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1 Introduction 
Jonathan P. Stewart, Paolo Zimmaro 

1.1 Event Sequence Overview and Organization of Reconnaissance 
Between August and November 2016, three major earthquake events occurred in Central Italy. The first 

event, with M6.1, took place on 24 August 2016, the second (M5.9) on 26 October, and the third (M6.5) 

on 30 October 2016. Each event was followed by numerous aftershocks.  

As shown in Figure 1.1, this earthquake sequence occurred in a gap between two earlier damaging 

events, the 1997 M6.1 Umbria-Marche earthquake to the north-west and the 2009 M6.1 L’Aquila 

earthquake to the south-east. This gap had been previously recognized as a zone of elevated risk (GdL 

INGV sul terremoto di Amatrice, 2016). These events occurred along the spine of the Apennine 

Mountain range on normal faults and had rake angles ranging from -80 to -100 deg, which corresponds 

to normal faulting. Each of these events produced substantial damage to local towns and villages. The 

24 August event caused massive damages to the following villages: Arquata del Tronto, Accumoli, 

Amatrice, and Pescara del Tronto. In total, there were 299 fatalities (www.ilgiornale.it), generally from 

collapses of unreinforced masonry dwellings. The October events caused significant new damage in the 

villages of Visso, Ussita, and Norcia, although they did not produce fatalities, since the area had largely 

been evacuated.  

 

Figure 1.1. Map of central Italy showing moment tensors of major earthquakes since 1997 and the 
intermediate gap areas. Finite fault models from Chiaraluce et al. (2004; 1997 Umbria-Marche event), 
Piatanesi and Cirella (2009; 2009 L’Aquila event), Tinti et al. (2016, 24 August event), and GdL INGV sul 
terremoto in centro Italia, 2016, 26 and 30 October events). Moment tensors for 26 and 30 October 
2016 earthquakes are also shown. 

http://www.ilgiornale.it/
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The NSF-funded Geotechnical Extreme Events Reconnaissance (GEER) association, with co-funding 

from the B. John Garrick Institute for the Risk Sciences at UCLA and the NSF I/UCRC Center for 

Unmanned Aircraft Systems (C-UAS) at BYU, mobilized a US-based team to the area in two main phases: 

(1) following the 24 August event, from early September to early October 2016, and (2) following the 

October events, between the end of November and the beginning of December 2016. The US team 

worked in close collaboration with Italian researchers organized under the auspices of the Italian 

Geotechnical Society, the Italian Center for Seismic Microzonation and its Applications, the Consortium 

ReLUIS, Centre of Competence of Department of Civil Protection and the DIsaster RECovery Team of 

Politecnico di Torino. The objective of the Italy-US GEER team was to collect and document perishable 

data that is essential to advance knowledge of earthquake effects, which ultimately leads to improved 

procedures for characterization and mitigation of seismic risk.  

The Italy-US GEER team was multi-disciplinary, with expertise in geology, seismology, geomatics, 

geotechnical engineering, and structural engineering. The composition of the team was largely the 

same for the two mobilizations, particularly on the Italian side. Our approach was to combine traditional 

reconnaissance activities of on-ground recording and mapping of field conditions, with advanced 

imaging and damage detection routines enabled by state-of-the-art geomatics technology. GEER 

coordinated its reconnaissance activities with those of the Earthquake Engineering Research Institute 

(EERI), although the EERI mobilization to the October events was delayed and remains pending as of 

this writing (April 2017). For the August event reconnaissance, EERI focused on emergency response 

and recovery, in combination with documenting the effectiveness of public policies related to seismic 

retrofit. As such, GEER had responsibility for documenting structural damage patterns in addition to 

geotechnical effects. 

This report is focused on the reconnaissance activities performed following the October 2016 events. 

More information about the GEER reconnaissance activities and main findings following the 24 August 

2016 event, can be found in GEER (2016). The objective of this document is to provide a summary of 

our findings, with an emphasis of documentation of data. In general, we do not seek to interpret data, 

but rather to present it as thoroughly as practical. Moreover, we minimize the presentation of 

background information already given in GEER (2016), so that the focus is on the effects of the October 

events. As such, this report and GEER (2016) are inseparable companion documents.   

Similar to reconnaissance activities following the 24 August 2016 event, the GEER team investigated 

earthquake effects on slopes, villages, and major infrastructure. Figure 1.2 shows the most strongly 

affected region and locations described subsequently pertaining to:  

1. Surface fault rupture; 

2. Recorded ground motions; 

3. Landslides and rockfalls; 

4. Mud volcanoes; 

5. Investigated bridge structures; 

6. Villages and hamlets for which mapping of building performance was performed; 

http://www.centromicrozonazionesismica.it/en/
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Figure 1.2. Regional map showing the active fault systems, finite fault models and epicenters of the 24 
August, 26 and 30 October events, ground motion station locations and recorded peak ground 
accelerations (PGA) for the 30 October events, and locations of various earthquake effects discussed in 
this report. 
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1.2 Overview of Reconnaissance Activities 
The approach followed by the GEER team was to combine traditional reconnaissance activities of on-

ground recording and mapping of field conditions, with advanced imaging and damage detection 

routines enabled by state-of-the-art geomatics technology. This combination of reconnaissance 

techniques provides opportunities for innovative future study.  

GEER reconnaissance occurred in two principal phases. The first focused on landslides and surface 

rupture, the second on mapping of structural damage patterns in villages and hamlets of interest. Phase 

1 took place principally from 30 November - 7 December, 2017, and Phase 2 from 10-13 December 

2016. As with the September reconnaissance we completed extensive three-dimensional imaging from 

UAVs (Unmanned Aerial Vehicles) of landslide features, surface faulting, and structural damage 

patterns. Three-dimensional models resulting from this work are available at the following links (last 

accessed 5 May, 2017): 

• GEER website – 2016 Central Italy earthquakes event page (three-dimensional interactive 

PDF models; A1-A11); 

• BYU-PRISM website – 2016 Central Italy earthquakes event page (interactive on-line three-

dimensional models). 

Following this introduction, Chapter 2 describes the seismic source (moment tensor, finite faulting) 

and observations of surface faulting from the October events. Background information on tectonic 

setting, regional geology, and historic earthquakes in the region can be found in GEER (2016). Chapter 

3 describes strong ground motions from the October events, including near-fault ground motion 

characteristics and how the observations compare to available ground motion models. Chapter 4 

presents our reconnaissance of earthquake-induced landslides, which were much more severe in the 

October events than in the earlier August events. Chapter 5 describes several mud volcanoes observed 

following the event sequence, which is an effect not encountered following the August events.  

Chapter 6 is concerned with the performance of building structures in the villages and hamlets within 

the strongly shaken areas. Chapter 6 has two major sub-sections, one on ‘re-visits’ to areas previously 

visited following the August events, and the second only newly visited areas. The re-visit documentation 

is relatively brief, focusing on the new data. For large newly visited areas, we present further 

information on historical seismicity, geological conditions, and the results of our mapping work. Chapter 

7 documents the performance of bridge structures, with an emphasis on changes in damage levels 

resulting from the October events relative to earlier inspections. In the last chapter, significant case 

histories that can serve as subjects for future research are identified and discussed.  

http://www.geerassociation.org/index.php/component/geer_reports/?view=geerreports&id=76
http://www.geerassociation.org/index.php/component/geer_reports/?view=geerreports&id=76
http://prismweb.groups.et.byu.net/gallery2/2016%20Central%20Italy%20Earthquakes/
http://prismweb.groups.et.byu.net/gallery2/2016%20Central%20Italy%20Earthquakes/
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2 Seismic Source and Surface Rupture 
Fabrizio Galadini,  Emanuela Falcucci, Stefano Gori, Robert E. Kayen,  Bret Lingwall,  Alberto 

Pizzi,  Alessandra Di Domenica,  Paolo Zimmaro, Jonathan P. Stewart  

2.1 Seismic Source 
The August-October 2016 earthquake sequence occurred on mapped normal faults in the 

Apennine Mountain range in central Italy. This is a region with a long history of destructive 

earthquakes. The locations of faults have been well studied and the effects of past earthquakes 

on villages and towns in the region is well documented. Chapter 2 of GEER (2016) describes this 

background information and provides specific historical and technical information for the major 

fault systems in the vicinity of this earthquake sequence. Here we focus our remarks on source 

models for the October 2016 events and mapping of surface ruptures from those events.  

2.1.1 Moment tensors and aftershock patterns 
Between 24 August and 30 October 2016, 17 events with M>4.2 were recorded by the Italian 

National Seismic Network (Rete Sismica Nazionale, RSN; www.gm.ingv.it/index.php/rete-

sismica-nazionale/, last accessed 3 April, 2017) owned by the Italian Institute of Geophysics and 

Vulcanology (Istituto Nazionale di Geofisica e Vulcanologia, INGV). Table 2.1 shows parameters 

and locations of the six largest-M events from that sequence. The information in Table 2.1 are 

provided by INGV (http://cnt.rm.ingv.it, last accessed 3 April, 2017). Using event-type 

identification procedures discussed in Section 3.1, we identified three mainshocks: (1) 24 

August M6.1, (2) 26 October M5.9, and (3) 30 October M6.5 (bold entries in Table 2.1). 

Table 2.1. Summary of the six main events occurred in Central Italy between 24 August and 30 
October 2016 

Date 
Hour 
(UTC) 

Latitude 
(N) 

Longitude 
(E) 

Depth 
(km) 

M Strike (deg) Dip (deg) 

08/24/2016 01:36:32 42.70 13.23 8 6.1 156 50 

08/24/2016 02:33:28 42.79 13.15 8 5.3 134 56 

08/26/2016 04:28:25 42.60 13.29 9 4.8 165 36 

10/26/2016 17:10:36 42.88 13.13 9 5.4 160 38 

10/26/2016 19:18:05 42.92 13.13 8 5.9 328 43 

10/30/2016 06:40:17 42.84 13.11 5 6.5 162 27 
 

Figure 2.1 shows focal mechanisms for each mainshock event, along with other information 

to be discussed subsequently. Each event involved normal slip on faults striking NW-SE and 

dipping to the SW. Specifics for each event are given in Table 2.1. The hypocenter locations, slip 

directions, and surface rupture suggest that the 26 and 30 October events occurred on 

segments of the Mt. Vettore fault. As described in GEER (2016), this fault and the neighboring 

Laga mountain fault to the south experienced rupture during the 24 August event.  
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Figure 2.1. Map showing locations of hypocenters for three mainshock events in central Italy 
between 24 August and 30 October 2016. Also shown on selected finite fault models for each 
event and aftershock patterns for the 24-hour periods post-rupture.  

The number of aftershocks within 24 hour periods following each mainshock were 121 (24 

August), 75 (26 October), and 258 (30 October). Aftershocks following the three considered 

mainshocks have clear spatial patterns. For the 24 August event, most of the aftershock 

epicenters are not within the surface projection of the hanging wall above the finite fault 

model, with many south and west of the rupture. This pattern holds for the 26 October event as 

well, although in this case very few aftershocks epicenters actually occur within the surface 

projection of the rupture. The aftershocks pattern for the largest event (30 October) follows the 

expected pattern in which most epicenters occur within the surface projection of the rupture. 
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2.1.2 Crustal deformations  
Crustal deformations associated with the 24 August 2016 event are described in Section 2.3.3 

of GEER (2016). As with that event, crustal deformation data is available from GPS sensors for 

the two October events. Figures 2.2-2.3 show GPS-based deformation results for the two 

events. GPS data were obtained from INGV working group (2016). Crustal displacements would 

be expected to involve downward vertical displacement and horizontal displacement 

approximately to the southwest on the hanging walls of the fault. This is indeed the case for the 

30 October event (Figure 2.3), for which the levels of displacement are large relative to the 

resolution of these measurement techniques. In the case of the 26 October event, the 

horizontal displacements are relatively randomly oriented, and may reflect the effects of noise 

in the measurements (Figure 2.2). The data in Figures 2.2 shows peak horizontal and vertical 

crustal displacements of about 0  ̶  3 and -2  ̶  +0.7 cm, respectively for the 26 October event. 

The corresponding values for the 30 October event, shown in Figures 2.3, are 0  ̶  38 and -45   ̶ 

+5 cm.  

2.1.3 Finite fault models and trimming  
Finite fault models for the 26 and 30 Oct events are presented by INGV (2016). These models 

are based on inversion of GPS data. As of this writing, we have not seen inversions that include 

both GPS and broadband ground motion data. The surface projection of the models, with some 

adjustment, are shown in Figure 2.1. 

Figure 2.2. (a) horizontal, and (b) vertical GPS-based co-seismic displacement estimated after 
the 26 October event. Data used for producing the Figures were obtained from: 
ftp://gpsfree.gm.ingv.it/amatrice2016/static/Cosismico_26Oct2016_GPS_GdL_V1.dat, last 
accessed 4 April, 2017). 

ftp://gpsfree.gm.ingv.it/amatrice2016/static/Cosismico_26Oct2016_GPS_GdL_V1.dat
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Figure 2.3. (a) horizontal, and (b) vertical GPS-based co-seismic displacement estimated after 
the 30 October event. Data used for producing the Figures were obtained from: 
ftp://gpsfree.gm.ingv.it/amatrice2016/static/Cosismico_30Oct2016_GPS_GdL_V1.dat, last 
accessed 4 April, 2017). 

The 26 October event has an along-strike length of 8 km and down-dip width of 4 km. We 

adopt the trimmed model from INGV (2016), despite the lack of information in that document 

on how the trimming was performed. Details of this process are of nominal importance given 

the relatively small dimensions of this rupture (because the fault dimensions do not have a 

large effect on distances to sites of interest). The INGV model does not include a slip pattern.  

The 30 October event has an along-strike length of 21 km and down-dip width of 16 km. The 

model presented by INGV (2016) is untrimmed, but includes a slip pattern. We trim by-eye the 

fault into a rectangular shape, removing parts of the rupture surface with slip < 50 cm (17% of 

the maximum slip of 300 cm). The trimmed version is shown in Figure 2.1. The largest slip on 

the fault is concentrated in the middle of the fault (along-strike) and near its deepest extent. 

2.2 Surface Rupture 
Surface rupture for the 24 August event is described in Section 2.4 of GEER (2016). The level of 

documentation of surface rupture effects is mixed for the October events classified as 

mainshocks (26 and 30 October). For the 26 October event, limited field observations are 

described from the short time window between this event and the subsequent 30 October 

event, which produced substantial additional slip on fault features. The limited observations 

following the 26 October event do not include detailed mapping, but do include observations 

that establish the presence of surface rupture.  

For the 30 October event, several phases of reconnaissance were performed that establish 

the fault segments on which rupture was and was not observed, and which provide relatively 

ftp://gpsfree.gm.ingv.it/amatrice2016/static/Cosismico_30Oct2016_GPS_GdL_V1.dat
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detailed pictures of the amounts and distribution of slip in some areas. The full length of the 

fault rupture was not mapped due to inclement weather that made mapping impossible 

beyond a certain date. Further mapping is expected following the Spring 2017 thaw.  

The following sections summarize available information from the two events. Figure 2.4 

shows the areas where surface rupture was observed in the two event, and locations of detail 

maps. The third section below explains in more details the method and results of GEER 

reconnaissance in early December 2016.  

 

Figure 2.4. Detailed map of surface fault rupture, pre-event mapping of Mt. Vettore-Mt. Bove 
(green) fault system, and locations of 3D models. 

2.2.1 Observations of surface rupture following 26 October 2016 event 
Field surveys by INGV geologists performed in the epicentral area of the 26 October event 

revealed surface rupture features at the locations shown in Figure 2.4. Figure 2.7 shows 



2-6 
 

photographs of several of these features. No formal and systematic measurements of slip 

occurred, but these features suggest amounts ranging from 5 to 18 cm.  

As shown on Figure 2.4, the locations of the observed surface ruptures coincide with a 

segment of the Mt. Vettore fault as mapped by Falcucci et al. (2016). This segment of the fault 

did not rupture in the 24 August event. No information about the last known rupture of this 

fault segment is available. It has likely ruptured during past events on the Mt. Vettore fault as 

identified by Galadini and Gali (2003) through paleoseismological studies. 

2.2.2 Surface rupture from 30 October 2016 event  

Overview of activities and findings 

Reconnaissance of surface fault rupture following the 30 October event consisted of three 

principle elements:  

• Observations of fault segments with and without surface rupture. Similar to the field 

work following the 26 October event, these observations are useful to establish 

locations of rupture. For approximately the northern half of the rupture, these are the 

only surface rupture data currently available.  

• Two phases of detailed mapping of surface rupture locations and direct measurement 

of displacements using rulers and tape measures (by GEER).  

• Imaging of the deformed ground surface at and near the fault through the use of 

unmanned aerial vehicles (UAV) and terrestrial Lidar (by GEER).  

Figure 2.4 shows the broad area in which both observations of rupture locations, and 

detailed mapping/imaging, were undertaken. A comparison of deformations obtained from 

these two methods is discussed further below.  

An important point to make here is that surface rupture observations at any point in time 

represent the cumulative slip from all prior events. Hence, the only way to evaluate slip from 

any particular event is through the differencing of multi-epoch displacement measurements. 

Detailed, by hand, mapping was conducted following the 24 August event (GEER 2016) for the 

southern portion of the Mt Vettore fault, shown in Figure 2.4. Because such areas did not 

experience slip in the 26 October event, but were observed to have additional displacements in 

our December 2016 reconnaissance, such differentials can be attributed to the 30 October 

event. As an example, Figure 2.5 shows a location near the south end of the fault rupture close 

to road SP477 where multi-epoch photographs and measurements are available, showing the 

much larger slip in these areas from the second (30 October) event. Figure 2.6 compares 

cumulative displacements (total displacement measured in December reconnaissance) with the 

September-to-December differential, which is attributed to the 30 October event. These results 

were measured along the southern portion of the Mt. Vettore fault rupture.  
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Figure 2.5. Comparative fault offset of 10cm. (a) Vertical offset from the August event, and (b) 
30cm Vertical offset from the October 2016 events on the south face of Mt. Vettore near road 
SP477. Horizontal offsets were 0cm and 2cm. Lat = 42.79795, Long = 13.26607. 

 

Figure 2.6. Distribution of incremental and cumulative fault offsets for the southern half of the 
Mt. Vettore fault. All data in this Figure from hand measurements. 

A B
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In the southern portion of Mt Vettore fault, slip occurred on three segments. The primary 

segment is on the ridge of Monte Vettore at the contact between bedrock and thin overburden 

talus and alpine deposits. An apparently secondary segment occurs lower on the ridge, which 

ruptured in the 30 October event but not in the earlier events. Another secondary segment is in 

the lower-lying basin, Piano Grande, in lacustrine and alluvial deposits that have infilled the 

basin. Rupture on this segment was only observed following the 30 October event.  

Fault imaging 

Figure 2.4 shows areas along the fault where detailed imaging was performed using UAVs and 

LiDAR; further details on this work is described in the next section. A method was developed to 

merge point cloud data from UAV imagery and the 3-D terrestrial laser scanner to record the 

offsets along the Mt Vettore fault. At some sites, Lidar data was collected using the terrestrial 

laser scanning method. The scanner was placed on a tripod, and its GPS location was recorded. 

A point cloud of coordinates visible to the scanner is collected and registered with the other 

scans in the same area where overlapping data exists. 

Point cloud data from the UAV are processed through a computationally intensive multi-

stage process. First, a flight plan is established to overfly the fault and collect downward looking 

photographs using a Phantom 4 UAV quad-copter. These images were collected with a 

minimum of 80% overlap and 80% side-lap coverage to ensure that there are common features 

in adjacent images. Using cloud computing software from 'Dronedeploy,' and workstation-

based software from 'Agisoft,' all of the downward-looking images were aligned using hard 

features that were common to multiple photographs. Images were first aligned crudely, and 

then a sequence of higher level alignments improved the model and established a tight 

relationship between adjacent images.  The structure-from-motion method computes angular 

separations between objects visible in overlapping images. The scale and location of the objects 

are determined by knowing the location of each photograph from the photo metadata GPS-

location. That is, the GPS-tagged photographs from the drone provided the scale for the model. 

Aligned drone imagery was used to process a dense point cloud and a 3-D mesh triangular 

irregular network surface. The same aligned imagery was used to construct a precise 

orthomosaic of the scanned area. Once the UAV model was constructed, the point cloud from 

the UAV data can be merged with the point cloud from the Lidar scanner. UAV and LiDAR 

datasets are merged using the software ISITE-Studio (Maptek company). The advantage of 

merging data is that the Lidar data-set is presumably more precise regarding pixel location, 

whereas the UAV data have a more accurate color representation for each pixel because of the 

direct relationship between the point cloud and the orthomosaic image. 

Comparison of displacements from 3D models and hand measurements  

In Figure 2.7 we compare displacements along the primary (highest elevation) segment of the 

Mt. Vettore fault as measured by hand and from the 3D terrain model. These displacements 

were made along the portions of Mt. Vettore that are on the west face of the ridge and on the 

branch descending the ridge towards SP477. Figure 2.7 shows cumulative displacements across 
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all events, which for this portion of the fault arise from the 24 August and 30 October events. 

