER
Pl vI |I
EV POWER BATTERY PACK + PHOTOVOLTAIC
CONSUMPTION MANAGEMENT PANEL + MPPT
v v| 1] En[soqd v 1] En|

| CTl + CHARGE ALLOCATION POLICY |

CYBER DOMAIN

Figure 3. Simulated portion of the EV in Figure 2.

A. Energy subsystem

1) Battery pack: The EV is powered by a 76.8V nominal
voltage 48Ah battery pack, including 96 3.2V 12Ah Li-
FePO4 cylindrical cells with 24 in series and 4 in parallel
configuration. The power capacity is enough to drive the EV
without significant discharge capacity effect.

The battery pack has been modeled with a circuit-equivalent
model [30], that modelling the capacity dependency on current
magnitude and dynamics. The model, depicted in Figure 4,
consists of a left-hand part that models the battery lifetime,
including a capacitor C (representing the storage capacity of
the battery in Amp-hours), and a current generator representing
the current requested by the load I.::. The two voltage
generators are used to model that battery available capacity is



affected by the load current values distribution (e.g. constant
and varying load currents with the same average value affect
the capacity differently), as well as its frequency spectrum
(e.g. periodic load currents with the same amplitude and
shape, but different frequencies). The right-hand part models
characterizes the transient behavior of battery voltage by using
two pairs of R and C represent long-term and short-term
transient. The additional variable resistor R denotes battery
internal resistance, that mimics the fact that the battery voltage
is adversely affected by larger currents. Such circuits are
modeled thanks to the enhanced support of SystemC-AMS for
Electrical Linear Network (ELN) of Model of Computation
(MoC) : each network primitive can indeed be directly mapped
onto an instance of the SystemC-AMS classes.

Viost(fioaa)  Viost(Thard)
+

+

R(SOC)

R
c= Thate V,(S0C)  C5(SOC) €y (SOC)

-

Figure 4. Adopted circuit-equivalent model for the battery pack.
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The connection between the two parts of the circuits is then
modeled by the voltage generator Voo (Vo ), representing the
fact that the open-circuit voltage (Vo) of the battery depends
on its state-of-charge (SOC), represented by the potential
Vsoc of the capacitance. To model these dependence, the
voltage generators are controlled by a SystemC-TDF module,
that explicits the dependency as a linear function.

The battery block includes a battery management system
(BMS), in charge of controlling the charge and discharge
phases, and of avoiding over-charging and over-discharging to
reduce the capacity aging degradation of battery. We assume
there are battery balancing methods are implemented in the
BMS and battery pack, and each cell in the battery pack is
charged and discharged equally.

2) Battery Onboard Charger: The EV is normally charged
during night by plugging the charger. Figure 5 describes a
whole discharge and charge cycle of battery. In order to focus
on the charge phase, we compress the period of discharge
phase. Concerning the charging policy of Li-ion batteries, the
policy is based on the Constant Current-Constant Voltage (CC-
CV) protocol, characterized by a well-defined charge process
that cannot be altered (red solid line in Figure 5). The CC-CV
constraint is motivated by cost (simple hardware implementa-
tion) and by safety reasons. However, the CC-CV protocol does
not take into account the capacity aging degradation of battery.
Because the cost of battery in the EV normally occupies more
than 50% of the total cost, the cost of using EV will increase
dramatically if the battery replacement interval is too short due
to fast aging degradation. There are four main aspects affect
the capacity aging, i.e., discharge and charge currents; average
SOC; deviation of SOC and temperature. In order to reduce the
aging degradation, previous works proposed some alternative
charge protocols: for reducing charge current, the alternative
protocol uses smaller current to charge battery as indicated
by green dotted line in Figure 5; to avoid high average SOC,
the alternative protocol postpones the standard CC-CV starting
time as illustrated by purple solid line in Figure 5. However,
these kinds of charge protocol do not consider both aspects,

thus for our EV we adopted the optimal aging reduction charge
protocol introduced by [31].

CHARGE

soc DISCHARGE
100% |

Socm\

~
! ASOC, = DOD,

0% - ¢ SOC,04
o ) .

Tdischar;e Tcharge time
Figure 5. Different Charging Policies in Charge-Discharge Cycle.