The 3D model in these areas is based on UAV point cloud data, and the displacements were 

measured from the model using the program Dronedeploy. The comparison is considered quite 

good, with no clear evidence of bias. Further comparisons in other areas will be undertaken in 

future work. 

 

Figure 2.7. Surface fault rupture displacements from August-October event sequence as 
evaluated from hand measurements in the field and UAV-based 3D model. 

2.3.3 Detailed results of GEER fault imaging and conventional fault mapping  
An overview of the GEER findings from December 2016 reconnaissance is provided in Section 

2.3.2. The work summarized there includes hand measurement by GEER team members form 

INGV and additional hand measurements and imaging by a Phase 2 team. This section provides 

further details of the activities of the Phase 2 GEER team. 

The Phase 2 GEER team was onsite at Mt. Vettore 1-4 December 2016. 3D models were 

generated for the south face of Mt. Vettore in the area of surface fault rupture using a 

combination of both UAV SfM and LiDAR point cloud modeling. Figure 2.8 shows the area of the 

south face of the Mt. Vettore Massif where these 2 data collection activities occurred. UAV data 

collection was continuous over the area, while LiDAR data collection was made from a single 

location on road SP477 at the base of the slope leading up the south slope of Mt. Vettore. The 

surface fault rupture southern terminus was slightly down-slope and south of the location of 

the LiDAR data collection and the southern extent of UAV data collection. Figure 2.8 also shows 

the area of the west face of the Mt. Vettore Massif where UAV point cloud data was collected 

and a SfM 3D point cloud model was generated. A second LiDAR point cloud model was 

obtained for the secondary fault rupture surface on the Piano Grande (also shown on Figure 2.8 
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to the west of Mt. Vettore). In parallel with UAV and LiDAR data collection, the GEER team 

performed conventional fault mapping activities using GPS and measuring sticks to locate and 

measure fault dip and strike offsets. 

 

Figure 2.8. Satellite image of the southern half of the Mt. Vettore Massif. The yellow box 
corresponds to the area shown in Figure 2.10 for the 3D model of the west face of Mt. Vettore, 
while the white box corresponds to the area shown in Figure 2.9 for the 3D models of the south 
face. The box to the west (orange) shows the location of the Piano Grande fault 3D model 
(Figure 2.11). 

The 3D point cloud model, generated using both UAV SfM and LiDAR point cloud modeling, 

for the south face of Mt. Vettore is shown in Figure 2.9. Due to the large area and low color 

contrast of fault scarps compared to the native ground surface, lines have been added to this 

image to show approximate surface fault rupture traces. Figure 2.9 shows that the fault rupture 

alignment climbs the slope from south to north. In general, larger fault offsets were measured 

to the north. The southern terminus of observed fault rupture is down slope of road SP477 

which is at bottom of Figure 2.9. Most of the mapping effort was performed north of SP477, as 

the fault dip offsets observed south of SP477 were minimal.  

An interesting observation from both 3D point cloud and conventional mapping is that there 

is a zone of apparently thick and soft (ductile) soil sediment overburden on the slope where the 

distinct single fault rupture surface is defrayed into several smaller scarps. This area is shown in 

Figure 2.9. Above and below this area, the fault trace is singular and well defined. Within the 
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area, the fault splinters into 4 to 6 distinct, short, small displacement traces roughly parallel to 

one another.  

 

Figure 2.9. 3D digital terrain model from merged SfM and LiDAR data of the Mt Vettore fault on 
the southern flank of the Mt Vettore Massif. Approximate main fault trace indicated in yellow. 
Looking from the west to the east. The upper left of the image is the top of the slope. Area of 
soft sediments where the fault trace breaks into several (4 – 6) small scarps is indicated in 
white. 

Similarly to Figure 2.9, the image in Figure 2.10 depicts a 3D model of the west face of the 

Mt. Vettore Massif that was generated from combined UAV images and LiDAR scans. Figure 

2.10 shows an area that is located north of the area depicted in Figure 2.9, and covers the 

northern extent of the fault mapping. Figure 2.10 shows an approximate fault trace location for 

the main trace and the aforementioned western trace. We performed field mapping on both 

the main trace and the western trace, though mapping activities were more extensive on the 

main trace.  

Rupture displacements increase as the fault extents to the north. Also, the rupture becomes 

more centralized to a single surface as the fault moves north between Figures 2.9 and 2.10. On 

the south (right) of Figure 2.10, the fault has several distinct rupture scarps that we have 

interpreted as fault scarps. Several other scarps were measured, mapped, and are shown in the 

3D model. These other scarps are interpreted as minor slope instability scarps and are 

discussed in Chapter 4 (Section 4.2.10).  
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Figure 2.10. 3D digital terrain model from merged SfM and LiDAR data of the Mt Vettore fault 
on the western flank of the Mt Vettore Massif. Approximate main fault trace(s) indicated in 
yellow, a second visible trace of the “Western Trace” shown in white (See Figure 2.11 for more 
details). Looking from the west. The left of the image is to the north. The slope moves from top 
to bottom of the image. 

The final 3D point cloud model is from LiDAR imaging of the Piano Grande fault at the 

western foot of the Mt. Vettore Massif (location shown by the orange rectangle on left side of 

Figure 2.8). The Piano Grande fault has been interpreted as a secondary rupture surface. This 

fault was not observed after the August 2016 event. Figure 2.11 presents an image of this 3D 

model.  

 
Figure 2.11. 3D digital terrain model from merged SfM and LiDAR data of the Piano Grande 
fault on the western toe of the Mt Vettore Massif. Approximate fault trace(s) indicated in 
yellow. Looking from the west. The left of the image is to the north. Mt. Vettore on the top of 
the image 
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A comparison of offset measurements from the August 2016 and 30 October 2016 

earthquakes from conventional mapping was performed and is illustrated in the following 

Figures. In these comparisons, we use co-located measurements when possible, and otherwise 

show initial displacements (measured in September) from adjacent locations for comparison to 

the offsets measured following the 30 October 2016 event. Figures 2.12 through 2.21 show a 

selection of fault measurement locations and recorded offsets for this comparison.  

 

Figure 2.12. Fault offset measurements showing relative offset of August 2016 (0 cm) and 
October 2016 (70 cm) events on the lower or “western” fault trace in Figure 2.10 (shown in 
white). Lat = 42.812901, Long = 13.24626. 

 

Figure 2.13. Fault slip measurements showing multi-epoch offsets from August 2016 (upper 
white band, 16 cm) and October 2016 (130 cm) events. Lat = 42.81724, Long = 13.25449. 
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Figure 2.14. Location of maximum fault offset of 210 cm following October 2016 events. The 
August event offset at this location is estimated as 20 cm, based on nearby data points. Lat = 
42.81687, Long = 13.25503. 

 

Figure 2.15. Fault offset measurement across the footpath on the west face of Mt. Vettore. 
Offset measured as 80 cm following October events (a). This offset was 30 cm following August 
events (b). Lat = 42.807379, Long = 13.262966. 

A

B
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Figure 2.16. Fault trace on the south face of Mt. Vettore, where the fault has ruptured along 
the path of buried polyethylene pipe supplying the pictured spring. Rupture partially hidden by 
long grass. Offset measured at 45 to 65cm. August offset data nearby is 0 to 15cm. Trace(s) 
above the spring indicated in red. Lat = 42.80474, Long = 13.26441. 

 

Figure 2.17. Fault offset measurement of one of several (4 to 6) small traces on the south face 
of Mt. Vettore in the area indicated in white in Figure 2.9. In this area surface soils are thick and 
ductile. Offset measured at 8 to 52cm on each trace. August offsets were 0 cm. Lat = 42.80483, 
Long = 13.26443. 
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Figure 2.18. Fault offset measurement in gulley on south face of Mt. Vettore. Offset measured 
at 80cm. August offset data nearby is 15cm, indicating October 2016 offset of 65cm. 

 

Figure 2.19. Fault offset measurement across SR477 on south face of Mt. Vettore. August offset 
data nearby is 2cm (a). Offset measured at 18cm to 20cm after October (b). Lat = 42.796829, 
Long = 13.265899. 

A B
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Figure 2.20. Secondary fault offset across a road on the Piano Grande at the base of the Mt. 
Vettore Massif. August 2016 event offset of 0cm. October 2016 event offset of 7 to 18 cm. 

The Mt. Vettore fault crosses variable surficial geologies, with differences in fault rupture 

manifestation for each surface material type. Figure 2.21 presents three different images of the 

fault rupture. The fault occasionally followed a well-defined limestone fault plane. This was 

especially true in the “gulley” on the south face of Mt. Vettore and along much of the west face 

of the Massif for both the main and western splays of the fault. Measurements are relatively 

straightforward in these areas. In areas where a near-surface limestone fault plane was not 

present (i.e. thick soil sediment cover), the fault rupture often appears as shown in Figures 

2.21a and 2.21b, with lateral gapping developing and the fault trace occasionally splitting into 

two or more traces. Displacements across these individual traces often sum to be as much as 

the displacement in adjacent areas with shallow or exposed limestone. For example, between 

latitudes 42.806 and 42.808, the fault trace splits into several traces, converges, and then 

diverges again before becoming a single distinct surface north of Latitude 42.808. In the 

locations of a single trace, the measured offset is 92 cm. In the nearby locations with 2 or 3 

traces, the individual traces measure 30 to 40 cm, but the sum is very close to 90 cm.  
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Figure 2.21. Fault offset measurements along the south and west faces of the Mt. Vettore 
Massif showing differences in fault rupture offset through soil versus along the rock fault plane 
(where visible on the slope). 

(a)

(b) (c)
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3 Ground Motions 
Principal authors: Paolo Zimmaro, Giuseppe Scasserra, Tadahiro Kishida, Jonathan P. Stewart  

Contributing authors: Massimina Castiglia, Tony Fierro, Luciano Mignell i,  Panagiotis Pelekis,  

Fil ippo Santucci de Magistris, Giuseppe Tropeano  

3.1 Available Recordings 
In this section, we analyze recordings obtained from the ESM database (Luzi et al., 2016; 

http://esm.mi.ingv.it, last accessed 16 March, 2017), for six earthquake events that occurred 

between 24 August and 30 October 2016. This chapter serves as an update to Chapter 3 of 

GEER (2016), which summarized ground motions from the first three of these events from 

August 2016. In this chapter, we provide a collective overview of the ground motions from this 

event sequence; the chapter is not merely and update to the prior one but supersedes it.  

The selected database contains recordings from 298 recording stations. Each station 

recorded at least one of the considered events. The majority of the recordings are from the 

Italian Accelerometric Network (Rete Accelerometrica Nazionale, RAN; ran.protezionecivile.it/, 

last accessed 16 March, 2017), owned by the Italian Civil Protection Department (Dipartimento 

della Protezione Civile, DPC). Data from other networks are also considered – a list of all the 

considered networks (and their urls) is provided in GEER (2016).  

Table 3.1 shows key characteristics of the six events. Based on spatial and temporal 

attributes, we have classified aftershocks using both: (1) a traditional approach based on time 

and distance windows, with the latter evaluated as the radial distance from the mainshock 

epicenter (Gardner and Knopoff, 1974), and (2) an approach developed during the NGA-West2 

project (Bozorgnia et al., 2014) that uses the Gardner-Knopoff time window in combination 

with a new distance metric based on the closest distance to the horizontal projection of the 

rupture plane (Joyner and Boore distance, RJB) (Wooddell and Abrahamson, 2012). Both 

approaches provide similar results. In Table 3.1, events classified as CL1 are either mainshocks 

or foreshocks, while events classified as CL2 are aftershocks. Table 3.1 also shows the number 

of we consider to be usable. For all events, additional recordings beyond those identified as 

usable were made, but were either flagged by the data owners as ‘bad-quality’ (these records 

are generally available, and we have confirmed the quality problems) or as ‘restricted’ in the 

ESM database (these data have not been made publically available).  

Table 3.1. Attributes of the six earthquake events analyzed. 

Date M Number of recordings1 Aftershock flag Description 
24 August 2016 6.1 235 CL1 Mainshock 
24 August 2016 5.3 180 CL2 Aftershock 
26 August 2016 4.8 132 CL2 Aftershock 

26 October 2016 5.4 178 CL1 Foreshock 
26 October 2016 5.9 224 CL1 Mainshock 
30 October 2016 6.5 212 CL1 Mainshock 
1 Number of recordings available for ground motion characterization purposes 

http://esm.mi.ingv.it/


3-2 
 

Table S1 (available in the electronic supplement to this report) shows main attributes of the 

298 digital accelerometer stations, including location, surface geology, VS30, and instrument 

housing type. Among them, 15 are temporary stations. In Chapter 3 of GEER (2016), we 

described temporary station arrays deployed by multiple agencies after the August 24 2016 

mainshock, although at that that time we did not have any recordings from those arrays. We 

now have recordings for the 15 sites in Table S1. GEER (2016) lists 87 additional temporary 

stations for which we do not have data. Moreover, we do not have information at this time on 

additional deployments and removals of prior deployments since August 2016.  

Figures 3.1 and 3.2 show the spatial distribution of all permanent recording stations, along 

with epicenters of recorded events during August (Figure 3.1) and October 2016 (Figure 3.2). 

Figure 3.3 shows the spatial distribution of all events occurred in Central Italy between 24 

August 2016 and 20 January 2017 with M≥4.2. Events analyzed in this report (and summarized 

in Table 3.1) are highlighted in red. 

3.2 Site Conditions 
We identify surface geology using local, larger-scale maps (from 1:10.000 to 1:25.000 scale) 

when available, documentation from ad-hoc site-specific microzonation studies, or technical 

papers (details on this approach are provided in GEER, 2016). Information sources for each site 

are listed in Table S1. The assignment of a VS30 value to each site followed the protocols of 

Scasserra et al. (2009): (1) Type A utilizes on-site measured velocities from established 

geophysical techniques; (2) Type B utilizes velocity measurements from nearby sites having the 

same surface geology as the subject station; (3) Type C estimates VS30 using proxy-based 

relationships for Italy (i.e. Scasserra et al., 2009); and (4) Type D estimates VS30 based on the 

midpoint value of the Italian Code subsoil category indicated in the ESM database (Norme 

Tecniche per le Costruzioni, 2008; NTC08). Figure 3.4 shows data source type for each of all 

digital stations that produced recordings considered in this chapter. 

During the reconnaissance activities performed after the August 2016 events, T. Pelekis of 

the GEER team performed spectral analysis of surface waves (SASW) testing for six station 

locations for which only Type D estimates had previously been available. As a result, the 

following six sites are now classified as Type A in Table S1: (1) Foligno (FOC), (2) Poggio Cancelli 

(PCB), (3) Selle Pedicate, Campotosto (SPD), (4) Mascioni, Campotosto (MSC), (5) Norcia (NRCA), 

and (6) Montereale (MTR). Table 3.2 shows station codes, location, measured VS30 and number 

of recorded events (among those analyzed in this chapter) of these newly characterized 

recording station sites. Figures S1-S6 (available in the electronic supplement to this report) 

show measurement details and instrumentation deployment layouts. Figures S7-S24 show 

dispersion curves and inverted VS profiles for these sites.  
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 (a) 
 

 (b) 

Figure 3.1. (a) Locations of instruments that recorded M6.1, M5.3 and M4.8 August 2016 
events; (b) close-up view of the instruments in the epicentral area.  

Figure 3.1 (b) 
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 (a) 

 (b) 

Figure 3.2. (a) Locations of instruments that recorded M6.5, M5.9 and M5.4 October 2016 
events; (b) close-up view of the instruments in the epicentral area.  

Figure 3.2 (b) 
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Figure 3.3. Spatial distribution of all events occurred in Central Italy between 24 August 2016 and 20 January 2017 with M≥4.2. 
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Figure 3.4: Data source types used for VS30 estimations for all considered recording stations. 

Table 3.2. Measured VS30 and details of the newly characterized recording station sites. 

Station code Lat. (deg) Lon. (deg) Measured VS30 # of recorded events 

FOC 43.02630 12.89651 285 6 

PCB 42.55802 13.33799 366 6 

SPD 42.51514 13.37104 521 6 

MSC 42.52676 13.35084 540 6 

NRCA 42.83355 13.11427 491 1 

MTR 42.52402 13.24480 1130 5 

3.3 Near Source Ground Motions 
In the ESM database, both raw unprocessed and processed accelerograms are available. We 

downloaded raw unprocessed ground motion data, which was then processed using standard 

Pacific Earthquake Engineering Research (PEER) center procedures (Ancheta et al., 2014). 

Details on the application of the PEER procedures are available in GEER (2016).  
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3.3.1 Data Quality Issues 

Several potentially important recording stations in the near-field did not record properly one or 

more earthquake events during the period 24 August to 30 October 2016. The NRCA station, 

located in the town of Norcia, did not record any mainshock. The NRCA station only recorded 

the M4.8 26 August aftershock. This results from a sudden power outage during the 

earthquakes and lack of auxiliary power. The RQT station, in Arquata del Tronto, recorded all six 

events. One of the components (NS) appears to be unusable (signal is essentially zero) in five of 

the six recordings. The only usable record produced by the RQT station (in the analyzed period) 

is from the M5.4 26 October 2016 foreshock. RQT is of special interest because it is among the 

few instruments located on the footwall (for all events) in the near-field area.  

Data from six recording stations (AQA, FCC, PRE, RQT, NOR, and AMT) published on the ESM 

database after the 24 August 2016 mainshock, became unavailable from the database and 

flagged as ‘restricted’ on 11 November 2016. The recordings from these stations have been 

reviewed, corrected, and re-published on 23 December 2016. These updates are particularly 

relevant because the recording of the M6.1 24 August event from the AMT station changed 

significantly.  

Figure 3.5 shows 5% damped pseudo-acceleration response spectra (PSA) for the M6.1 24 

August 2016 event, from three stations in the near field (AMT, NRC and NOR). The corrected 

ground motions have been rotated into fault normal (FN) and fault parallel (FP) orientations. 

The AMT ground motion has higher amplitudes in the FN direction at short oscillator periods (< 

1.0 sec), whereas the two components are practically equivalent beyond about 0.6 sec. The 

NRC and NOR motions have higher amplitudes in the FN direction at long periods (> 1.0 sec). 

Figure 3.5 also compares for AMT median-component (RotD50) spectra for the original 

(available from the database before 11 November 2016, labelled as ‘previous version’) and the 

reviewed recordings (published on 23 December 2016). There is no discernable difference 

between previous and reviewed recordings for NRC and NOR. There is approximately a factor of 

2.0 difference for the AMT station. 

 
Figure 3.5. Pseudo acceleration response spectra (5% damping) for Amatrice (AMT) and Norcia 
(NRC, NOR) sites from the M6.1 24 August event. 
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Figure 3.6 shows 5% damped pseudo-acceleration response spectra (PSA) from nine stations 

at various locations in the near field zone for the M6.5 30 October event. The locations of these 

stations are shown in Figure 3.2b. Three of these stations are on the hanging wall of the fault 

(T1214, CLO, CNE) and one other is located on the footwall near the surface expression (T1244). 

These four stations would be the most likely to show an effect of rupture directivity, but no 

such effect is apparent from the comparison of FN and FP spectra (FN would be expected to be 

higher). The other spectra shown in Figure 3.6 are in locations of interest due to their proximity 

to villages and other features discussed in this report.  

Another way to examine possible near-fault effects is the presence of pulse-like features in 

the ground motions velocity time series. These characteristics were checked for stations T1214, 

CNE, and CLO using the Baker (2007) pulse identification procedure, with the results shown in 

Figure 3.7. Our interpretation, based on visual inspection of the extracted pulses, is that the 

pulse effects are weak, which is consistent with the lack of polarization in the FN direction for 

these records.  

We also investigate the presence of fling-step effects (i.e. earthquake-related static ground 

displacements, resulting from fault rupture). These effects can be present in near-source 

recordings, especially on the hanging wall of dip-slip faults. Figure 3.8a-c show vertical 

displacement time series for the three hanging walls records from the M6.5 30 October 2016 

earthquake. These records have been reprocessed using a procedure developed to preserve 

static (permanent or tectonic) displacements (Gregor et al., 2002). The amount of vertical-

component fling-step in these records ranges from 15-83 cm.  

For one of the three recordings on the hanging wall of the trimmed fault model (T1214), co-

seismic displacements from GPS measurements are available for the M6.5 30 October 2016 

earthquake at a nearly co-located station (ARQT). The displacements from these two sensors 

were independently processed by P Zimmaro (GPS data) and G Tropeano (T1214 accelerogram), 

and were found to be -45 cm (GPS) and -46 cm (double-integrated accelerogram). The ACC, 

AMT, and T1216 recording stations (not on hanging wall) also have nearly co-located GPS 

stations (ACCU, AMAT, and MUVI, respectively). Figure 3.8d-f show the lack of fling step for 

these stations, which was also confirmed by the GPS data. The observed co-seismic 

displacements for the stations on the hanging wall are similar to those observed during the 

2009 L’Aquila earthquake (i.e. Stewart et al., 2012). 
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Figure 3.6. Pseudo acceleration response spectra (5% damping) for nine near source recording 
sites from the M6.5 30 October 2016 event. 
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Figure 3.7. Original ground motion, extracted pulse, and residual ground motion for the M6.5 
30 October 2016 event recorded at the (a) T1214, (b) CLO, and (c) CNE stations. 

 

 
Figure 3.8. Vertical component of acceleration, velocity, and displacement time-series for the 
M6.5 30 October 2016 event, processed using the Gregor et al. (2002) procedure for the (a) 
CLO, (b) T1214, (c) CNE, (d) T1216, (e) ACC, and (f) AMT station. 
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3.4 Comparison to Ground Motion Models 
Ground motion models (GMMs) are typically used within seismic hazard assessment 

frameworks for predicting expected levels of shaking given magnitude, source-to-site distance, 

site condition, and/or other additional factors. In this section, we compare GMM predictions to 

observed data. The objective of these comparisons is not to identify a preferred model. Rather, 

the aim is to facilitate visualization and identification of the main features of the recorded data 

(e.g. attenuation with distance, near-source ground motions). 

In recent years, several studies focused on the selection of suitable GMMs to use in global 

(Stewart et al., 2015), regional (Delavaud et al, 2012), or site specific applications in Italy 

(Zimmaro and Stewart, 2017). These selections are often performed comparing GMM 

predictions over a parameter space of engineering interest. While local models can reflect local 

geologic and tectonic conditions, which may differ from those represented by global models, 

the limited database size used to develop local models may be inadequate to constrain GMMs 

for conditions often critical for application (large magnitudes and small distances). Global 

models are more effective for such conditions, because they are typically based on much larger 

databases, but may contain bias with respect to local effects. Regional adjustment factors are 

typically used to reduce the bias of global models, as in the NGA West-2 project (Bozorgnia et 

al., 2014). Those factors relate to anelastic attenuation and/or site effects, applicable to various 

tectonic regions (i.e. California, Turkey, Taiwan, Japan and Italy). 

We compare recorded data with the following GMMs for shallow crustal regions: (1) an Italy-

specific model by Bindi et al. (2011; hereafter B11), (2) the average of four NGA West-2 GMMs, 

without regional adjustments (Abrahamson et al., 2014; Boore et al., 2014; Campbell and 

Bozorgnia, 2014; and Chiou and Youngs, 2014; hereafter NGA2), and (3) the average of three 

NGA West-2 models containing regional adjustments applicable to Italy (Boore et al., 2014; 

Campbell and Bozorgnia, 2014; and Chiou and Youngs, 2014; hereafter NGA2-I).  

The selected GMMs, use different distance metrics. The B11 and Boore et al. (2014) models 

use closest distance to the horizontal projection of the rupture plane, or Joyner and Boore 

distance (RJB). The Abrahamson et al. (2014), Campbell and Bozorgnia (2014), and Chiou and 

Youngs (2014) models use the closest distance to the rupture plane (RRUP) as the primary 

distance metric (Figure 3.9). All distances are calculated using the trimmed finite-fault models 

for the three mainshocks (M6.1 24 August 2016 event – GEER, 2016; M5.9 26 October and 

M6.5 30 October 2016 earthquakes - Section 2.1.3. For the other events analyzed in this study 

(M5.3 24 August, M4.8 26 August, and M5.4 26 October 2016 events), we calculate distances 

considering these earthquakes to be point sources. 

Figures 3.10 and 3.11 shows the distance-dependence of RotD50 peak horizontal 

acceleration (PHA), and peak horizontal velocity (PHV) for all six events. Recorded data are 

divided into three categories: (1) rock (VS30>800 m/s), (2) stiff soil (360< VS30<800 m/s), and (3) 

soft soil (VS30<360 m/s). Also shown in Figures 3.10 and 3.11 are median predictions from the 



3-12 
 

B11 model, the average of the four NGA2 models, and the average of the NGA2-I models. The 

model predictions have been calculated using a constant VS30=580 m/s. This VS30 value falls into 

subsoil class B of the Italian building code (NTC08) and is considered to be a typical value for the 

region (GEER, 2016). 

Figures 3.10 and 3.11 show that all models fit the data reasonably well in the range RJB = 0-

100 km. Beyond this distance, there is a relatively fast attenuation of ground motions in all six 

events. This feature, captured only by the NGA2-I models (with regional adjustment for Italy) is 

characteristic of Italian data. It has been observed in previous studies (e.g., Scasserra et al., 

2009 using Italian data up to 2005; and Stewart et al. 2012 using data from the 2009 L’Aquila 

event sequence). These fast attenuation features are observed in the aftershock data as well, 

although none of the considered models appear to be unbiased for aftershock data beyond 

about 80-100 km. At short distances (i.e. 1-10 km), data are sparse, but there are differences 

between models. In particular, B11 has a wider flat-attenuation region at close distance, likely 

due to a larger ‘fictitious depth term’ in the function. 

 
Figure 3.9. Scheme of an earthquake source and distance measures using a vertical cross-
section through a fault rupture plane (from Kaklamanos et al., 2011). 

The performance of multiple GMMs relative to the data is also analyzed using residuals 

analysis. We calculate total residuals for each data point considering the appropriate source-to-

site distance and site condition as follows: 

𝑅𝑖 = ln(𝐼𝑀𝑖)𝑟𝑒𝑐 − ln(𝐼𝑀𝑖)𝐺𝑀𝑀
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3.1) 

where (IMi)rec is the value of ground motion intensity measure from recording i and (IMi)GMM is 

the value of that same IM from ground motion models. For the NGA West-2 models,  

ln(𝐼𝑀𝑖)𝐺𝑀𝑀
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  indicates the average of the natural log means from all four GMMs (NGA2) or the 

average of the natural log means from the three with regional adjustment (NGA2-I). For B11, 

the median prediction is used. Total residuals are then partitioned into random effect (or event 

term, ) and the remaining residual () using procedures given in Stafford (2012).  

We show within-event residuals for peak horizontal acceleration in Figure 3.12 and for peak 

horizontal velocity in Figure 3.13 for all six events. All data are compared in each plot with 
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binned means of the within-event residuals, along with their standard deviations, using five 

intervals for each log-cycle (due to paucity of data, a unique bin is assumed for RJB between 0-

10 km). 

The results for PHA in Figure 3.12 suggest good consistency between the models and 

mainshock data for distances up to 100 km. The non-zero residuals of B11 for large distances 

may result from sparse data (especially from old events) for distances greater than 100 km in 

their data set. The B11 model includes an anelastic attenuation term, but the effect is smaller 

than suggested by the data from this event sequence.  

The event terms are shown in Figure 3.14 as a function oscillator period for the six 

considered earthquakes. Also shown are plus/minus one between-event standard deviations 

from the Boore et al. (2014) GMM. For short periods (PGA to 0.5s), the Central Italy event terms 

for the NGA2-I range from zero to -1, whereas they are nearly zero for greater periods. This 

trend is consistent with what was observed for the 2009 L’Aquila event ground motions using 

NGA-West1 GMMs with an Italy adjustment (Stewart et al., 2012). 

 
Figure 3.10. Variation of PHA and PHV with RJB for rock (NTC08: A), stiff (NTC08: B), soft soil 
(NTC08: C, D, E). 
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Figure 3.11. Variation of PHA and PHV with RJB for rock (NTC08: A), stiff (NTC08: B), soft soil 
(NTC08: C, D, E). 

3.5 Spatial Interpolation for Estimating Ground Motions  
Chapters 4-7 of this report describe observations of ground deformation and/or structural 

damage induced by strong ground motion. As such, it is of interest to estimate ground shaking 

at these sites, which generally do not have recording instruments.  

We adopt the approach of Kwak et al. (2012, 2016) for ground motion interpolation. In this 

approach, within-event residuals (), calculated as the difference between total residuals and 

event terms (R-), are plotted in space for a given event (each value of  is plotted at the 

location of the accelerometer that produced it). We then use apply Kriging techniques with a 

semi-variogram model from Jayaram and Baker (2009). Figures 3.15-3.17 show the spatial 

pattern of  computed in this manner (using residuals from the NGA2-I models).   

Armed with the maps from Figures 3.15-3.17, ground motion intensity measures for any 

given location can then be computed as:  

   ln ln k kk GMM
IM IM      (3.2) 

where ln(IM)k is the desired ground motion intensity measure for arbitrary location k, 

 ln k GMM
IM . is the average of natural log means from NGA2-I models as applied for site k (note 
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that this requires the use of a site-specific site-source distance and a site parameter, typically 

VS30),  is the event term for the event of interest (Figure 3.14), and k is the location-specific 

within-event residual (Figures 3.15-3.17). Results of these calculations for sites of interest are 

given in tables near the beginning of Chapters 4 and 6. 

 
Figure 3.12. Within-event residuals of PHA from recorded ground motions relative to 
predictions of the NGA2, NGA2-I andB11. Binned means shown with +/- one standard deviation.  
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Figure 3.13. Within-event residuals of PHV from recorded ground motions relative to 
predictions of the NGA2, NGA2-I andB11. Binned means shown with +/- one standard deviation. 



3-17 
 

 
Figure 3.14. Event terms for PGA and PSA oscillator periods of 0.1-2.0 sec for the three sets of 
models and six events. For context, the +/- one between-event standard deviation is shown: τ2 

for M>5.5 from the Boore et al (2014) and B from Bindi et al (2011). 
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Figure 3.15. Map of the spatial distribution of PGA Residuals for the M6.1 24 August 2016 
earthquake. 
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Figure 3.16. Map of the spatial distribution of PGA Residuals for the M5.9 26 October 2016 
earthquake. 
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Figure 3.17. Map of the spatial distribution of PGA Residuals for the M6.5 30 October 2016 
earthquake. 
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4 Slope Displacements, Landslides, and 
Rockfalls 

Principal authors: Kevin Franke, Robert E. Kayen, Bret L ingwall,  Paolo Tommasi,  Fernando della 

Pasqua, Paolo Zimmaro 

Contributing authors: Ernesto Ausilio,  Francesca Bozzoni, Roberto Cairo, Massimina Castiglia,  

Fil iberto Chiabrando, Paolo Dabove, Melania De Falco,  Anita Di Giulio, Vincenzo Di Pietra, Tony 

Fierro, Giovanni Forte,  Sebastiano Foti,  Dipendra Gautam, Giuseppe Lanzo, Paolo Maschio,  

Luciano Mignell i,  Federico Passeri, Brandon Reimschiissel, Antonio Santo, Fil ippo Santucci de 

Magistris, Antonio Sgobio, Lorenzo Teppati Lose, Giuseppe Tropeano  

4.1 Introduction  
The number and significance of landslides and rockfalls was far greater from the October 2016 

event sequence than the earlier August events. Locations of landslides presented in this chapter 

are provided in Figure 4.1a. As a result, our reconnaissance was organized to emphasize 

documentation of these important case histories. Because our field work occurred only three to 

four weeks after the 30 October event, during a period when the government and local 

authorities were still in an emergency response phase, transportation was challenging and access 

to sites was limited. Nonetheless, we organized the reconnaissance to: 

• Revisit landslide areas inspected following the August events, to assess possible landslide 

reactivation, and 

• Document major new earthquake triggered landslide events. 

As in the reconnaissance for the August events (GEER, 2016), we utilized data on landslide 

susceptibility and risk as derived from pre-earthquake studies, which are reported in two 

databases: (1) the Italian landslide inventory (Inventario dei Fenomeni Franosi in Italia, IFFI 

project, ISPRA - Dipartimento Difesa del Suolo-Servizio Geologico d'Italia, available at: 

http://www.progettoiffi.isprambiente.it, last accessed 22 March 2017), and (2) the plans for 

landslide and flood risk management (PAI), which are both prepared at the basin scale. Figure 

4.1b shows a map that combines IFFI and PAI pre-earthquake landslide areas. Not surprisingly, 

most of the observed landslides were in locations of known landslide risk, although it should be 

noted that many of the observed features were associated with local features such as road cuts 

or road embankment failures. 

Using the procedure described in Section 3.5, we have estimated ground motions (PGA, PGV) 

at each of the locations discussed in this chapter during the 24 August, 26 October, and 30 

October 2016 mainshocks with the results shown in Table 4.1-4.2. The ground motions were 

estimated for a representative site condition of VS30 = 580 m/s. These ground motions do not 

include topography-related site effects, which likely affected ground motions at landslide sites to 

varying degrees. Figure 4.2 shows a map of anticipated peak accelerations across the study region 

from the 30 October event, based on the procedure in Section 3.5.  

http://www.progettoiffi.isprambiente.it/
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Three rain gauges are operated in the area affected by landslides: Visso and Ponte Tavola 

operated by Servizio Idrografico - Regione Marche, and Nerito-Crognaleto operated by Servizio 

Idrografico - Regione Abruzzo. Figure 4.3 shows the precipitation recordings in these gauges over 

the time period of the event sequence (August to December 2016).  

The following sections present case histories with detailed documentation (4.2) and those 

with relatively rapid and less detailed characterization of the features (4.3).  

 

Figure 4.1. (a) Map of observed landslides (green diamonds), along with surface fault projections 
and moment tensors for the three mainshocks; (b) Observed landslides superimposed to the IFFI 
inventory. 
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Figure 4.2. Location of reconnaissance sites, epicenter locations, and spatial distribution of PGA 
for the 30 October M6.5 earthquake. 
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Figure 4.3. Daily rainfall (blue bars) and daily rainfall accumulated over one (black line) and two 
weeks (red line) recorded by (a) Visso, (b) Ponte Tavola (courtesy of Servizio Idrografico - Regione 
Marche), and (c) Nerito-Crognaleto (courtesy of Servizio Idrografico -Regione Abruzzo) rainfall 
gauges. 

Table 4.1. Reconnaissance landslide site locations (Case studies and Imaging). 

No. Lat Lon 

PGA (g) 

Location Summary M6.1 24 
August 

M5.9 26 
October 

M6.5 30 
October 

1 42.92900 13.06800 0.25 0.40 0.37 Nera Landslide 

2 42.93570 13.19010 0.20 0.36 0.38 Monte Bove Rockfalls 

3 42.75057 13.27010 0.51 0.10 0.38 Pescara del Tronto 

4 42.69442 13.25029 0.57 0.07 0.44 Accumoli 

5 42.94923 13.18799 0.18 0.32 0.35 Valle di Panico Rockfall 

6 42.94717 13.14364 0.20 0.42 0.36 Valle di Panico Landslide 

7 42.58433 13.47075 0.12 0.04 0.13 Crognaleto Rockfall (Next to Cervaro Village) 

8 42.59190 13.48990 0.12 0.04 0.13 Landslide near the village of Crognaleto 

9 42.68901 13.15276 0.27 0.11 0.57 Pescia Landslide 

10 42.91877 13.11964 0.26 0.49 0.41 
Rockfalls/Landslides along SP134 Visso - 

Castelsantangelo 

11 42.80816 13.26192 0.44 0.14 0.43 Western flank of Mt. Vettore massif 

12 42.76658 13.16915 0.45 0.20 0.64 
Rockfall SP 477 Arquata-Castelluccio 

(reappraisal) 
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Table 4.2. Reconnaissance landslide site locations (Visual inspection sites). 

No. Lat Lon 

PGA (g) 

Location Summary M6.1 24 
August 

M5.9 26 
October 

M6.5 30 
October 

13 42.891342 13.002303 0.19 0.18 0.29 Rockfalls in Pontechiusita along SP209 

14 42.798017 12.890086 0.10 0.05 0.13 Rockfalls between Piedipaterno and Cerreto 

15 42.674714 13.128963 0.21 0.11 0.46 
Landslide along SP746 road between 

Cittareale and Norcia 

16 42.525667 13.416131 0.09 0.25 0.10 Landslide along road Ortolano-Campotosto 

17 42.865321 13.062843 0.25 0.38 0.36 
Rockfalls along SP476 (between Piedivalle 

and Preci) 

18 42.7114 13.2559 0.56 0.08 0.46 Landslide below the village of Tino 

19 42.795242 13.264144 0.45 0.13 0.42 SP477 road embankment fill damage 

4.2 Detailed Case Studies and Imaging 
The locations of sites described in this section are shown in Figure 4.1 and listed in Tables 4.1 and 

4.2. A total of 19 sites with observed rockfalls and/or landslides have been documented.  

4.2.1 Nera Landslide  

Field Observations 

A large rockfall above the Nera River, a tributary of the Tiber River, occurred just downstream 

and 1 kilometer west of the town of Visso (Figure 4.4 and Table 4.1). No reports of slope instability 

at this location were made following the 24 Aug 2017 event nor the 26 October 2017 event. The 

landslide was witnessed by a passing car during the 30 October 2017 event (Visso resident), who 

had just passed through the Strade Provinciale 209 tunnel west of the site and saw the slide 

debris pass over the roadway in his rear-view mirror.  

 
Figure 4.4. Location of the Nera landslide. 

Estimated level-site ground motions at this location during all three events are shown in Table 

4.1; the largest ground motions are expected to have occurred in the 30 October event. Pre-event 

precipitation in the local region, as recorded at the Visso rain gauge, is shown in Figure 4.3(a). 
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This large rock fall damaged national road SS-209 and formed a small landslide lake as shown 

in Figure 4.5. The rockfall severed road transportation between Visso and the Spoleto Valley. 

Access to Visso, the Nera river valley and the landslide was from the eastern Adriatic coast. 

 
Figure 4.5. Nera rock avalanche photographed from the UCLA DJI Phantom 4 drone at an 
elevation of 400 meters above Route SS209. The primary rock-fall was a wedge that detached on 
the right side of the image and disintegrated into talus debris as it fell 330 meters to the river 
valley floor. The limestone bedding is visible in the scar of the wedge detachment 

Geology 

The landslide occurred in the sedimentary rocks of the Umbria-Marche stratigraphic sequence, 

an early Jurassic to Eocene age formation. The sequence at Nera is a well-layered limestone.  The 

geomorphological landslide inventory map for the Umbria Region by Antonini et al. (2002) shows 

that mapped landslides in the Nera River valley cumulatively cover more than 65 km2, or 6.3% of 

the ground area within the valley. This ratio is similar to the overall ratio for landslides about the 

area of the Umbria-Marche stratigraphic sequence that comprises almost the entire extent of 

the valley (Unit G, Table 4.3). The source of the Nera landslide was not mapped as a landslide in 

the Antonini et al. (2002) inventory. Compared with other geologic units in Umbria, the Umbria-

Marche stratigraphic carbonate sequence has one of the lowest landslide-to-geologic unit area 

ratios (Table 4.3 from Guzzetti, et al. 2004). 

This unit was also subject to rockfall during the Umbria-Marche earthquake sequence of 

September to October 1997 that affected the central Apennines.  That earthquake swarm of two 
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decades prior produced abundant rock falls along the Nera River valley in the vicinity of the 30 

October 2016, event (Guzzetti et al., 2004). 

Table 4.3. Landslide abundance as a function of little logic unit (from Guzzetti et al, 2004). 

 
Geometry of slope failure 

During the 30 October 2016 earthquake, the rock avalanche at Nera separated from the steep 

rock-face in a brittle detachment.  The fall was fast-moving and disintegrative.  Quantitative 

measurements from the rockfall were made from photogrammetric reconstruction of imagery 

captured from the UCA DJI Phanton drone quad copter.  Reconstruction was performed using the 

Structure-from Motion method.  The crest of the valley wall at the top of the detachment is 

approximately 330 meters above SS209.  The slope at the detachment area is between 75° and 

80°. The slope of the debris apron SS209 is about 27°.  The entire talus field covers about 20,000 

m2. 

The upper detachment zone can be seen in the SFM imagery of Figure 4.6-4.7. In these images, 

the bedding is seen with an apparent dip towards the east of 20°-30°, and the wedge is apparently 

a double joint set orthogonal to the bedding.  The failure occurred along the joint sets.  Further 

analysis of the SFM data may resolve the strike and dip of the bedding and the joint sets that 

resulted in the detachment. 

 

Figure 4.6. Headscarp of Nera rockfall. 
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Figure 4.7. 3D Structure-from Motion (SFM) model of the Nera river valley at the rockfall. The 
Nera rock avalanche is seen here from the east (Visso) side of the rockfall.  The light color on the 
midslope is from the setting sunlight on the SfM UAV imagery.  Elevation difference from the 
crest of the headscarp to the river is 330m. 

4.2.2 Monte Bove Rockfalls 
A series of rockfalls was observed along the northern face of Monte Bove, which is prominent 

mountain peak in the Appenine range that is located approximately 4 km east-southeast of the 

hamlet of Ussita. A satellite view image of Monte Bove and surrounding hamlets is presented in 

Figure 4.8Figure 4.. Personal communication with the City Engineer of Ussita revealed that no 

instabilities or rockfalls were observed following the M6.1, 24 August event, but all of the visible 

rockfalls had occurred after the M5.9, 26 October event. Interestingly, he mentioned that no new 

rockfalls on Monte Bove were observed following the M6.5, 30 October event.  Estimated level-

site ground motions at Monte Bove during all three events are shown in Table 4.1.  