3) PV Panel: PV modules are clean, light-weight and durable,
and are thus an ideal onboard power source for EVs [32]. For
this reason, 10 PV modules have been accommodated on the
rooftop and the back panel of the EV. Given the small area
covered by the PV modules, they won’t be enough to fully
operate the EV, but they can be exploited to charge the battery
during movement or when the EV is parked and not plugged
to any charging facility.

The PV modules generate 20.8V under open circuit conditions
and 20W at standard conditions (i.e., 1000W/m? irradiance and
25C temperature) [33]. The PV modules are connected to an
inverter, that applies a Maximum Power Point (MPP) tracking
algorithm, i.e., that determines the operating voltage over time
by trying to maximize the output power.

For the PV modules, we decided to adopt a simple functional
model, that directly extracts the MPP and that is built directly
from the sole datasheet information. The choice fell on the
model proposed in [34], that ensures fast model setup and a
low simulation impact. The input is the current vs. voltage
graph available on the datasheet, that is converted to a po-
wer vs. voltage graph by multiplying voltage values per the
corresponding current values. The identified maximum power
points are then used as a mapping of irradiance values to output
power, and fitted to a polynomial curve to be used as model
for the PV module.

4) Inverters and DC-DC Converters: All conversion compo-
nents have been implemented in terms of their efficiency.
In particular, inverters have been implemented with fixed
efficiency, by observing that whenever input power is at least
15% of the rated power efficiency is de facto constant [25].

B. Mechanical and physical subsystem

The EV power consumption model has been implemented as
a SystemC-AMS TDF module, repeatedly estimating power
consumption on the updated input values of EV speed and
acceleration and of road slope (Figure 6). The environmental
inputs are loaded from input trace files, and they are saved
to arrays. The load estimation function, reproducing the mo-
del presented in Section III-E, is then encapsulated in the
processing () function of TDF module. In this way, EV
power consumption is estimated at each time step on fresh
input data, and it is written in output to the inverter.

C. Cyber subsystem

The cyber subsystem consists of the charge allocation policy
implemented by the arbiter of the CTI bus. The policy im-



SCA_TDF_MODULE(EV_load)
{

sca_tdf::sca_out<double> P;
b5
void EV_mechanical::processing()
double Q, power;
Q = (p_alpha + p_beta * sin(theta[t]*PI/180) + p_gamma * acc[t]) * mass;
if(Q >=0.0)
power = Q * v[t] + CO + C1 *v[t] + C2 * v[t] *v[t] + C3* Q* Q;
else if(Q >-1*R1 / (RO *v [t]))
power = + CO + C1 * v[t] + C2 * v[t] * v[t];
else power =-1* RO * v[t] + R1;

Pwrite(power);
t++;

Figure 6. SystemC-AMS implementation of the EV power consumption
presented in Section III-E.

plemented is as follows. Whenever the EV is moving and
consuming power, power is provided by the PV panel (if
produced power is higher than demanded power) or by the
battery. The battery is charged its SOC' is lower than 80%
in two different conditions: by the PV panels when the EV
is still (consumed power equal to 0), or during regenerative
break periods (i.e., when the EV produces power). The policy
implements also monitors battery status, and it stops simulation
when the SOC' is below 20%.

V. GENERATION OF INPUT DRIVING CYCLE

EV simulation must be fed with traces of the driving cycle,
consisting of speed, acceleration and road slope. The traces
have been generated by considering the typical driving sche-
dule of the EV, as reported in Table II.

Table II. ONE-DAY DRIVING CYCLE.
EV use [ Time [ Period |
Go to work 7:00 to 7:15 15 min.
Parking at work 7:20 to 17:00 9 hours and 40 min.
Go to a market 17:00 to 17:30 30 min.
Parking at market 17:40 to 18:30 50 min.
Go to home 18:30 to 19:43 13 min.
Parking at home and battery charging 19:43 to 7:00 11 hours and 17 min.

Power consumption by EV is estimated based on input driving
cycle consisting of speed, acceleration and road slope. We
generate an one-day driving cycle for an EV driver in a city
as a case study of an use of EV. Table II shows the departure
time of each driving mission in a day.