Most of the northern flank of Monte Bove is formed by massive or coarsely bedded Jurassic 

limestones of the Calcare Massiccio Formation (MAS). At the top of the mountain the MAS 

formation is overlaid by limestones (Bugarone Formation) with more regular bedding (medium 

to thick beds). The M.te Bove massif has been involved in intense quaternary and ancient 

tectonics which has produced faults trending in a strike range from ESE-WNW to N-S. As a result, 

the rock mass is characterized by both closely spaced joints and persistent joints belonging to the 

major joint sets. However, when looking to the irregular shape of failure surfaces, pervasive 

jointing is evident. In particular, severe loosening of thick outer parts of the intensely fractured 

mountain flank could have favored the detachment of large irregular slices under seismic loading. 
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Figure 4.8. Satellite overview image of Monte Bove and surrounding hamlets (courtesy of Google 
Earth) 

Numerous talus fields were visible along the base of Monte Bove, some of which are visible in 

Figure 4.9. These talus fields were located more than two kilometers from where the GEER 

reconnaissance team members were deployed, and could only be imaged from a distance. 

Suspected source areas for these talus fields were visible on Monte Bove by the lighter coloration 

of the freshly-exposed unweathered limestone (many circled in Figure 4.9). Two particularly large 

rockfalls were observed near the summit of Monte Bove, and are labeled in Figure 4.9. The upper 

rockfall was photographed using a 300 mm telephoto lens (Figure 4.10). The BYU Phantom 4 UAV 

was used to image as much of Monte Bove as possible, but flight altitude and distance-from-

controller limitations prevented the UAV from clearly imaging the large rockfalls near the 

summit. Nevertheless, the captured UAV video was processed using SfM computer vision to 

develop a non-scaled 3D meshed surface model of the most of the mountain minus its summit. 

A screenshot of this model is presented in Figure 4.11. Links to the three-dimensional models 

resulting from this work are available at the GEER web site (Appendices A1-A11), and at the BYU-

PRISM website (last accessed 5 May, 2017). 

http://www.geerassociation.org/index.php/component/geer_reports/?view=geerreports&id=76
http://prismweb.groups.et.byu.net/gallery2/2016%20Central%20Italy%20Earthquakes/
http://prismweb.groups.et.byu.net/gallery2/2016%20Central%20Italy%20Earthquakes/
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Figure 4.9. Phantom 4 UAV image of Monte Bove. Suspected rockfall sources are circled in yellow. 

 

Figure 4.10. Photograph (300 mm) of the upper rockfall near the summit of Monte Bove. 
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Figure 4.11. Screenshot of Monte Bove SfM meshed 3D model. Note the missing summit of the 
mountain in the model due to insufficient UAV imagery 

4.2.3 Pescara del Tronto 
Significant ground deformations were observed in Pescara del Tronto following the August 

events (GEER 2016), and additional ground deformations were observed following the October 

events. GEER investigators explored the village both manually (where feasible and safe) and using 

UAVs (with the BYU Phantom 4 and the Politecnico eBee). UAV-based photographs were used to 

develop orthophotos and SfM 3D points clouds and meshed models of the village. GEER (2016) 

describe in detail the regional geology and observed ground deformations following the 24 

August event. Overall, we observed that the October events caused considerably more damage 

and landslide movements that will be described in this section. Discussion will focus on five 

principal observation areas in Pescara del Tronto, all labeled in the overview image presented in 

Figure 4.12. An aerial image of Pescara del Tronto taken from the BYU Phantom 4 UAV is 

presented in Figure 4.13.  

Structural Damage Area (Location 3a) 

Area 3(a) shown in Figure 4.12 identifies the region of Pescara del Tronto characterized by 

completely collapsed residential structures built upon talus deposits (Figure 4.14). Structural 

damage in this area is described in Section 6.1.5. Structural debris was so complete and 

widespread that it was difficult (if not impossible) to investigate ground deformations in this zone 

from the UAV. Any attempt to manually investigate this zone was infeasible due to the dangerous 

and unstable nature of the debris field. 
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Figure 4.12. Pescara del Tronto locality map. Specific locations referred to in the text shown. 

 

Figure 4.13. Pescara del Tronto aerial photograph taken from the Phantom 4 UAV. 
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Figure 4.14. 3D SfM model of main damaged building area overlying talus deposits (Location 3a). 

Failed Retaining Wall Surrounding Village (Location 3b) 

The lower portion of Pescara del Tronto was partially supported by a 24 m-tall masonry retaining 

wall that surrounded much of the village. Portions of that retaining were observed to have failed 

following the M6.1 event on 24 August. However, all of these retaining walls were observed to 

have collapsed following the October events. Figure 4.15 presents an aerial photograph of the 

exposed talus/fill remaining following the retaining wall failure. Details of the construction of 

these retaining walls is not currently available, but it is suspected that only the walls and the fill 

placed behind the walls failed. The angle of repose for the native talus slope behind the failed 

wall was measured in the SfM 3D model of the village to be 53 degrees.     

Failure of Road Base and Retaining Wall/Fill (Location 3c) 

Moderate to severe damage was observed in most of the roads located adjacent to slopes and/or 

above retaining walls throughout Pescara del Tronto. An example of the typical damage that was 

observed is presented in Figures 4.16 and 4.17. Most of the damaged observed in the roads 

appears to be due to horizontal deformations in the fill material placed on the slopes (Figure 

4.16) or behind the retaining walls (Figure 4.17). Observed damage typically consisted of long 

cracks in the pavement running parallel with the face of the slope or retaining wall, often with 

variable amounts of vertical offsets due to rotation of the retaining wall and/or settlement of the 

underlying fill.    



4-14 
 

 

Figure 4.15. View of talus behind failed retaining wall by Strada Statale No. 4 (Location 3b). 

 

Figure 4.16. Pavement and road base damage induced by underlying stability failure of fill 
material (Location 3c). 
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Figure 4.17. Road damage induced by slight rotation of the underlying retaining wall and/or 
settlement of the retaining wall backfill. 

Landslide Impacting Strada Statale No. 4 (Location 3d) 

Following the 24 August event, the GEER team observed and documented a large landslide below 

Pescara del Tronto that had impacted Strada Statale No. 4, which is the main highway through 

the region and connects cities such as Ascoli Pisceno to Rome. Following the October 2 events, 

significantly more movement was observed on this landslide. An aerial image of the landslide 

captured from the BYU Phantom 4 UAV is presented in Figure 4.18. Limestone boulders in excess 

of 6 m in diameter were dislodged from the slope and rolled onto the highway. It is not clear 

which subsequent earthquake event (or perhaps both) caused the boulders to move. However, 

prior to the movement, a line of rockfall netting had been installed above the highway to prevent 

smaller boulders from bouncing onto the highway. Unfortunately, the massive boulders from the 

landslide overwhelmed the netting (Figure 4.19). In attempt to protect the highway and passing 

cars from any potentially large boulders that could have toppled or slid, it appears that a 

makeshift barrier wall comprised of cargo shipping containers stacked two containers high and a 

concrete barrier was erected along Strada Statale No. 4 (visible in both Figures 4.18 and 4.18). 

Debris from the landslide was resting against this barricade wall, suggesting that the wall had 

been erected before the landslide occurred. It was not clear if the cargo containers were empty 

or filled with some material like sand to provide additional mass to the barrier. Regardless, the 

barrier wall appeared to have worked effectively by keeping the landslide debris out of the single 

remaining travel lane on the highway.  
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Figure 4.18. Aerial photograph of landslide impacting Strada Statale No. 4 below Pescara del 
Tronto (Location 3d). 

 

Figure 4.19. View of damaged rockfall netting caused by loose debris material from the landslide 
above Strada Statale No. 4 (Location 3d). 
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Localized Landslides along Gulley Wall (Location 3e) 

Within the village of Pescara del Tronto, there exists a natural creek that flows down a gulley 

located in the middle of the village. The presence of the gulley gives Pescara del Tronto the 

appearance of an inverted horseshoe shape or upside-down “U” when observed from the air (see 

Figure 4.12). During the December reconnaissance mission, GEER team members observed that 

portions of the gulley wall had failed in localized landslides, causing any overlying structures to 

fall into the gulley (Figure 4.20). The exposed scarps revealed talus comprised of heavily 

weathered limestone.  

Comparing Points of Interest from September 2016 to December 2016 

In Chapter 4 of the GEER (2016) report, several points of interest were observed and noted in 

Pescara del Tronto (Figure 4.21). This section will now compare those same points of interest 

from the September reconnaissance mission with the December reconnaissance mission to 

evaluate the presence of incremental ground deformations. We lack details regarding the origin 

of these changes between the 26 October and 30 October events. Ongoing change detection 

analyses using SfM point clouds is already underway to detect where slopes may have moved 

and to estimate how much movement occurred between the two GEER reconnaissance missions.  

 

 

Figure 4.20. Failure of steepened talus gully wall material and crest area above (Location 3e). 
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Figure 4.21. Site vicinity map showing comparison locations of interest (after GEER, 2016). 

Area 1: Landslide above Strada Statale No. 4: As mentioned above, significant movement 

occurred on the landslide below Pescara del Tronto, directly above Strada Statale No. 4. This 

significant movement is apparent when comparing the landslide from September (Figure 4.22a) 

with the landslide from December (Figure 4.22b). Large portions of the road and supporting 

retaining wall that were standing in September collapsed with the landslide in December. It 

appears that the majority of the very large limestone boulders visible in December were 

dislodged from beneath the road. 
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Figure 4.22. 3D model comparison of the landslide below Pescara del Tronto between September 
2016 (a) and December 2016 (b). 

Area 2: Smaller landslide above Strada Statale No. 4: The smaller landslide just to the south of 

the landslide described as Area 1 was not observed to change significantly between September 

(Figure 4.23a) and December (Figure 4.23b). In this section, even the retaining wall supporting 

the road appeared to maintain its stability. However, significantly more structural debris from 

collapsed residences was observed at this location in December.  
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Figure 4.23. 3D model comparison of the smaller landslide below Pescara del Tronto between 
September 2016 (a) and December 2016 (b). 

Areas 3 and 4: Failed Retaining Wall below Pescara del Tronto: Portions of the 12-25 m-tall 

retaining wall below Pescara del Tronto were observed to have failed in September 2016 

following the 24 August event (Figure 4.24a). All remaining retaining walls were observed to have 

failed by December 2016 following the October events (Figure 4.24b). In addition, another 6 m 

or more of the soil behind the wall also failed and collapsed by December based on 

measurements from the 3D SfM model. Overlying infrastructure and debris (including at least 
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one car) tumbled 12-25 m into the gulley as a result. Interestingly, the remaining side slope is 

nearly linear as it follows the gulley up the creek (Figure 4.25), with a uniform dip angle of about 

53 degrees. This observed linearity of the remaining slope suggests that the failures involved 

anthropogenic soil fills and retaining walls failures, whereas the remaining soil/rock remained 

intact.  

 

Figure 4.24. 3D model comparison of the failed retaining wall below Pescara del Tronto between 
September 2016 (a) and December 2016 (b). 
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Area 5: Landslide near the Head of the Gulley: Following the 24 August event, a minor sloughing 

of the gulley wall was observed from the UAV imaging (Figure 4.26a). However, similar UAV 

imaging performed in December after the October earthquake events revealed that a section of 

the slope nearly 9 m thick and 20 m wide failed and slid into the gulley (Figure 4.26b). The 

remaining scarp is nearly 12 m in height and stands with at an angle of 52 degrees, remarkably 

similar to the same scarp angle that remains behind the failed lower retaining wall (i.e., Areas 3 

and 4). A small residential structure that was observed to rest on top of the slope in September 

had plummeted into the gulley by December.  

Area 6: Landslide on the Northern Slope of the Village: A shallow landslide was observed on the 

northern slope of the city following the 24 August event (Figure 4.27a). This landslide was 

observed to have exposed some tree roots and undermined a few residential structures. 

Investigation of the same slope in December following the October events revealed that the 

depth of the landslide remained relatively unchanged, but the width of the landslide appears to 

have expanded from 17 m in September to more than 36 m in December (Figure 4.27b). However, 

it is difficult to discern from the UAV images and 3D model whether the flattened trees along the 

slope are due to an expansion of the shallow landslide or due to structural debris from above the 

slope.   

 

Figure 4.25. 3D SfM model view of scarp linearity behind failed lower retaining wall in Pescara 
del Tronto. 

Area 7: Haul Road and Exposed Pipeline near the Gravel Pit: A small landslide was observed on 

the slope bounding the gravel pit on the southern portion of the village of Pescara del Tronto, 

adjacent to SP129, following the 24 August event (Figure 4.28a). This landslide was caused by the 

unraveling of weathered limestone and calcareous soils that were underlying a dirt haul road for 

the gravel pit. The landslide exposed approximately 15 m of a 50 cm-diameter pipeline. The 
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condition of the landslide remained largely unchanged following the October earthquake events 

(Figure 4.28b). The slope beneath the haul road degraded slightly more, causing nearly half of 

the haul road above the landslide to disappear. Additionally, approximately 8 more meters of the 

pipeline became exposed from the additional slope movements, causing the pipeline to 

apparently sag and bow slightly. Another smaller pipe of a few centimeters’ diameter was also 

exposed and sagging substantially along the scarp.  

 

Figure 4.26. 3D model comparison of the landslide near the head of the gulley in Pescara del 
Tronto between September 2016 (a) and December 2016 (b). 
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Figure 4.27. 3D model comparison of the landslide beneath the northern slope of Pescara del 
Tronto between September 2016 (a) and December 2016 (b). 
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Figure 4.28. 3D model comparison of the landslide near the gravel pit in Pescara del Tronto 
between September 2016 (a) and December 2016 (b). 

4.2.4 Accumoli  
Significantly more structural and landslide-related damage was observed by the GEER team in 

December following the October events than was observed following the August event and 

documented in GEER (2016). This section will summarize several of the important observations 

made in Accumoli by the GEER team. Figure 4.29 presents a vicinity map that shows the village 
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of Accumoli and highlights three areas of observed damage that will be discussed below. Section 

6.1.2 discussed the distribution of structural damage in Accumoli.  

 

Figure 4.29. Accumoli vicinity map. 

Point 4a: Failed Retaining Wall and Shallow Slope Failure on Eastern side of Village 

Point 4a (42.69442 N 13.25029 E) identifies the location of a rotated retaining wall described in 

GEER (2016). Following the 24 August event, the 4.8 m-tall retaining wall was observed to be 

rotated outwards 3.5 degrees with horizontal movements of 57 cm and downward vertical 

movements of nearly 18 cm. A soil graben nearly 2.7 m wide was observed behind the rotated 

wall, with soil settlements of 45-50 cm.  

During the December GEER deployment, much more damage was observed. It appeared that a 

shallow landslide developed beneath the retaining wall and caused the entire structure to slide 

several meters down the slope. Figures 4.30 and 4.31 present photographs of the head of the 

shallow landslide showing the retaining wall’s former location. Figure 4.32 presents an aerial 

screenshot of the 3D model developed from Phantom 4 UAV imagery of the site. Several features 

of interest are identified in Figure 4.32, and will be discussed below.    
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Figure 4.30. Failure of retaining wall due to shallow landslide (Point 4a, looking towards north). 

 

 

Figure 4.31. Failure of retaining wall due to shallow landslide (Point 4a, looking towards south). 
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Figure 4.32. 3D model screenshot identifying objects of interest with the failed retaining wall and 
shallow slope failure at Point 4a. 

The shallow landslide appeared to be limited to the upper corner of the slope, near the crown. 

The slide therefore likely occurred in the non-native fill slopes placed during the construction of 

the village. The scarp of the landslide appeared to follow the scarp of the soil graben observed 

behind the wall in September, suggesting that the graben may have been caused by more than 

just the rotation of the retaining wall. The landslide displaced the top of the wall between 5 to 6 

m horizontally and between 3 to 4 m vertically downward. In total, approximately 50 m of the 

retaining wall below Accumoli failed and slid 5 to 6 m downslope. This loss of confinement 

resulted in significant horizontal and vertical deformations in the overlying roadway Frazione 

Fonte del Campo (SP18), as shown in Figure 4.33. The road was measured to have displaced 

horizontally between 0.1–1.6 m, and vertically downward 9–50 cm. Vegetation remained intact 

below the collapsed retaining wall, again suggesting that the landslide was likely shallow and 

limited to the upper limits of the slope. However, the rotated telephone pole located further 

down the slope, which was observed to have rotated 13 degrees in September, was observed to 

have rotated a total of 27 degrees in December. However, it is not clear whether this rotation 

was due to displacements of the heavily-vegetated soil slope or due to inertial effects on the pole 

from the earthquake.   

Figure 4.32 also shows a second damaged retaining wall located approximately 60 m to the 

northwest of the collapsed wall (42.6948 N 13.2496 E). 3D model screenshots of the wall in 

September 2016 and December 2016 are presented in Figure 4.34. In September, no rotation of 
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the wall or cracking in the soil were observed. The structure adjacent to the wall was damaged, 

but still standing. In December, the wall was observed to have rotated outward 3.6 degrees, with 

a 1.8 m-wide graben forming behind the wall. The soil in the graben was measured to have settled 

approximately 29 cm. The structure adjacent to the wall was completely collapsed. The 

similarities in the observed damages with this wall with the observed damages of the now-

collapsed wall in September are remarkable, and suggest that another shallow landslide may 

have formed beneath this damaged wall.  

 

Figure 4.33. 3D model screenshot of the destroyed roadway Frazione Fonte del Campo (i.e., SP-
18). 

Point 4b: Shallow Landslide below Southeast Portion of the Village 

During the September 2016 reconnaissance, the GEER team observed a series of shallow cracks 

approximately 5–14 cm in width in the soil below the southeastern slope of the village (42.69406 

N 13.25019 E). These cracks were believed to have been caused by shallow landslide 

displacements in the soft silty-sand located near the surface of the fillslope.  

Much more deformation was observed by the GEER team in December 2016. Figure 4.35 

presents 3D model images of the headscarp cracks in both September (Figure 4.35a) and 

December (Figure 4.35b). In general, the GEER team observed that the cracks developed in the 

24 August event opened further from 5-14 cm to 0.8-1.9 m. The depth of the crack was measured 

from the 3D model as approximately 55 cm. However, beyond the widening of the cracks from 

the shallow landslide, no other significant damage was observed at this point. 
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Figure 4.34. 3D model screenshots showing a retaining wall beneath the northeastern slope of 
Accumoli (a) undamaged in September 2016, and (b) damaged in December 2016. 

 

Figure 4.35. 3D model screenshots showing cracking from a shallow landslide (a) during the 
September GEER reconnaissance, and (b) during the December GEER reconnaissance. 

4.2.5 Valle di Panico Landslide and Rockfall 
Monte Bove represents the southern flank of a narrow valley called the Valle di Panico. The 

northern flank of the valley is formed by a succession of limestone and marly units from Jurassic 

to Cretaceous in age. While traveling to investigate the reported rockfalls observed on Monte 

Bove (described in Section 4.2.2), the GEER team encountered two landslide locations along the 

mountain road that winds along the northern flank of Valle di Panico. These two sites are marked 

the site vicinity map presented in Figure 4.36 as Points 5 and 6, and their latitude/longitude 

Wall rotated 3.6 

degrees 
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coordinates are reported in Table 4.1. The road is cut into thinly-bedded marly limestones 

(Scaglia Bianca Formation) whose bedding joints frequently have a clay/bituminous infilling. This 

structural/lithologic feature together an intense fracturing gives the rock mass quality a low 

quality. The source area of the rock fall at the second site is located in a marly-limestone unit 

featured by thicker layer. In this area the bedrock is extensively covered by slope debris some 

meter thick. 

The first site encountered (Point 5a) was a landslide in the soil slope through and beneath the 

road. An aerial photograph of the landslide is shown in Figure 4.37 (note the fire fighter in the 

upper left corner for scale). The landslide was measured to be 55-60 m in width. While the head 

of the landslide was easily seen in the road pavement, no toe or side scarp of the landslide could 

be traced on the heavily vegetated slope below the road. On the road, the vertical offset 

measured in the pavement ranged from 10-70 cm, and the horizontal deformation ranged from 

2-40 cm. The GEER team observed that the eastern portion of the landslide headscarp showed a 

distinct crack and displacement (Figure 4.38), while the western portion of the landslide 

headscarp appeared more gradual and showed more pavement cracking (Figure 4.39). This 

landslide was believed to have occurred in the shallow soils along the side of the mountain slope, 

and appeared limited in its extents.  

 

Figure 4.36. Site vicinity map for the Valle di Panico, located to the east of Ussita and to the north 
of Monte Bove. 
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Figure 4.37. Landslide encountered along mountain road in the Valle di Panico (Point 5a). 

 

Figure 4.38. 3D model of the eastern half of the Valle di Panico landslide headscarp. 
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Figure 4.39. 3D model of the western half of the Valle di Panico landslide headscarp. 

The second site encountered (Point 5b) was a rockfall nearly 419 m in length along the 

mountain road in the Valle di Panico. A 3D model of the entire rockfall is presented in Figure 4.40. 

The total change in elevation from the source of the boulder to the final resting place on the 

bottom of the valley is approximately 235 m. The sideslope of the valley was measured to rest at 

an angle of 34 degrees from the horizontal (1.5H:1V). Numerous boulder fragments ranging in 

diameter from gravel-size to over 3 m were observed and photographed along the entire rockfall 

length. The largest boulder fragment was observed to rest adjacent to the mountain road, and is 

pictured in Figure 4.41. The source boulder appeared to be approximately 11.2 m in length and 

to have broken free from a formation of heavily weathered and fractured limestone located 91 

m above the mountain road (Figure 4.42). Much of the limestone boulder exploded into gravel-

sized fragments in the first 90 m of the rockfall. The remaining parts of the boulder broke in larger 

fragments while tumbling to the bottom of the valley. At the bottom of the valley, over ten large 

boulder fragments ranging in diameter from 0.8-2.9 m were observed to rest at the valley floor 

just 13 m from what appeared to be a small pump or power house Figure 4.43). Amazingly, none 

of the boulders appeared to damage this small structure.  
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Figure 4.40. 3D model of the Valle di Panico rockfall. 

 

Figure 4.41. Photograph of the largest observed boulder fragment in the Valle di Panico rockfall. 
The boulder measured approximately 3.0 meters in diameter. 
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Figure 4.42. 3D model of the source of the Valle di Panico rockfall, located 90 meters above the 
mountain road. 

 

Figure 4.43. 3D model of the boulders and small power or pump house at the toe of the Valle di 
Panico rockfall. 

4.2.6 Crognaleto Rockfall (Next to Cervaro Village) 
The GEER team visited Teramo Province at the request of the provincial engineers who recorded 

a large rockfall near the village of Cervaro along road Via Treiste, a small mountain road that 

loops from highway SP45a through several hamlets north and east of Crognaleto to the Village 

of Cervaro. Figure 4.44 shows the location on the Via Treiste where we began reconnaissance 
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activities. Due to the steep terrain and the long distances involved in the runout of the boulders 

from this rockfall event, we relied primarily on UAV and LiDAR sensing technologies to collect 

data. The distance between rock source and final position is so large that the rock source is not 

actually captured in Figure 4.44. Figure 4.45 shows an orthophoto from the UAV SfM model 

developed from UAV imagery at the Cervaro rockfall. A LiDAR point cloud model was generated 

but is not shown here. The distance from the rock source to the final position of the last large 

boulder is approximately 530 m with an elevation change of 250 m. Just below the rock face, the 

slope is 31° until about mid slope, when a second massive limestone exposure face adds a 12 m 

vertical face. Below this mid-slope face, the slope flattens to 18° to 20°. 

The Laga flysch formation outcrops extensively in the area and forms high and steep slopes. 

In the Crognaleto area the formation is characterized by a regular structural setting with sub-

horizontal or gently-dipping bedding. The Sandstone (S) to Marl (M) ratio and bedding joint 

spacing are highly variable in the area, depending on their palaeo-environmental location. In both 

Crognaleto and Cervaro areas sandstones prevail and sequences with sandstone layers up to 10m 

thick and thin marly layers are rather frequent. 

Observations conducted on several ledges indicate that spacing of vertical joints normal to the 

slope face (having tectonic origin) is high and can reach 8-9 m. From observation of rockslide 

scars left by failed blocks, spacing of joints parallel to the slope face is lower due to the 

superimposition of tectonic joints to fractures induced by stress-release and stiffness contrast 

between the sandstone layers and the underlying mudstone layers. As a consequence, block 

volume can easily reach tens of cubic meters. This value is definitely high if compared to that 

observed in other areas hit by the seismic sequence (i.e. Amatrice area). Usually persistence of 

vertical joints is sufficient to crosscut the whole sandstone layer. The lower spacing of joints 

parallel to the slope face produces tabular blocks which can fragment more easily thus reducing 

runout. Ledges with large blocks are often located at the crest of very high and steep slopes as in 

the two sites involved in the rockfalls so that blocks have high potential energy. 

No evidence of major rockfalls were noticed in the subject region, near Cervaro village, after 

the 24 August and 26 October events. Nevertheless, these events may have loosened the rock 

mass, especially by weakening the sandstone-mudstone contact and decreasing block 

interlocking. Similarly, there is no evidence of rockfalls caused by the 2009 L’Aquila seismic 

sequence (29 km to the south). However, the finding of large old blocks at both sites indicates 

the two slopes have experienced past rockfalls. Neither site is marked in the official hazard maps 

(http://autoritabacini.regione.abruzzo.it/index.php/carta-delle-pericolosita-pai). Rainfall data 

recorded at Nerito Crognaleto station are reported in Figure 4.3c. Both daily rainfall and rainfall 

accumulated over one and two weeks were not appreciable prior to the 30 October event.  

The rock source itself is an 8 m-thick massive arenaceous limestone exposure that sits at the 

top of the slope like a rim. The primary source area of the rockfall was measured using 3D point 

cloud models to be 8 m tall (the entire thickness of the exposure) and 10.5 m wide, and at least 

3 m deep. Several other, smaller, source areas on the rim-rock exposure were identified and on 

http://autoritabacini.regione.abruzzo.it/index.php/carta-delle-pericolosita-pai
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the mid-slope rock face. However, our data indicates that most of the boulders that reached near 

to the road came from the primary source area at the top of the slope. From the perspective of 

the Via Trieste, the photo in Figure 4.46 shows the mid-slope rock face and the source at the top 

of the slope from the rim-rock limestone exposure.    

 

Figure 4.44. Location of rockfall site near Cervaro village (Crognaleto). 

 

Figure 4.45. 3D SfM model of rockfall site near Cervaro village (Crognaleto). Primary rockfall 
source circled in yellow. 
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Figure 4.46. Source and runout chute of rockfall site near Cervaro village (Crognaleto) as seen 
from road at base of slope. Primary rock source circled in white. 

Below the primary rock source, the large rock mass(es) followed the path of a drainage feature 

to the bottom of the slope just above the Via Trieste where the final large boulder came to rest. 

Figure 4.47 shows an overhead photo from the UAV with large boulder fragments identified. It 

may have been that the source rock was already fractured prior to the earthquake into 1 to 4 m 

blocks that dislodged. It may also be that the rock dislodged in one or two large masses that 

broke apart on the runout down the slope towards the road. The final boulder is 4 m and is shown 

in Figure 4.48, with a 1.7 m tall GEER team member next to the boulder for size perspective. 

 

Figure 4.47. UAV aerial image of rockfall path from source at top of slope to the road at bottom 
of slope. Red circles show boulder fragments larger than 1.5m. Last boulder fragment from 
rockfall near road at base of slope is circled in orange. 
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Figure 4.48. Last boulder fragment (4 meter) from rockfall near road at base of slope. Also 
pictured are freshly toppled trees from the boulder’s roll to its final position. 

4.2.7 Landslide near the village of Crognaleto  
The GEER team visited Teramo Province at the request of provincial engineers who recorded a 

large rockfall near the village of Crognaleto along road SP45a north of Crognaleto. Large blocks 

detached from a 3.5 m thick sandstone seam located at an elevation of 1200 m a.s.l., i.e. about 

100 m and 150 m above the upper and lower stretch of the SP45A motorway respectively, and 

250 m above the valley bottom. The rockfall location is shown in Figure 4.49, about 0.5 km from 

the village. The road SP45a winds along the mountainside at about mid-slope. The rockfall 

occurred at the top of the slope and boulders ran-out across SP45a down the slope. At Site 7, the 

GEER team performed both LiDAR and UAV data collection of the rockfall. 3D point cloud models 

were developed from both datasets. Figure 4.50 presents the SfM model from UAV data. 

 

Figure 4.49. Location of rockfall site near Crognaleto village. 
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Figure 4.50. 3D SfM model from UAV imagery of the rockfall site near Crognaleto village. 

We did not examine closely the rock source at the top of the slope due to the steepness of the 

terrain. However, mapped geology and observations of the boulders both indicate that the rock 

source is massive arenaceous limestone and limestone breccia. The rock in the boulders was very 

strong and hard. Boulders ranged from 1 to 3 m in size. The provincial highway officials had 

blasted apart and cleared several of the larger boulders off of the SP45a roadway, so our 

observations of some boulders are post-blasting. It is possible that several of the boulders may 

have been 6-8 m during the rockfall event. The rock source is a sheer face of two massive layers 

of rock at the top of the slope, each layer approximately 8 m thick. Below of the vertical faces, 

the slope is 30° to 34° and rises 84 m above SP45a. Below SP45a, the slope is approximately 20°.  

One of the UAV images from the perspective of the top of the rock face looking down slope 

across SP45a to the bottom of the slope is shown in Figure 4.51. Several of the large boulders are 

indicated in the Figure below road SP45a. Several of these are “undisturbed” boulders that lay as 

they ended after runout, and several were pushed off of the road by local officials for safety 

precautions and to clear the road. The GEER team observed two large impact craters on the slope, 

indicative of high energy impact by large boulders, so at least two of the large boulders below 

the slope ran-out under their own energy during the rockfall event. The highway officials also had 

to clear the road of at least three large trees that rockfall boulders had toppled across the road.  
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Figure 4.51. UAV image of rockfall site near Crognaleto village from the source area at the top of 
slope looking down to road along runout chute. Note several large 1 to 3 meter boulder 
fragments in the drainage below the road (yellow circles). 

The local highway officials also cleared 9 pre-cast concrete retaining wall blocks off of the road 

after the earthquake. These large pre-cast concrete retaining wall blocks can be seen in Figure 

4.52. Each block is 75cmx100cmx200cm and has some small amount of internal steel 

reinforcement. Two small steel bars connect the blocks in the wall as shear pins. Concrete blocks 

not damaged appeared to be in good condition, with minor surface weathering but no cracking. 

The wall is formed by stacking the blocks with shear pins in place and a thin mortar. The retaining 

wall runs along SP45a for several hundred meters with no damage from strong ground shaking 

or dynamic lateral earth pressures. Only at the location of the rockfall and boulder run-out does 

that wall have any damage. At the location of the boulder runout, it is clear that the boulders 

impacted the back of the retaining wall, dislodged or shattered the top blocks, and then fell onto 

or over the road. Figure 4.53 is a photo taken from SP45a looking up the runout chute towards 

the top of the slope over the damaged wall. A number of boulders are seen in this photo, two of 

which are the remains of a larger boulder blasted by local officials due to an unsafe resting 

position. Other, older rockfall boulders can be seen in Figure 4.53 covered in vegetation. This 
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shows that the area has regular rockfall, and that strong ground shaking from the October 30, 

2016 earthquake has merely accelerated the rate of rockfall at the site. 

 

Figure 4.52. Damaged segmented concrete block retaining wall at roadway. Blocks that fell on 
road have been removed by local officials prior to visit from GEER team. 

 

Figure 4.53. View upslope of damaged retaining wall, boulder fragments and runout chute from 
road at rockfall site near Crognaleto village. 
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4.2.8 Pescia Rockfall  
During the August 2016 earthquake, the mountain slopes high above Via del Passero, just north 

of the town of Pescia, experienced rockfall (site 9a in Figure 4.54). The August 2016 earthquake 

GEER team visited Pescia and collected UAV based imagery and developed a SfM 3D model. 

During the 30 October 2016 earthquake, the mountain slopes experienced much more rockfall, 

so we visited Via del Passero and Pescia for a reappraisal of the rockfall. When we arrived at site 

9a, the team also identified a larger landslide (a rock avalanche) at nearby site 9b. UAV flights 

were performed for both sites 9a and 9b. The 3D SfM model at site 9a serves as the reappraisal, 

while the 3D SfM model at site 9b is new data for the new landslide.  

The August 2016 rockfall was relatively minor compared to that in October 2016. In August 

2016, few boulders that detached from the rock face reached the Via del Passero roadway. In the 

30 October 2016 earthquake, many boulders reached the roadway, with some large boulders 

reaching the valley floor and the stream below the road.  The mountain slopes in the area have 

long been creeping under gravity loads (as seen in Figure 4.55), but when the GEER team visited 

the site, the team also observed displacements of the roadway embankment fills for Via del 

Passero. These slope displacements were not observed after the August 2016 earthquake. 

 

Figure 4.54. Location of Pescia rockfall sites. 
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Figure 4.55. Pescia rockfall. Possible soil slope creep shown by tree trunks. (site 9a). 

The 3D SfM model for site 9a is shown in Figure 4.56, while an orthophoto of the rock face and 

source of the rockfall are shown in greater detail in Figure 4.57. The rock face is approximately 

90 m wide and 60 m high. The rock material that composes the face is a combination of limestone, 

argillaceous limestone, and Marlstone. The GEER team climbed the slope above Via del Passero 

and examined the intact rock at the rock face. The GEER team determined that the rock was at 

times laminated and at times massive. The limestone tended to be massive (and produce large 

boulders), while the Marlstone and argillaceous limestone was laminated to thinly bedded. All of 

the rock species were moderately weathered. The limestone was strong and resisted a geologist’s 

hammer, while the other species of rock crumbled under a blow from a geologic hammer, but 

could not be peeled via a pocketknife. The limestone was hard, while the other species were 

moderately hard. Discontinuities were narrow joints with little infilling and spaced widely. Our 

assessment of the intact rock are that the conditions are ideal for rockfall with boulders up to 2.5 

m. Boulders of this size were indeed observed on the slope, on Via del Passero itself, and at the 

bottom of the slope. Indicated on Figure 4.56 are two boulders of at least 2.5 m that reached the 

valley floor below Via del Passero. Boulder diameters were measured by hand, and compare well 

with the measurements performed via 3D SfM models. The boulders encountered below the tree 

line, on the road, and on the valley floor were all limestone. Boulders above the tree line were 

mostly the argillaceous limestone and marlstone. 
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Figure 4.56. Pescia rockfall site 9a 3D SfM model from UAV data. Rock source and 2.5 meter 
boulders circled in yellow. 

 

Figure 4.57. 3D SfM orthophoto of the rockfall source at site 9a. 

Damage to the pavements occurred between Sites 9a and 9b from boulder impacts. Figure 4.58 

shows one such example. This photo was taken directly up-slope of the large 2.5 m boulders 
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shown in Figure 4.56. Still visible in Figure 4.58 is a smaller 1 m limestone boulder and several 

smaller 150-250cm boulders. The pavement was heavily damaged from multiple boulder impacts 

at this and several other locations.  

 

Figure 4.58. Damage to road from 1-2.5 mm boulder impacts from rockfall between sites 9a and 
9b. 

The larger landslide that occurred during the 30 October 2016 earthquake at site 9b was a rock 

avalanche. The site is shown in Figure 4.59 using a 3D SfM model othrophoto developed from 

UAV imaging. The source rock face is massive but weathered and jointed limestone is at least 50 

m high. The source of the rock avalanche itself is 16 m wide and 32 m high. The slope below the 

rock face varies from 28° to 32° and is around 57 m from the rock face to the road. A flat field 

and Via del Passero lay at the bottom of the slope. The source is shown in Figure 4.59 as the light 

colored part of the rock face. We did not climb the slope to perform a close-up assessment of the 

rock at Site 9b. However, the limestone boulders that travelled to the base of the slope and out 

into the field below Via del Passero indicate the geology and rock type. These boulders were 0.75-

1.25 m. Figure 4.60 shows the perspective of the rock avalanche from the field, where the runout 

down the slope is seen through the trees. 
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Figure 4.59. Pescia rockfall site 9b. 3D SfM model from UAV data. Boulders that have rolled into 
field below the road are circled in yellow. Source is indicated by white circle. 

 

 

Figure 4.60. Pescia rockfall site 9b. Source area at top with runout damage. Not pictured: runout 
boulders across road and into field, corresponding to approximate 30 degree Fahrboeschung 
angles. 
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4.2.9 Rockfalls/Landslides along SP134 Visso – Castelsantangelo 
The slopes on both flanks of the Nera River valley in the section between Visso and 

Castelsantangelo experienced a number of slope failures. The epicenter of the 26 October event 

is near this area. Even though landslide events are reported in the inventory map of landslides 

(IFFI) none of the observed landslides were in areas characterized as having landslide hazard (PAI 

hazard maps).  

Rock exposures within the valley are cretaceous units of the Umbro-Marchigiana succession, 

which are essentially limestones (Maiolica formation) and marly limestones (Scaglia Rossa, 

Scaglia Bianca and Marne a Fucoidi formations). All units are well stratified; bedding joints are 

spaced down to 0.1 m in the Scaglia rossa formation where they are often tight and cemented. 

The Maiolica is characterized by larger spacing but the bedding joints are more continuous and 

have higher loosening (weathering of material in the joints). The structural setting is rather 

regular and is controlled by relatively gentle folding with NW-SE oriented axes (i.e., parallel to 

the valley). Major failures/rockfalls occurred in the Maiolica limestone formation which form the 

lower part of the valley flanks along most of the considered valley stretch. 

On both valley flanks failures have induced rockfalls or small rock avalanches that often 

reached the SP134 motorway and caused partial damming of the Nera River. Source areas are 

not always recognizable thus compromising knowledge of structure and lithology of the slope 

and hence failure mechanisms. However, a number of unstable slopes were well exposed and 

are described below. 

Daily antecedent rainfall histories (cumulated over one and two weeks) recorded at Ponte 

Tavola meteo station, along the SP134 (Figure 4.3b) do not support the contribution of water 

pressures in the rock mass to failure triggering (Figure 4.61). 

Two drone surveys were carried out: i) at km 3 of the SP134 (42.919°, 13.117°), where two 

landslides on opposite flanks of the valley face each other; ii) at km 4 (42.9095°, 13.1308°), where 

a rock slide on the right flank produced a large rockfall that crossed the motorway and the valley 

bottom below. 

At km 3, a 23-m-high rock column consisting of regular sub-horizontal layers of Maiolica 

limestone experienced toppling of the prism cap (9 m high) and falls of blocks from the column 

walls and the cap itself (Fig. 4.61). The prism is isolated by very persistent joints belonging to two 

nearly-orthogonal sets, at about 45° with respect to the direction of the valley and its cap was 

intensely fractured and split in two parts by an opened joint before the 2016 seismic sequence. 

UAV surveys (Figure 4.62) suggest that one half of the cap collapsed and the other was 

damaged as a consequence of the shaking. Similarly, a 4-m-high hanging wedge (center-left of 

Figure 4.62b) and a 5-m-high wedge high (upper-left in Figure 4.62b) failed along a bedding joints 

and slid along two vertical joints, respectively. 
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Drone surveys and pictures at high-zoom also indicate that fracturing of the rock mass is not 

homogeneous. The rock mass above the bedding joint at delimiting the cap bottom is more 

fractured. Similarly, the rock forming the cap and the cliff at is left is more fractured than the rock 

mass at the right of the cap. 

On the opposite valley flank a rock slide occurred at a height of about 100 m above the valley 

bottom and evolved into a small rock avalanche that fell into the Nera River (some blocks reached 

the opposite riverside). UAV drone surveys were instrumental in understanding landslide 

geometry, rock mass quality and failure mechanism. The oblique view in Figure 4.63a shows that 

the failed mass suffered intense fragmentation and eroded the slope with significant entraining 

of debris overlying the bedrock. Figure 4.63b indicates that sliding involved an intensely fractured 

wedge of Maiolica limestone delimited by two persistent joints.  

 

Figure 4.61. Frontal view of the rock monolith at km 3 of SP134 motorway. 
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(a) (b) 

Figure 4.62. Lateral view from the drone of the rock column at km 3 of SP134 (right valley flank) 
(a). The left part of the column cap collapsed producing two small avalanches towards the column 
front and along the column free side. Scars left from two wedges on the adjacent cliff (b). 
Leftward tilting of the column cap is also visible in figure 4.61. 

(a) 
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(b) 

Figure 4.63. General oblique view of the rock slide and subsequent rock avalanche on the left 
flank of the Nera valley (km 3 of SP134 motorway) (a); detail of the detachment area (b). Images 
taken from the 3D model generated by BYU on the basis of drone surveys. 

The left joint (observing the slide from the opposite flank) was a sub-vertical, persistent, 

relatively smooth and striated fault plane, whilst the right joint seems a relatively planar joint 

dipping at low angle toward the valley. It is not clear if the mechanism was planar or three-

dimensional. The wedge is sector-shaped with a height of 19 m and maximum transversal 

dimensions of 8m and 4 m respectively. 

A major failure occurred on the northeast flank of the valley at km 4 of SP 134 within the 

Maiolica limestone formation (Figure 4.64a). The subsequent rock avalanche invaded the 

motorway and the valley bottom below for a stretch of about 70 m with large blocks (Figure 4.64b 

and Figure 4.64c). The main slide scar, located on a rock spur, suggests that the slide was planar 

and occurred along a surface composed of a number of bedding joints dipping parallel to the 

slope. Bedding dip progressively increases from top to bottom of the slide scar (about 15°). The 

sliding surface is stepped both longitudinally and transversally (Figure 4.65a) due to well-spaced 

joints of two sets roughly striking parallel and normal to the slope. On the left side (viewing from 

the opposite, southwest, valley flank) the slide had no confinement. Bedding joints are relatively 

planar and smooth with apparent signs of weathering and oxidation (Figure 4.65b). Weathering 

seems to affect also the sub-vertical joints. The rock mass appears to be loosened and the rock 

material intensely fractured. 