We used Google Maps [35] to identify the route and traffic
information. Figure 7(a) shows the traffic of an example route
going to a market from work, where red is heavy traffic, orange
is medium traffic and blue means no traffic. Given the color,
we estimated the corresponding average speed of each part
of the route. We extracted road elevation from the geography
information with a series of GPS data of the route as shown in
Figure 7(b) [36]. This allowed to derive road slope as variation
of elevation along the route.

All traces have then been converted to the time domain and
written to files, that show per each time slot the corresponding
value of speed, acceleration and road slope.

AURORA

| W= Heavy traffic
=9 Medium traffic
= No traffic

Uphill: 3.3 km (43%) Downhill: 4.4 km (57%) Denivelation: 34 m | [ ~ ]

4
Distance (km) 7.7 km
(b)

Figure 7. (a) Road traffic information and (b) road slope information.

VI. SIMULATION RESULTS

We implemented the EV case study by using SystemC 2.3.1
and SystemC-AMS 2.1, and we run it on one-day-long traces
generated as in Section V. Note that the one-day long driving
cycle includes segmental driving and parking periods, as
illustrated in Table II. Figure 8 shows how the different parts in
the EV evolve over time: vehicle activity (top); battery usage
and state of charge (a); PV power generation (b); EV power
consumption (c); and some control signals that are used to
control the charging mechanism of the EV (d-f).

The SOC of the battery (Figure 8.A) shows that the battery is
charged plugged to a charging facility every night from 9:00pm
to 5:00am, as highlighted by the enable charging signal of the
charger reported in the Figure 8.e. Figure 8.a highlights also
that the maximum value of SOC is 90%. This is due to the
management policy, that sets 90% as the maximum SOC to
reduce the average value of SOC of the battery, thus alleviating
its capacity degradation.

As soon as the sun rises, the PV panel produces power, that is
used to disconnect the vehicle from the grid and to charge the
battery. Figure 8.d highlights that the PV panel provides power
to the EV throughout the day (from 5:00am to 9:00pm), despite
of when the EV is moving. The PV power generation after
7:00pm (i.e., sunset) is negligible because of low irradiance.

Figure 9 illustrates the details of SOC profile (blue solid line).
The charging phase ends at 5:00am, when the battery reaches
90% SOC. From 5:00am to 7:00am the SOC of the battery
is constant, even if the PV panels generate power (red solid
line), as an effect of the SOC upper bound limitation imposed
by the policy. The same circumstance happens from 2:20pm to
Spm: even if the PV panels generate power, the battery cannot
absorb it once that the SOC reaches 90%. The driving periods
discharge the battery, since the PV panel does not provide
power while moving. It is interesting to note that after the first
driving period (around 7am) the battery is charged by the PV
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Figure 8. One-day long simulation results traces of different parts of EV and enable charging signals to indicate the power sources

State of Charge (SOC) Profile of Battery
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100 : is set to high whenever regenerative braking works. Figure 10

gives insight into a period where regenerative braking system
works. It demonstrates that the regenerative braking system
provides power to the EV in case of deceleration or driving
downhill. The increase of SOC is very difficult to observe
in Figure 8.a, due to the limited and instantaneous effect of
regenerative breaking.

100 =

PV power (W

50
These experiments prove that the proposed SystemC-AMS

based simulation allow to validate an one-day operation of EV,
including driving, regenerative braking, and battery charging.
This allows to analyze the energy flow and to gather informa-
tion for the implementation of the energy management policy
and on the correct configuration and dimensioning of the EV
components.
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Figure 9. Battery SOC (blue) and PV panel production (red).

VII. CONCLUSIONS
panel, and the SOC increases superlinearly as the angle of the

sun to the ground increases This work extended an existing framework for the simulation

of energy systems, with the goal of supporting EVs. The pro-

Figure 8.c shows that regenerative breaking has been imple-
mented and that it is exploited over time to charge the battery.
This is highlighted by Figure 8.f, i.e., the control signal that

posed extension effectively covers both the mechanical domain
and the AC domain by using the SystemC-AMS language. The
framework has been tested on an example EV by running a
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Figure 10. Regenerative braking system.

day-long simulation, thus validating different characteristics of
the EV, including power consumption, regenerative breaking,
power generation and storage. Future works will focus on more
accurate models of the EV, thus taking into account additional
phenomena that affect power consumption, and on the design
and simulation of policies to extend EV autonomousness.
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