The height of the main slide scar is estimated from the 3D model as 20m. A layer of pervasively 

fractured rock below the main scar (Figure 4.66a), visible on close-range drone images, and the 

general ravinement of the lower half of the slope, suggest that the slide mass might extend 

downward and movement could be more complex. Apparent loosening of the rock mass, the 

pervasive fracturing of the rock at small scale (Figure 4.66b) indicate that the zone is tectonically 

disturbed and the slope underlying the slid rock spur was involved in the failure. 
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Figure 4.64. General oblique view from the drone of the rock slide on the right flank of the Nera 
valley (km 4 of SP134 motorway); the rock avalanche invaded the motorway and the valley 
bottom below for a stretch of about 70 m spreading large blocks (b-c). 

  
(a) (b) 

Figure 4.65. Close-range drone image of the detachment area (a) and detail of a bedding joint 
forming the sliding surface taken from the slide foot (b). 

~ 1.4m 

m

(a) (b)

(c)
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(a) 

 
(b) 

Figure 4.66. Drone image of a layer of cataclasized limestone located under the main slide scar(a) 
and detail of a pervasively fractured limestone block fallen from the slope (b). 

4.2.10 Western flank of Mt. Vettore massif 
During fault rupture mapping of the west face of the Mt Vettore Massif, we observed many 

fissures, cracks, and scarps not directly associated with the primary fault rupture trace along the 

side of the mountain. These fissures, cracks and scarps complicated fault offset mapping and 

required careful interpretation to ascertain which scarps were faulting and which were from 

slope instabilities. These additional fissures, cracks, and scarps were limited to the west face of 

the Massif. None of these were observed on the south face, above road SR477. Figure 4.67 shows 

the location of these slope instabilities on the Massif (point 11), while the location of road SR477 

is shown in Figure 4.67 as point 19. 

These features occurred on a steep slope (21° to 31° based on SfM 3D model and hand 

clinometer with isolated slopes steeper than 40°) on the west face of Mt. Vettore. We mapped 

the cracks, fissures, and scarps in detail in the area of fault crossing the footpath that climbs Mt. 

Vettore. The footpath provided excellent access for the team to the upper portions of the west 

face of the Massif. UAV imaging data was also collected in the area to assist in the interpretation 

of fault rupture scarps versus slope instabilities. Figure 4.68 shows an excerpt from the 3D SfM 

model derived from the UAV image data. The footpath is indicated Figure 4.68 along with the 

fault rupture surface (see Section 2.2), and a number of other fissures, cracks, and scarps that 

are roughly parallel to the fault trace, but are generally lower on the slope. Not all cracks and 

fissures are represented in Figure 4.68, but all scarps with vertical offset of at least 10cm are. In 

the area of Figure 4.68, there are few exposed rock outcrops. The fault tends to run along the 

base of rock outcrops and between those rock outcrops. Other fissures, cracks and scarps tended 

to be well away from rock outcrops in thick soil overburden or at the top of talus slopes. In thick, 

soft, soil overburden, minor slope instabilities have occurred, while in talus slopes the loose rock 

has compacted during shaking. Thin talus over thick soil overburden further complicates mapping 

and identification as thin talus tends to shift and distribute over fissures, cracks, and scarps in the 

underlying soil if the vertical offset is less than 20cm. 
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Figure 4.67. Satellite image of Mt. Vettore Massive showing fault alignment and slope 
displacement sites 11 and 19. 

One means of identifying fault versus slope instability deformations or compaction of talus 

was lateral movement. Scarps with lateral (strike) offset were interpreted as related to the fault, 

while scarps with no lateral offset were interpreted as caused by slope instability or compaction 

of talus. Thus, two main factors were used to determine fault versus slope instability: 1) rock 

outcrop proximity and 2) lateral offset.  When examining 3D SfM or LiDAR based point-cloud 

models, it is impossible to differentiate between the slope instabilities and fault movement since 

rock outcrops can be difficult to discern due to tall grass and low coniferous shrub vegetation and 

the inability to see lateral displacements over such a large area. Conventional field mapping thus 

still plays an important role in determining fault movements.  

Figure 4.69 shows an image of the west flank of Mt. Vettore from the footpath. The fault can 

be seen as the linear feature that runs along the slope towards the large rock outcropping of 

Cima del Lago at the top left of the Massif in the image. Also seen are thick talus slopes below 

the fault. One of the key features that enables the distinction between faulting versus slope 

instability or talus compaction as the cause of the linear feature is the large fault offsets recorded 

at Cima del Lago. At Cima del Lago, limestone bedrock rises steeply to exposure at the surface. 

Below the limestone exposure is thick sediments without thick talus. At this location very few 

fissures, cracks, or scarps were identified aside from the fault trace. The only scarp lower on the 

slope at this location is the western trace of the Mt. Vettore fault, approximately half way down 

the face of the Massif to the Piano Grande plain below. No indications of slope instability, 

landsliding, or talus compaction were observed at Cima del Lago.  
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Figure 4.68. Excerpt from 3D SfM model from UAV data of the side of Mt. Vettore. The blue 
dashed line indicates the footpath. Red dashed line indicates scarps interpreted as the fault 
rupture trace(s). The yellow lines indicate scarps interpreted as minor slope instabilities. Looking 
from the west to the west face of Mt. Vettore. On the right of the image the slope descends on 
the south face towards road SR477. 

 

Figure 4.69. View of the east slope of Mt. Vettore showing talus slopes and fault rupture trace. 
Fault rupture displacements and strong ground shaking have caused densification and sliding of 
talus. 

In very steep areas of the west flank of the Mt. Vettore Massif, fault rupture and slope 

instability were occasionally present together. Figure 4.70 shows an example, where the fault 

offset is being measured but above and below of the fault, blocks of soil have displaced. In some 

instances, the blocks that tumbled across the fault making measurements of the fault offset 

impossible. The slope in Figure 4.70 was approximately 40°.  
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Figure 4.70. Image of fault scarp and associated nearby slope instabilities (yellow). 

4.2.11 Rockfall SP 477 Arquata-Castelluccio (reappraisal) 

Rockfall in a layered limestone unit occurred along the SP477 route between Castelluccio and 

Norcia (Figure 4.71), showering the road with large blocks. The rockfall was observed following 

the 24 August event and again after the October events. All of the rockfalls were apparently the 

result of isolated blocks of limestone that detached from the outcropping bedrock above the 

highway. As with the August event, most of these blocks came to rest on the road, but individual 

boulders crossed the highway and descended a steep ravine. A UAV phantom4 was used to fly 

the outcrop bridge (Figures 4.72-4.73). Maximum block run out distances were on the order of 

375 m, descending a net elevation change of 190-210 m.  

  

Figure 4.71. Location of the rockfall on road SP 477 between Arquata and Castelluccio. 
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Figure 4.72. Overlay of the UAV orthomosaic on top of the Google Earth image of SP477, the 
Castellucio-Norcia highway. Isolated boulders descended from the outcrop NE trending ridge on 
the left down to a ravine on the right side of the ortho mosaic, a maximum distance of 
approximately 375 m as indicated by the blue line. No other area along this highway had intense 
rockfall. 

 

Figure 4.73. The most active area along Route SP 477 is below a large south facing ridge of 
limestone. The white areas near the top of the ridge are zones where fresh rock is exposed 
following collapse of blocks. This ortho mosaic is part of a three-dimensional model produced 
using a UAV phantom 4. 
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We performed a field reconnaissance along the SP 477 (indicated in Figure 4.71). During our 

visit (December 10, 2016), public vehicular movement along the road was not possible because 

of pavement fissures, embankment failures and rock obstructions. Indeed, several rock fall sites 

and mass movements along SP477 were observed between 42.776881N 13.143958E and 

42.770243N 13.151854E. Roadway damage mainly consisted of cracks along the road, uneven 

track trails, edge barriers destroyed by rock falls, and damaged rock protection nets. Several 

boulders were unstably supported by vegetation on the steep mountain slopes. Due to steep 

slopes, most of the falls should have run down, however countable debris was still present on 

road pavement during our visit. Generally, boulder sized rocks were present in debris and the 

same sized were found in the unstably supported condition. A systematic overview of the various 

damage features is presented in Figures 4.74-4.79. Minor damage in culvert was observed across 

the road section. A telecommunication facility near the road pavement was found to be not 

damaged due to rockfall (see Figure 4.80). 

 

Figure 4.74. Rockfalls with boulders on the road. 
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Figure 4.75. Rockfalls with boulders on the road. 

 

Figure 4.76. Debris avalanche along the scarp of a previous landslide. 
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Figure 4.77. Debris and boulders captured by the rockfall protection nets. 

    

Figure 4.78. Boulders supported by the vegetation. 

    

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 4.79. Fracture along the road, large vertical offset due to fracture and ultimate movement, 
damaged edge barriers and debris and boulders on the road surface. 

(c) (d) 

(e) (f) 

(g) (h) 
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Figure 4.80. Telecommunication facility (a) over and (b) under the road. 

 

4.3 Quick checks (Visual inspections) 

4.3.1 Rockfalls in Pontechiusita along SP209  
Along the provincial road SP209 between Triponzi and Visso southwest of the Nera landslide 

(Figure 4.81), we identify several evidences of rockfalls and debris-flows. This stretch of road runs 

along the Nera river. The geology of the area is characterized by the presence of screes inside the 

local carbonatic formations. The IFFI landslide inventory (Figure 4.1b) classifies this area as 

subjected to widespread rock falls and slumps.  

Figure 4.82 shows some of the rockfalls in the calcareous formations located on the left bank 

of the Nera river that we have identified after the 30 October 2016 earthquake. Many blocks, 

having a volume ranging from a dozen of cubic centimeters to a few of cubic meters, have been 

found on the shoulder or across the road. At the time of our reconnaissance, slide debris 

remained on the road and the highway was still closed.  

The area has been subjected to slump failures in the past. As a result, slope protections (i.e. 

rockfall nets, dynamic rockfall barriers or catch fences) are present along the road. Figure 4.83 

shows many cases in which rock-nets have been passed over or damaged by boulders and rock-

blocks. The slope located on the right bank of the Nera river has been interested by various slope 

instability events. They consisted of gravel debris. These features (Figure 4.84) are similar to 

those observed for the Nera landslide (Section 4.2.1) but very limited spatially and in volume. 

(a) (b) 



4-63 
 

 

Figure 4.81. Location of the rockfalls in Pontechiusita along SP209. 

  
Figure 4.82. Rockfalls along the SP209 between Triponzi and Visso. 

  
Figure 4.83. Slope protection damaged by boulders and rock-blocks. 

(a) (b)

(c) (d)
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Figure 4.84. Debris occurred on the right bank of the Nera river along SP209 (lat 42.9157N, lon 
13.0456E). 

4.3.2 Rockfalls between Piedipaterno and Cerreto 

We observed several rock failures along the highway SS685 (also known as Tre Valli Umbre) 

between the villages of Piedipaterno and Borgo Cerreto (Figure 4.85). These features, shown in 

Figure 4.86, are mainly isolated rock falls having a volume ranging from a dozen of cubic 

centimeters to a few of cubic meters. The geology of the site is characterized by the presence of 

calcareous rock formations known as red flakes (scaglia rossa), and screes constituted by broken 

rock fragments variously sized. The IFFI landslide inventory (Figure 4.1b) classifies this area as 

subjected to widespread rock falls and slumps. We did not observe damages on the slope 

protections (i.e. rockfall nets, dynamic rockfall barriers or catch fences) present along the road.  

 

Figure 4.85. Location of the rockfalls between Piedipaterno and Cerreto along highway SS685. 

(a) (b)
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Figure 4.86. Rockfalls between Piedipaterno and Cerreto along highway SS685. 

4.3.3 Landslide along SP746 road between Cittareale and Norcia  
Along the SP746 road between Cittareale and Norcia a localized landslide was observed (Figure 
4.87). The landslide was located in the vicinity of the Calcareous Breccia failure site as reported 
by earlier GEER report (see GEER 2016). The landslide occurred in the carbonate sequence named 
Corniola as from the geological map of the Umbria region 
(http://www.regione.umbria.it/paesaggio-urbanistica/cartografia-geologica-per-google-earth). 
From a general inspection of the area, no damage to the road was observed however the debris 
from the road was already cleared during our visit (Figure 4.88) so that a minimum level of 
damage can be assigned. The overall mass movement was confined to ~50-70 m. Along the mass 
movement site, a retaining structure was present that appears to have limited damage. The wall 
itself was undamaged (Figure 4.89). Other nearby locations presented some rock falls although 
such rock falls were confined to rockfall protection nets and no road obstructions were observed 
(Figure 4.89). In case of absence of rockfall protection nets, debris including boulders were 
observed beside the pavement (Figure 4.89).  

(a) (b)

(c) (d)

http://www.regione.umbria.it/paesaggio-urbanistica/cartografia-geologica-per-google-earth
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Figure 4.87. Location of the landslide between Cittareale and Norcia along the SP746. 

 

     

Figure 4.88. Landslide between Cittareale and Norcia along the SP746: (a) General view of the 
area; (b) Zoom on the crown and main body of the scarp. 

     

(a) (b) 

(a) (b) 
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Figure 4.89. Failure in calcareous breccia between Cittareale and Norcia along the SP746: from 
(a) to (e) view of the all facade; (f) rockfall on the road. 

4.3.4 Landslide along road Ortolano-Campotosto  
We observed a shallow landslide along the road of Ortolano-Campotosto (Figure 4.90). Figure 

4.91 shows the extension of this feature. Along the whole longitudinal extension of the landslide, 

there is a cut and fill road. The landslide has a spatial extension, along the road of 100 m, with 

observed maximum vertical offsets of 3-5 m. According to the official geologic map of Italy (sheet 

139, 1:100,000 scale; http://193.206.192.231/carta_geologica_italia/tavoletta.php?foglio=139, 

last accessed April 29, 0217) and the ISPRA geologic map (sheet 349, 1:50,000 scale; 

http://www.isprambiente.gov.it/Media/carg/349_GRANSASSO/Foglio.html, last accessed April 

29, 0217), the formation in this area comprises highly fractured sandstones and marly-clayey 

strata. The sandstone stratum, is buried by a weathered soil cover, which was affected by the 

observed landslide feature. 

On the exposed surface of the landslide we observed silty clay with traces of sand, gravel, and 

cobbles. Figures 4.92-4.96 show several cracks on the road, fissures and minor scarps on the cut 

slope, and minor slide features on the fill slope. We did not observe major damages on the slope 

protections (i.e. rockfall nets) present along the road (Figure 4.97) 

(c) (d) 

(e) (f) 

http://193.206.192.231/carta_geologica_italia/tavoletta.php?foglio=139
http://www.isprambiente.gov.it/Media/carg/349_GRANSASSO/Foglio.html


4-68 
 

 

Figure 4.90. Location of the landslide along the road Ortolano-Campotosto. 

 

 

Figure 4.91. (a) Overview of the whole longitudinal extent of the landslide area; (b) close up view 
of the landslide-related features from the road Ortolano-Campotosto.  

(a) (b)
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Figure 4.92. Cracks along the road. 

 

Figure 4.93. A slide observed on the fill slope. 

(b) 

(c) (d) 

(a) 
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Figure 4.94. Fractures on the cut slope. 

 

Figure 4.95. Damages along the road.  

    

(a) (b) 

(a) (b) 
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Figure 4.96. Minor scarps observed on the cut slope side of the road. 

 

Figure 4.97. Rock-net protection with captured debris.  

4.3.5 Rockfalls along SP476 (between Piedivalle and Preci)  
We observed several rock failures along highway SP476 between the villages of Piedivalle and 

Preci (Figure 4.98). The geology of the area is characterized by alluvial deposits, and scaglia and 

maiolica limestones. The IFFI landslide inventory does not classify this area as susceptible to 

landslides. Between Piedivalle and Preci, along SP476 we have observed several minor rockfalls 

(Figure 4.99). At the time of the GEER reconnaissance mission the entire road had been cleared 

and was open to traffic. This road is important for post-earthquake emergency and post-

emergency activities, because it is the only primary road that goes north of Norcia towards Preci 

and Visso. However, many secondary roads were still closed (Figure 99d). We did not observe 

(c) (d) 
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damage to slope protections (i.e. rockfall nets, dynamic rockfall barriers or catch fences) present 

along the road.  

 
Figure 4.98. Location of the rockfalls along SP476 (between Piedivalle and Preci). 

  

  
Figure 4.99. Observed rockfalls along SP476 (between Piedivalle and Preci). 

4.3.6 Landslide below the village of Tino 
While attempting to reach the landslides at Pescia, the GEER team tried to use a small road 

parallel to SS4 that winds through the foothills of Mt. Vettore. Soon after turning off of SS4, we 

found the road unpassable due to a landslide that followed the August 2016 and the 26 October 

26 events. It is possible, however that this landslide was triggered by a Magnitude 5.0 aftershock 

(a) (b)

(c) (d)
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that occurred on November 30, 2017 as the landslide was not reported immediately after the 

October 30 earthquake. However, the road is small and only leads to villages indirectly so lack or 

reporting may have been simple omission. This small landslide occurred at the location of a 

heavily vegetated steep hillside where local highway officials have long had problems with minor 

rockfall. Rockfall netting had been installed in the exact area of the landslide some years prior 

and extends only a few meters beyond the extents of the landslide. Thus, the GEER team infers 

that the landslide occurred on a marginally stable slope. Figure 4.100 shows the location of the 

landslide and the small road. Main highway SS4 is located only a few hundred meters to the east 

across a thick wood and a small pond.  

Figures 4.101 and 4.102 show the landslide. Several of the boulders from the landslide 

measured 2 m and appeared to be heavily weathered. Rock was limestone or dolomite (limited 

time at the site to assess rock type did not allow for more precise identification). Soil cover over 

the rock was thin (less than 30cm). The slide debris consisted of large amounts of vegetation, as 

would be expected given the heavy forestation of the slope. No seepage was observed at the 

bottom of the slide or within the slide mass. To the south and the north of the landslide the slopes 

are flatter (15° to 20°), while at the location of the slide, the inclination is approximately 34° as 

measured via a clinometer. Landslide width was estimated at 11 m.  

 

Figure 4.100. Location of the Landslide below the village of Tino on small road parallel to highway 
SS4. 
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Figure 4.101. Landslide debris covering the roadway. Boulders range in size up to 2 meters. Also 
pictured is rockfall netting used by local officials for minor rockfall control on the slope.  

 

Figure 4.102. Landslide debris and head scarp. Also pictured is rockfall netting. 

4.3.7 SP477 Road embankment fill damage  
The fill embankment for Road SP477 running across the south face of Mt. Vettore was damaged 

in the 30 October event, occurring at the same location as the Mt. Vettore fault surface rupture 

(Figures 4.103 and 4.104). No reports of slope instability at this location were made following the 

24 August event nor the 26 October event. Road embankment damage was parallel to the 

roadway, in the direction of the slope. 
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Figure 4.103. Location embankment fill damage area next to fault trace zone along SP477 road, 
Mt Vettore. 

 

Figure 4.104. 3D SfM model of embankment fill damage area next to fault trace zone along SP477 
road, Mt Vettore. Fill that has experienced 15 to 20cm lateral displacement circled in yellow. 
Observed fault rupture trace shown in red. 

We visited the fault rupture and observed the embankment slope damage after documenting 

surface fault rupture offset. At the location of the SP477 road, strike displacements on the Mt. 

Vettore fault (in the direction of the embankment displacement down slope) were observed to 

be zero. Therefore, the GEER team concluded that the roadway embankment damage was from 

slope displacements rather than lateral fault rupture. Lateral displacement of the slope was 

estimated at 15cm to 20cm. Cracking parallel to the road along the top of the embankment is 

seen in Figures 4.105 and 4.106. The total height of the embankment slope was measured at 25-

35 m from 3D SfM model (Chapter 2) for the south face of Mt. Vettore. The embankment fill 
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slope is approximately 20° to 30°, while the slope of Mt. Vettore near the embankment fill is 15° 

to 20°. Slopes were also measured from 3D SfM model for the location. Embankment material 

appeared to be a compacted mixture of low plasticity clay soil, granular native limestone 

aggregates and chert fragments from roadway construction. 

 

Figure 4.105. Road embankment damage along SP477 road, Mt Vettore (Location 19, viewing 
North). Note fault trace across road and black (new) bitumen repairs following previous (24 
August 2016) earthquake. 

 

Figure 4.106. Road embankment damage along SP477 road, Mt Vettore (Location 19, viewing 
west). 
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5 Mud Volcanoes 
Ernesto Ausil io, Roberto Cairo, Maria Giovanna Durante, Giuseppe Lanzo, Paolo Zimmaro  

5.1. Initial Report and Field Reconnaissance 
Mud volcanoes are a typical expression of sedimentary volcanism, usually associated with thick 

overpressured sequences (i.e. pore fluid pressure exceeds the hydrostatic pressure). 

Argillaceous sediments are often the source of the ejected material (Yassir, 1989). Mud 

volcanoes typically emit saline waters and hydrocarbons. Erupted water is usually alkaline with 

pH values ranging between 5-9 (Yassir, 1989; and references therein). Overpressure buildup 

mechanisms include, but are not limited to, sedimentary or tectonic loading, deep fluid 

migration, and aquathermal processes. Overpressured fluids typically flow along morphological 

discontinuities or geological structures such as fault planes, anticline axes, or preexisting 

deformations (Mazzini, 2009). As a result, mud volcanoes are usually present in active tectonic 

areas, and they are often triggered by large earthquakes (e.g. Manga and Brodsky, 2006; 

Mellors et al., 2007; Manga et al., 2009). Manga et al. (2009) show that pre-existing mud 

volcanoes are more sensitive to earthquakes than quiescent systems. Mud volcanoes play a 

critical role in natural ecosystems as they contribute to the global atmospheric methane budget 

(Etiope and Milkov, 2004; Kopf, 2003). 

To establish whether an eruption is triggered by an earthquake, several authors proposed 

various methodologies based on empirical time- or space-windows. Linde and Sacks (1998) and 

Mellors et al. (2007) define an eruption as earthquake-triggered if it occurs within ∼100 km of 

the epicenter of large earthquakes(M>5.5). Manga et al. (2009) consider, as earthquake-

triggered eruptions occurred within 2 days from the earthquake event, using data compiled by 

Bonini (2009). 

After the M6.5 30 October 2016 earthquake, new eruptions were detected at Monteleone di 

Fermo and Santa Vittoria in Matenano, in the province of Fermo (Marche region). Figure 5.1 

shows the location of the observed mud volcanoes in the villages of Monteleone di Fermo and 

Santa Vittoria in Matenano (located 38 and 44 km, respectively, from the epicenter of the M6.5 

30 October 2016 earthquake). The first organization to investigate these phenomena and to 

release a report on the subject was INGV on 3 November 2016 

(https://ingvterremoti.wordpress.com/2016/11/11/sequenza-sismica-in-italia-centrale-i-

vulcanelli-di-fango-in-provincia-di-fermo/, last accessed 23 March, 2017; hereafter INGV, 2016). 

On the basis of this prior research, the GEER reconnaissance team visited the area, providing 

further documentation and testing of the phenomenon. 

5.2. Mud Volcanoes in Monteleone di Fermo 
The village of Monteleone di Fermo is known as the Land of Mud Volcanoes as they are a 

regularly occurring phenomenon. Figure 5.2 shows a tour sign located in the area of Santa 

https://ingvterremoti.wordpress.com/2016/11/11/sequenza-sismica-in-italia-centrale-i-vulcanelli-di-fango-in-provincia-di-fermo/
https://ingvterremoti.wordpress.com/2016/11/11/sequenza-sismica-in-italia-centrale-i-vulcanelli-di-fango-in-provincia-di-fermo/


5-2 
 

Maria in Paganico in the town of Monteleone di Fermo. There are six mud volcanoes located 

along the Ete Vivo river. The mud volcanoes located in Monteleone di Fermo are induced by the 

emission of pressurized gas coming from underground deposits of organic material, natural gas, 

and hydrocarbons.  

We inspected two mud volcanoes that erupted within one day from the M6.5 30 October 

earthquake event (Figure 5.3): (1) Santa Maria in Paganico (Figures 5.4a-b) and (2) Valle 

Corvone (Figures 5.4c-d-e-f). In both cases, we observed fresh deposits of ejected material. 

Both eruptions, are located within 45 km from the epicenter. . During our reconnaissance 

activities, both mud volcanoes showed a reduced activity, with a small emission of water. We 

inspected the sites about one month after the INGV reconnaissance mission. We did not detect 

any new activity or variations in the soil surface conditions in the inspected area as shown in 

Figure 5.5. As shown in Figure 5.4c-d-e-f, the material erupted by the mud volcano located in 

Valle Corvone covered a wide area involving both the river and the pavement of the road. This 

mud volcano is characterized by radial fractures 140 cm long, 38 cm wide and 80 cm deep. This 

eruption partially blocked the Ete river’s course (Figure 5.4f). 

 
Figure 5.1. Location of the observed mud volcanoes. 
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Figure 5.2. Tour sign indicating mud volcanoes sited in Monteleone di Fermo. 

 

Figure 5.3. Location of the observed mud volcanoes in Monteleone di Fermo. 

Figure 5.4b shows the sampling activities performed in Santa Maria in Paganico. We sampled 

soil and water erupted from the volcano in Santa Maria in Paganico (SP1), and soil in Valle 

Corvone (SP2). Both samples were taken on 13 December, 2016. We performed conductivity, 

alkalinity, and chemical analyses on the water erupted from the volcano in Santa Maria in 

Paganico (SP1); sieve analysis, along with Atterberg limits on soil ejected by both volcanoes 

(SP1 and SP2). The erupted water presents a value of conductivity of 791 S/cm and a pH of 

7.97. Moreover, the chemical analysis revealed the presence of potassium (K+), sodium (Na+) e 

magnesium (Mg2+). The water appears to be slightly alkaline and with the presence of alkaline-

earth materials. No metal elements have been found. These values are consistent with typical 

ranges observed in other mud volcanoes globally. 
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Figure 5.6 shows the particle size distribution for samples SP1 (Santa Maria in Paganico) and 

SP2 (Valle Corvone). The soil in sample SP1 is constituted of 57.4% brown silt, 31.6% clay and 

11.0% sand. The fine-grained soil exhibits a liquid limit LL = 47.5%, a plastic limit PL = 17.8%, and 

a plasticity index PI = 29.7%. The plasticity chart (Figure 5.7a), shows that the soil of sample SP1 

can be classified as inorganic clay (CL) or organic silts and clays of low plasticity (OL). For SP1, 

the activity of clay is 0.94 and is therefore defined as normal (Figure 5.7b). The values of the 

Atterberg limits are representative of clayey soils for SP1. For SP2, the silt fraction is 66.2%, the 

sand fraction is 23.7%, and the clay fraction is 10.1%. The Atterberg limits for SP2 are LL = 

30.7%, PL = 18.7%, the plasticity index is equal to 11.9% and the fine-grained soil can be 

classified as inorganic clay (CL) or organic silts and clays of low plasticity (OL). The activity of 

clay for SP2 is normal (Fig. 5.7b). The Atterberg limits for SP2 are typical of silty soils 

  

  

(a) (b)

(c) (d)
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Figure 5.4. (a) overview of the mud volcano in Santa Maria in Paganico; (b) sampling activities in in 
Santa Maria in Paganico; (c) crack originated by the mud volcano in Valle Corvone, (d) mud volcano 
in Valle Corvone, (e) details of a crack in Valle Corvone, (f) close-up view of the material ejected in 
the Ete Vivo river (Valle Corvone). 

  

  
Figure 5.5. (a) and (b) photos of the mud volcano in Valle Corvone taken by INGV in November 
2016 (INGV, 2016); (c) and (d) photos of the mud volcano in Valle Corvone taken from a common 
perspective by GEER in December 2016. 

(e) (f)

(a) (b)

(c) (d)
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5.3. Mud Volcanoes in Santa Vittoria in Matenano 
The nearby location of Santa Vittoria in Matenano presented both reactivation of a mud 

volcano formed 15 years ago and since dormant, as well as newly-formed mud volcanoes. Two 

volcanoes formed in Contrada San Salvatore, the flow of which covered a wide area and 

produced large deformations of the neighboring soil. INGV (2016) reconnaissance immediately 

following the event pointed out the level of carbon dioxide emission from the soil to be within 

normal ranges. Low temperatures were measured; which is a characteristic feature of the 

phenomenon.  

We inspected the newly formed volcano that erupted within one day from the M6.5 30 

October earthquake event. Figure 5.8 shows the location of this eruption. Figure 5.9 shows 

photos taken during our reconnaissance. During our reconnaissance activities, the eruption 

showed a reduced activity, with a small emission of water. We inspected the site about one 

month after the INGV reconnaissance mission. We observed a substantial increase in the 

erupted material compared to the INGV reconnaissance (Figure 5.9).  

 

Figure 5.6. Particle size distributions of the mud volcano soils in Monteleone di Fermo and 
Santa Vittoria in Matenano. 
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Figure 5.7. (a) Plasticity chart and (b) activity chart of the mud volcano soils in Monteleone di 
Fermo and Santa Vittoria in Matenano. 

 

 

Figure 5.8. Location of the inspected mud new volcano in Santa Vittoria in Matenano. 

We sampled soil erupted from the volcano in Santa Vittoria in Matenano (SP3). This sample 

was taken on 16 November, 2016. On this sample, we performed sieve analysis, along with 

Atterberg limits. Figure 5.6 shows the particle size distribution for samples SP3. It is consistent 

with those observed for the mud volcanoes in Monteleone di Fermo. The fine-grained soil 

exhibits a liquid limit LL = 33.0%, a plastic limit PL = 16.0%, and a plasticity index PI = 17.0%. The 

plasticity chart (Figure 5.7a), shows that the soil of sample SP3 can be classified as inorganic 

clay (CL). The clay can be classified as inactive (Figure 5.7b).  
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Figure 5.9. Overview of the mud new volcano in Santa Vittoria in Matenano. 

5.4. Earthquake-triggered eruptions and correlations between 

earthquake magnitude and distance 
Manga et al. (2009) and Delle Donne et al. (2010) proposed empirical relationships for 

earthquake-induced eruptions, based on earthquake magnitude and distance (Figure 5.10). The 

limit curve of Manga et al. (2009) is based on an empirical database of 29 mud volcano 

eruptions that occurred following earthquakes with magnitudes M=4.5-9.3 at epicentral 

distances of Repi=4-900km. Delle Donne et al (2010) based their relationship on a larger dataset 

of 68 data points derived for M=4.5-9.5 events and Repi=10-10000km. The two limiting curves 

have similar shapes. Mazzini and Etiope (2017) argue that for large magnitude events, eruptions 

can be triggered at very long distances. Furthermore, Mazzini and Etiope (2017) point out that 

many data points lie above the threshold curve developed by Manga et al. (2009), also for 

relatively small magnitude events. As a result, they believe that the model by Delle Donne et al. 

(2010) should be generally preferred. Figure 5.10 shows all data points used by Manga et al. 

(2009) and Delle Donne et al. (2010), along with their limiting curves. Also shown in Figure 5.10 

are the earthquake-triggered eruptions observed in this study. The data points related to the 

Central Italy earthquake are consistent with the general trend, and they lie below both limiting 

curves. 

(a) (b)

(c) (d)
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Figure 5.10. Earthquake magnitude versus epicentral distance for earthquake-triggered mud 
volcanoes, along with limiting curves from Delle Donne et al (2010, blue dashed curve), and 
Manga et al. (2009, black dashed curve). Red dots represent data collected in this study, blue 
dots are data points from Delle Donne et al. (2010), black dots are data points from Manga et 
al. (2009). 
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6 Performance of buildings and damage 
patterns 

Principal authors: Sebastiano Foti, Alessandro Pagliaroli,  Anastasios Sextos, Paolo Zimmaro  

Contributing authors: Ernesto Ausilio, Francesca Bozzoni, Robe rto Cairo,  Maria Chiara Capatti,  

Massimina Castigl ia, Fil iberto Chiabrando, Paolo Dabove, Raffaele De Risi, Francesca Dezi,  

Vincenzo Di Pietra, Luigi  Di Sarno, Maria Giovanna Dur ante, Tony Fierro, Kevin Franke,  Dipendra 

Gautam, Silvia Giallini, Zurab Gogoladze, Giuseppe Lanzo, Paolo Maschio, Luciano Mignelli,  

Michele Mucciacciaro, Federico Passeri, Brandon Reimschiissel, Fil ippo Santucci de Magistris,  

Antonio Sgobio, Stefania Sica, Armando L. Simonell i,  Fiorenzo Staniscia, Lorenzo Teppati Lose , 

Giovanna Vessia  

As was done in reconnaissance following the August 2016 event sequence, following the 

October 2016 events the GEER team evaluated building damage patterns for villages in broad 

region affected by both August and October events. In analyzing this data, we benefitted from 

previously collected geological and topographical information that can provide insight into 

factors contributing to damage patterns. Aside from the data collected during the 

reconnaissance itself, the information sources used in this analysis is essentially identical to 

those described in GEER (2016). In this chapter, we utilize this information without detailed 

descriptions of geologic setting, terrain, etc., which are provided in the earlier report.  

As before, we utilize aerial images from Orthohotos, 3D texture models from drones 

(detailed in Chapter 4), detailed ground surveys, and general qualitative ground surveys. The 

scale of the reconnaissance performed following the October events was more limited than 

that following the August events, with GEER in a lead role with participation by researchers 

sharing affiliations with Reluis Center for Microzonation and its applications, and the Hellenic 

Association of Earthquake Engineering. We have shared our results with EERI, which we 

understand is planning work in mid-2017.  

Structural damage is mapped according to a standard classification scheme that is described 

in Section 5.2 of GEER (2016). We have adopted informal descriptions of occupied areas, with 

hamlets being the smallest (part of town or village separated from village center), villages (an 

organized civic body with a local government), and town/cities (same as villages, but larger 

populations).  

An important aspect of the October 2016 event reconnaissance is that in many cases we re-

visiting areas previously inspected. Other areas, typically north of the August 2016 epicenter, 

were visited for the first time in the present work. This chapter is organized to distinguish these 

two situations, with Section 6.1 being re-visits and Section 6.2 being newly inspected areas. As 

was done in GEER (2016), for the newly inspected areas we have areas with detailed structure-

by-structure inspections with quantitative mapping and ‘quick-checks’ in which damage rates 

are estimated.  



6-2 
 

Using the procedure described in Section 3.5, we have estimated ground motions (PGA) at 

each of the locations discussed in this chapter during both the 24 August 2016 and 30 October 

2016 mainshocks with the results shown in Table 6.1. The ground motions were estimated for a 

representative site condition of VS30 = 580 m/s.  

Table 6.1. Inspected villages/hamlets and estimated ground motions. 

Village/Hamlet Lat  Lon  

PGA (g) 

M6.1  
24 August 

M5.9 26 
October 

M6.5 30 
October 

Norcia 42.793451 13.094357 0.30 0.29 0.41 

Accumoli 42.695330 13.245280 0.56 0.07 0.45 

Amatrice 42.628994 13.289674 0.66 0.08 0.50 

Arquata del Tronto 42.772300 13.294900 0.42 0.10 0.28 

Pescara del Tronto 42.752500 13.268611 0.51 0.10 0.38 

Tufo 42.735344 13.252867 0.53 0.10 0.46 

Montegallo 42.840571 13.332968 0.24 0.12 0.25 

Visso 42.929300 13.087700 0.25 0.44 0.38 

Ussita 42.943300 13.138200 0.22 0.46 0.38 

Tolentino 43.209143 13.284525 0.09 0.10 0.11 

San Severino 43.230767 13.174877 0.07 0.12 0.12 

Camerino 43.134666 13.067698 0.07 0.16 0.20 

Pievebovigliana 43.081049 13.110066 0.09 0.20 0.23 

Pieve Torina 42.994077 13.046987 0.17 0.47 0.34 

Sellano 42.887913 12.925088 0.13 0.07 0.20 

Fiume 43.042051 13.001034 0.10 0.24 0.26 

Pie del Colle 42.844373 13.101296 0.33 0.48 0.39 

Cessapalombo 43.108327 13.257325 0.08 0.11 0.12 

Preci 42.880697 13.039657 0.22 0.30 0.35 

Piedivalle 42.866786 13.060767 0.25 0.37 0.36 

Caldarola 43.139880 13.224710 0.08 0.12 0.13 

Castello di Campi 42.853729 13.100582 0.32 0.51 0.39 

Colfiorito 43.026044 12.889921 0.20 0.39 0.28 

Casavecchia Alta 42.998463 13.06213 0.17 0.47 0.32 

San Lorenzo in Colpolina 43.086043 13.12436 0.08 0.18 0.21 

Borgo Cerreto 42.815225 12.915500 0.11 0.06 0.15 

Serravalle 42.785714 13.022231 0.15 0.13 0.28 

Popoli 42.752389 13.107219 0.26 0.17 0.59 

San Pellegrino 42.757561 13.149619 0.38 0.19 0.66 

Villa Sant’Antonio 42.943274 13.083696 0.25 0.44 0.36 

Borgo San Giovanni 42.925066 13.085469 0.25 0.44 0.38 

Polverina 43.091576 13.117553 0.08 0.18 0.22 

Pie la Rocca 42.833900 13.113102 0.38 0.41 0.41 



6-3 
 

6.1 Revisits  

6.1.1 Norcia  

Ground Surveys 
As shown in Table 6.1, Norcia experienced stronger estimated ground motions during the 30 

October event (PGA = 0.41 to 0.48 g) than in the 24 August event (PGA = 0.30 to 0.36 g).  

Norcia’s buildings were not severely affected by the first event in August 2016. After the 

multiple October events, several structures suffered moderate-to-significant of damage or 

collapse. Figure 6.1 shows the evolution of damage between the two inspections. The 

distribution of Damage States among the buildings inspected in the red-zone of Norcia is shown 

in Figure 6.2. These figures show that the structural damage in Norcia was much more severe in 

the October events than in the earlier August events.  

Even though the majority of the building stock is masonry, there is no disproportional 

damage observed between the first and the sequence of seismic events (Figure 6.1). This is 

because, unlike Amatrice (Section 6.1.3), the initial damage state of most buildings after the 

August earthquake was D0, hence the structures had adequate strength to resist the 

subsequent earthquakes. By focusing more carefully on Figure 6.2, it is also evident that the 

few structures that suffered damage during the first event, indeed presented a disproportional 

level of damage increase shifting from DS3 to DS5. Based on the above comparative assessment 

it can be concluded that masonry structures are particularly prone to failure under cascading 

seismic events provided that one event in the sequence initiates non-catastrophic damage, a 

fact that highlights the importance of quick visual inspection and reliable retrofit.  

 

Figure 6.1. Evolution of damage after (a) the 24 August earthquake, and (b) the October events. 
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Apart from the wider assessment, a side-by-side comparison of significate structures with 

multi-epoch surveys is made. Figure 6.3 depicts the locations of the buildings presented. Figure 

6.4 illustrates one of the churches that were slightly damaged by the first seismic event, but 

completely collapsed subsequently. Many historical churches in Norcia experienced the same 

kind of damage evolution. Figure 6.5 shows one exceptional case of a typical residential 

masonry building where the evolution of damage was rather moderate (damage state shifting 

from DS2 to DS3). Conversely, Figure 6.6 shows a residential building with irregular masonry 

construction. This group of buildings experienced an abrupt damage evolution, with an out-of-

plane mechanism and increased in-plane damage. Finally, Figure 6.7 depicts the out-of-plane 

failure of an historical monastery leading to partial loss of support of the roof. Notably, the wall 

failure was concentrated at a level higher to that of the seismic retrofit, thus highlighting that 

local interventions should not be only localized on the ground level but also take into 

consideration the reduced axial load and weak diaphragm action of the masonry walls at higher 

levels. 

 

Figure 6.2. Percentage of damaged structures (a) in the aftermath of first event and (b) after 
the whole sequence. 
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Figure 6.3. Structures shown in detail in the following. (M stands for Masonry). 

(a) (b) 

  
Figure 6.4. Building M1. 
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(a) (b) 

  
Figure 6.5. Building M2. 

(a) (b) 

  
 
 

(c) (d) 

  
Figure 6.6. Building M3. 
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(a) (b) 

  
Figure 6.7. Building M4. 

UAV imaging 
During the GEER mission in Norcia, unmanned aerial vehicle (UAV) imaging was performed by 

vertically elevating the UAV above two points in the city at the locations shown in Figure 6.8. 

Images were taken at the horizontal azimuths shown in the Figure. Figure 6.9 to Figure 6.14 

show these images. Video footage can be found at 

https://www.youtube.com/watch?v=7vOVZOEuBMg, last accessed April 18, 2017). 

 

Figure 6.8. Visual angles investigated during UAV flights. 

https://www.youtube.com/watch?v=7vOVZOEuBMg
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Figure 6.9. UAV image V1. 

 

Figure 6.10. UAV image V2. 
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Figure 6.11. UAV image V3. 

 

Figure 6.12. UAV image V4. 

 

Figure 6.13. UAV image V5. 
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Figure 6.14. UAV image V6. 

On-site damage assessment versus NASA JPL ARIA Damage Proxy Maps 
Section 4.1.2 of GEER (2016) describes damage proxy maps developed by NASA JPL as part of 

the Advanced Rapid Imaging and Analysis (ARIA) project. After major earthquakes, the ARIA 

project releases damage proxy maps (DPMs). These DPMs are produced comparing 

interferometric SAR coherence maps from before and after an extreme event (e.g. Fielding et 

al., 2005; Yun et al., 2011). The effectiveness of the DPMs has been tested for the rapid 

evaluation of earthquake-induced landslides and rockfalls after the 2015 M7.8 Gorkha 

Earthquake. In particular, Yun et al. (2015) show that the extent of several observed 

earthquake-related instability phenomena in the Himalayas were well captured by the DPMs. 

The resolution of these maps for the August 2016 event damage was too low to enable 

comparisons to our field observations of building damage, although comparisons of landslide 

areas was undertaken. The image quality improved markedly for Norcia following the October 

2016 event sequence. As a result, detailed structure-by-structure comparisons of ARIA maps vs 

field observations is now practical and is undertaken here.  

After the 30 October M6.5 earthquake, a detailed DPM for the city center of Norcia was 

released (aria-share.jpl.nasa.gov/events/20161030-Italy_EQ/DPM/, last accessed 26 February, 

2017). This DPM has a relatively limited spatial extent, but high resolution. Figure 6.15 shows 

the DPM produced after the 30 October event, superimposed on the map of the city center of 

Norcia, along with all structures that have been classified, through on-site visual inspection, as 

completely collapsed (for which a damage level D5 has been assigned), and selected D4 

structures. 
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Figure 6.15. Damage proxy map of Norcia, along with all structures with assigned damage level 
D5, and selected structures with assigned damage level D4. 

We analyze 22 structures assigned damage levels D5 and D4; within this group is the full 

inventory of D5 structures as identified in our field inspections. Figure 6.16 shows the spatial 

distribution of these structures, along with their identification numbers.  

In order to provide a sense for the damage in Norcia at these sites, Figure 6.17 shows 

representative pictures taken during the on-site inspection performed following the 30 October 

M6.5 earthquake event. By comparing the locations of these mapped structures and damage 

zones per the ARIA imaging, we find good agreement. For all structures with assigned damage 

level D5, the DPM shows a concentration of red and dark red zones, representing areas in 

which substantial deformations occurred. 
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Figure 6.16. Zoom-in of the damage proxy map of Norcia, along with the identification numbers 
of all structures with assigned damage level D5 from field inspections and available high-quality 
on-site information and photos. 
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N. 1 Via Cristoforo Colombo N. 2 Via Massimo D’Azeglio N. 3 – Via Anicia S. Agostino 

church – Piazza Margherita 

   
N. 4 Via Govone N. 5 –Corner between Via Polla 

Vespasia – Via Anicia 
N. 6 Chiesa del Crocifisso 
nearby Piazza Palatina 

   
N. 7 Church in Via Cappellini – 

Piazza Nazario Sauro 
N. 8 Collapsed wall N.9 Medieval walls 

 

   
N. 10 Corso Sertori N. 11 Teatro Civico N.  12 Corso Sertori 
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N. 13 San Benedetto Cathedral N. 14 Bell tower N. 15 San Francesco church 

   
N. 16 Via Cesare Battisti N. 17 Via San Martino (1) N. 18 Via San Martino (2) 

   
N. 19 Medieval wall N. 20 Duomo N. 21 Collapsed church (1) 

 

  

N. 22 Collapsed church (2)   

Figure 6.17. Pictures of all structures with assigned damage level D5 in the city center of Norcia, 
along with their identification numbers. 

6.1.2 Accumoli  
As shown in Table 6.1, Accumoli experienced slightly weaker estimated ground motions during 

the 30 October event (PGA = 0.45 g) than in the 24 August event (PGA = 0.56 g).  

Accumoli was one of the most damaged villages after the 24 August main shock (GEER 

2016). During the September reconnaissance, significant additional damage was observed, with 

widespread partial collapses throughout the village. The eastern part of the village, around the 

main square (Piazza San Francesco), was the most heavily damaged area, with partial collapses 
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of the police station and the small church. Moreover, the retaining wall along the eastern side 

of the village experienced significant relative movements, most likely associated to the 

instability of the slope below. 

The seismic sequence in October caused total devastation of the village. As shown in Figure 

6.18, the vast majority of the buildings that were damaged during the August earthquake, 

eventually collapsed. The evolution of damage after multiple seismic events is also evident as 

also depicted in Figure 6.19, where a drastic shift from low (DS0/DS1) to high (DS4/DS5) 

damage states is clearly observed. 

 

Figure 6.18. Evolution of damage after (a) the first seismic event and (b) the sequence of 
events. 

At the time of the visual inspection by the GEER team, the only accessible walking route was 

the one connecting the village entrance to the main square, because of the major building 

damage and collapse in the surrounding areas (Figure 6.20). As a result, a detailed inspection 

was feasible only within the eastern part of the village, the western part being inspected by 

means of UAVs. Figure 6.21, Figure 6.22, and Figure 6.23 illustrate the upper part of the village 

with a colored scale distinguishing three main zones of distinct level of damage.  

In general, Modified Mercalli intensities in the lower part of Accumoli are XII (total 

destruction). The overall view of the highest part from Piazza San Francesco has dramatically 

changed and most of the structures have collapsed. Significant widespread damage 

corresponding to D4/D5 states is assigned as a whole to that area based also on aerial pictures. 

Few standing buildings survived the sequence of events with minor damage and are highlighted 

in green as mapped in Figure 6.18). 
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Figure 6.19. Percentage of damaged structures (a) after the first event and (b) after the whole 
sequence. 

(a) (b) 

  
Figure 6.20. (a) Access route to the lowest (easternmost) portion village (V1). (b) Piazza San 
Francesco (V2). 

The current orthophoto of the village is presented in Figure 6.24 with the location and 

orientation of pictures depicting multi-epoch damage states for individual structures. Further 

details are summarized in Table 6.2 to document the photographed structures and to compare 

the damage levels detected after the September and December visual inspections. Figure 6.25 

shows photos presented in Table 6.2. 
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Figure 6.21. Aerial view, east-west direction (V3). 

 

Figure 6.22. Aerial view, west-east direction (V4). 
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Figure 6.23. Aerial view, south-north direction (V5). 

Table 6.2. Summary of pictures and structures inspected in Accumoli. (*pictures that show the 
comparison between September (left) and December (right) inspection). 

Picture DATUM Description 
Position September 

Damage 
Level 

December 
Damage 

Level 
Lat. Long. 

V1 WGS-84 
Pedestrian route crossing 

the village 
42.694972° 13.248886° D3 D5 

V2 WGS-84 
Piazza San Francesco 

entrance 
42.694601° 13.248556° D3 D5 

V3 - Air view east-west direction - - D1-2 D5 

V4 - Air view west-east direction - - D1-2 D4 

V5 - 
Air view south-north 

direction 
- - D1-2 D3/4 

P01* WGS-84 Church 42.694073° 13.249509° D4 D5 

P02* WGS-84 Town hall 42.694304° 13.249263° D3 D5 

P03* WGS-84 
Police Station (view from 

the square) 
42.694325° 13.249507° D3 D5 

P04* WGS-84 
Western (view from the 

square) 
42.694215° 13.248842° D2 D5 

P05* WGS-84 
Northern view from the 

square (bar) 
42.694428° 13.249379° D3 D5 

P06* WGS-84 
Small square in front of the 

church 
42.694073° 13.249509° D2 D5 

P07 WGS-84 
Panoramic view of the 

square 
42.694215° 13.248842° D2 D5 
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Figure 6.24. Ortho-images captured on December: (a) overview; (b) zoom on Piazza San 
Francesco. 

 

V1

V2

V3

V4

V5

(a)

V2

(b)
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(August event) (Multiple events) 

  

P01 (Church) 

(August event) (Multiple events) 

  
 

P02 (Town hall) 

(August event) (Multiple events) 

  
P03 (Police station, square side) 
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(August event) (Multiple events) 

  
P04 (Western view from square) 

(August event) (Multiple events) 

  
P05 (Northern view from square, bar on the background) 

(August event) (Multiple events) 

  
P06 (Small square in front of the church) 
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P07 (Panoramic view of Piazza San Francesco) 

Figure 6.25. Representative pictures taken in Accumoli during the GEER survey (see Table 6.2). 

The accumulation of damage across seismic events is also evident by comparing the 

panoramic view of the village after the September and December field missions (Figure 6.26 

and Figure 6.27). More precisely, it is seen that the retaining wall completely overturned, 

causing disruption of the adjacent road. It is noted that it was not possible to take the pictures 

from the same position, hence, colored circles are used to indicate the corresponding spots.   

 

Figure 6.26. Representative pictures of landslide in eastern part of village (September 2016). 

 

Figure 6.27. Representative pictures of landslide in the eastern part of village (December 2016). 
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6.1.3 Amatrice  
As shown in Table 6.1, Amatrice experienced weaker estimated ground motions during the 30 

October event (PGA = 0.50 g) than in the 24 August event (PGA = 0.66 g).  

Amatrice’s buildings were severely affected by August event sequence (Section 5.3.2 of 

GEER 2016). Many buildings that remained standing after the August events had only a small 

residual capacity, and then collapsed during September and October events. Figure 6.28 shows 

the multi-epoch damage evolution. This is also reflected in the histograms of red zone damage 

statistics in Figure 6.29 , which show that the percentage of D5 structures increased from 23% 

to 42%. We distinguish performance of different structural systems qualitatively for a number 

of characteristic buildings, the locations of which are shown in Figure 6.30. 

UAV imaging 
During the GEER mission in Amatrice, UAV imaging was performed near building S1. The UAV 

elevated above a fixed point and photographed across an azimuthal range. Error! Reference 

source not found. shows five angles cropped from online footage 

(https://www.youtube.com/watch?v=djF5fkUrYkk., last accessed April 17, 2017). Figure 6.32 to 

Figure 6.36 show these images.  

 

 

Figure 6.28. Evolution of damage after (a) the first seismic event and (b) the sequence of 
events. 

https://www.youtube.com/watch?v=djF5fkUrYkk
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Figure 6.29. Percentage of damaged structures (a) in the aftermath of first event and (b) after 
the whole sequence. 

 

Figure 6.30. Overview of the location and structural system of the buildings that are 
documented in the following. (RC: Reinforced Concrete, M: Masonry, and S: Steel buildings). 
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Figure 6.31. Visual angles investigated during the UAV flight. 

 

Figure 6.32. UAV image V1. 
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Figure 6.33. UAV image V2. 

 

Figure 6.34. UAV image V3. 
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Figure 6.35. UAV image V4. 

 

Figure 6.36. UAV image V5. 

Reinforced Concrete Structures 
Figure 6.37 illustrates building RC1 in the aftermath of the first event (a,c) and after the 

October sequence (b,d). It evident that the infill panel has failed out-of-plane after the seismic 

sequence (but not after the first main shock), whereas the shear failure at the top of the right 

column has been clearly pronounced. Figure 6.38 depicts building RC2, a dual shear wall – 

moment resisting frame built with the older Italian seismic code (The Italian National Annex DM 

1996, Norme Tecniche per le Costruzioni, 1996; NTC96). Similar out of plane failure of the, 
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initially diagonally cracked, infill panel is again observed as a result of shaking from multiple 

events. A detail of beam-column joint damage is illustrated in Figure 6.39 for building RC3. We 

observe cyclic degradation of column top, spalling of concrete, and minor longitudinal rebar 

buckling in the absence of adequate transverse reinforcement. Finally, building RC4 in Figure 

6.40 experienced only minor damage after the August event but suffered out-of-plane failure of 

the majority of its infill panels subsequently, thus exposing the structure to a potential soft 

story mechanism. Performance of this type was characteristic of the area.  

(a) (b) 

  
(c) (d) 

  
Figure 6.37. Building RC1. 
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(a) (b) 

  
Figure 6.38. Building RC2. 

(a) (b) 

  
Figure 6.39. Building RC3. 
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(a) (b) 

  
Figure 6.40. Building RC4. 

Steel structure 
There is only one high-rise steel structure within the Amatrice red zone (Figure 6.41) built in the 

early 90’s with the Italian seismic code of the time (The Italian National Annex DM 1996, Norme 

Tecniche per le Costruzioni, 1996; NTC96). It consists of a basement, a ground floor and two 

upper stories, alongside a shorter story on top that serves as a penthouse. Given the intensity 

of ground motion, its overall performance is deemed relatively satisfactory. Contrarily, Hotel 

Roma, one of Amatrice’s most iconic structures, located a few meters from the steel building, 

collapsed completely. After the first event, damage was only concentrated to non-structural 

elements, with small local flange instability at the top of two front columns of the ground floor. 

At the end of the October event sequence, the building presented permanent deformation 

along the longer direction, as shown in Figure 6.41. Such permanent deformation is localized at 

the second level of the building with a visible inter-story drift. Preliminary finite element 

analyses of the building suggest that the fundamental mode period of the structure is 

approximately 0.75sec. The mode shape indicates an almost uncoupled translation along the 

long side, mainly due to the orientation of the steel columns whose strong axis is aligned with 

the short side of the building.  
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(a) (b) 

  
(c) (d) 

  
Figure 6.41. Building S1. 

Masonry structures 
Figure 6.42 shows multi-epoch damage to a masonry building. Damage at the base of the 

structure is essentially unchanged, but new damage features are observed in the top story.  

Figure 6.43 shows the local police (“Carabinieri”) station. It is evident that diagonal cracks were 

extended in both sides of the building after multiple seismic events. Notably, the local retrofit 

by means of steel ties at the corners of the upper story mitigated further damage and possible 

collapse. 
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(a) (b) 

  
Figure 6.42. Building M1. 

 

(a) (b) 

  
(c) (d) 

  
Figure 6.43. Building M2. 
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Figure 6.44 and Figure 6.45 present two buildings within the Amatrice red-zone, where initial 

damage of the outer masonry due to the first event evolved to partial collapse after the event 

sequence. This is also an interesting case in that such partial collapse is not always visible by 

satellite, thus highlighting the importance of careful on-site ground inspection. The soft-story of 

another masonry building is illustrated in Figure 6.45. Such a mechanism is presumably due to 

the higher stiffness of the upper part with respect to the ground floor, and due to the previous 

shear failures observed at the ground level in the aftermath of the first event. It is also a 

characteristic case where the evolution of damage in masonry structures under multiple seismic 

events, as well as the increase of the corresponding damage indeed, is strongly nonlinear. 

Figure 6.46 shows the complete collapse of a building that was heavily damaged from the first 

event. 

(a) (b) 

  
Figure 6.44. Building M3. 

(a) (b) 

 

 
(c) 

 
Figure 6.45. Building M4. 
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(a) (b) 

  
Figure 6.46. Building M5. 

Comparative assessment of seismic performance of different structural systems 
Overall, notwithstanding the clear evolution of all local damage modes of Reinforced Concrete 

structures as a result of multiple earthquake excitations, a general comment that can be made 

is that they did not experience the disproportional event-to-event damage increase observed in 

masonry buildings. In most cases, R/C buildings showed adequate ductility and their global 

damage at a system level remained approximately within the same Damage State that was 

reported after the initial visual inspections. On the contrary, masonry buildings suffered, on 

average, significant and disproportional damage during the sequence of seismic events, due to 

their low residual capacity and the brittle nature of the failure modes involved, thus quickly 

shifting from low-to-moderate Damage States (DS1-DS3) to complete collapse (DS5). 

6.1.4 Arquata del Tronto 
As shown in Table 6.1, Arquata del Tronto experienced weaker estimated ground motions 

during the 30 October event (PGA = 0.28 g) than in the 24 August event (PGA = 0.42 g).  

Arquata del Tronto is a small village of about 1200 inhabitants located in the Ascoli Piceno 

province. Within the village are numerous hamlets. Observations from several of these hamlets 

are discussed separately in subsequent sections. As discussed in GEER (2016), Arquata del 

Tronto was heavily damaged by the 24 August earthquake. This section summarizes the 

observations performed after the 30 October 2016 event in Arquata del Tronto and in the 

adjacent hamlet of Borgo. Details about the geology of the area are discussed in GEER (2016). 

Figure 6.47 shows the location of representative pictures taken during the reconnaissance to 

illustrate degrees of damage in Arquata del Tronto and Borgo.  

The photographs in Figure 6.48 show Arquata del Tronto after the August and October 

events, from which a substantial damage increase is evident following the 26 and 30 October 

earthquakes. Conversely, Borgo did not suffer appreciable cumulated damage, as shown in 

Figure 6.49 and Figure 6.50. Figure 6.51 shows the collapse of a structure onto the access road 

for Arquata village. At the time of our November reconnaissance, the village was not accessible 

and much of the village center was destroyed. The damage level assigned to Arquata del Tronto 
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(D5) is documented in Figure 6.52. Table 6.3 shows the locations and damage levels for all 

selected representative structures. 

 

Figure 6.47. Location of representative pictures taken in Arquata del Tronto/Borgo after the 24 
August 2016 earthquake (yellow dots), and after the October events (red dots). 

After August event After October events 

(a) (b) 
P01 

Figure 6.48. Overview of Arquata del Tronto (a) after the 24 August earthquake, and (b) 
after the October events. 
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After August event After October events 

(a) (b) 
P03 

Figure 6.49. A reinforced masonry building in Borgo (a) after the 24 August earthquake, 
and (b) after the October events. 

After August event After October events 

(a) (b) 

P06 
Figure 6.50. A building in Borgo (a) after the 24 August earthquake, and (b) after the 
October events. 

 

Figure 6.51. Access road to Arquata del Tronto after the October events. 
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c) 
Figure 6.52. Overview of the damage level in Arquata del Tronto after October events. 

Table 6.3. Locations of representative pictures with description of reported damage. 

Picture September Damage Level December Damage Level 

P01 
Panoramic view of the village. Overall 

degree of damage D3-D4 
Overall degree of damage: D5 

P02 D1  

P03 D1 D1-D2 

P04 D2  

P05 D2  

P06 D3 D3-D4 

P07 D3  

P08 D0  

P10 D4 D5 

P11 D4 D5 

P12 D5 D5 

P13 D5 D5 

P14 D4 D5 

P15 D2-D3  

6.1.5 Pescara del Tronto  
Pescara del Tronto is a hamlet of Arquata del Tronto. As shown in Table 6.1, Pescara del Tronto 

experienced slightly weaker estimated ground motions during the 30 October event (PGA = 

0.38 g) than in the 24 August event (PGA = 0.51 g).  

Pescara del Tronto was devastated by the 24 August earthquake (GEER 2016), with nearly 

half of the structures having collapsed. Figure 6.53 and Figure 6.54 show the evolution of 

damage from the August (Figure 6.53a and Figure 6.54a) to the October events (Figure 6.53b 
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and Figure 6.54b). Damage levels in Pescara del Tronto increased as a result of the October 

events, with approximately 70% of the structures having damage levels D4 or D5 (was 65% 

following August events). 

Figure 6.55 shows locations of selected buildings for which we show photos taken after the 

August and October events. The cumulative damage is also evident from Figure 6.56. Figure 

6.57 shows a photographic overview of the hamlet taken from a common perspective after the 

August and October events. Figure 6.58 shows screenshots captured from 3D models created 

from images taken by UAVs. Table 6.4 summarizes locations and damage levels for all selected 

representative structures. 

 

Figure 6.53. Mapped damage levels in Pescara del Tronto: (a) after the 24 August, and (b) the 
October events. 

 

Figure 6.54. Histogram of damage levels in Pescara del Tronto: (a) after the 24 August, and (b) 
the October events. 
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Figure 6.55. Location of representative pictures taken in the village after the 24 August (yellow 
dots) and locations for which we have multi-epoch photos of the same structures (red dots). 

After August event After October events 

  
P01 

After August event After October events 

  
P02 

 
 
 

(a) (b)

(a) (b)
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After August event After October events 

  
P03 

 
After August event After October events 

  

P06 
Figure 6.56. Comparative pictures of selected structures in Pescara del Tronto after the 24 
August event, and after the October events. 

 

 

 

 

 

 

 

(a) (b)

(a) (b)
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After August event 

 
After October events 

 
Figure 6.57. Overview of Pescara del Tronto from a common perspective (a) after the 24 August 
earthquake, and (b) after the October events. 

 

 

 

 

 

 

 

 

(a)

(b)
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After August event 

 
After October events 

 
Figure 6.58. 3D-model overview of Pescara del Tronto from a common perspective (a) after the 
24 August earthquake, and (b) after the October events. 

(a)

(b)
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Table 6.4. Locations of representative pictures with description of reported damage. 

Picture September Damage Level December Damage Level 

P01 D3 D5 

P02 D3  

P03 D2 D2-D3 

P04 D2-D3  

P05 D4  

P06 D5 D5 

P08 D5 D5 

P09 D4-D5 D5 

P10 D4-D5  

P11 D3 D5 

P12 D4-D5  

P13 D4-D5 D5 

6.1.6 Tufo 
Tufo is a hamlet located 5.3 km southwest of Arquata del Tronto. As shown in Table 6.1, Tufo 

experienced slightly weaker estimated ground motions during the 30 October event (PGA = 

0.46 g) than in the 24 August event (PGA = 0.53 g).  

The 24 August earthquake produced major damage only to poorly constructed, 

unretrofitted, and unreinforced masonry buildings (GEER 2016). Damage levels increased 

markedly from the October events. Figure 6.59 and Figure 6.60 show the evolution of damages 

from the August (Figure 6.59a and Figure 6.60a) to the October events (Figure 6.59b and Figure 

6.60b). 

 

Figure 6.59. Mapped damage levels in Tufo: (a) after the 24 August, and (b) the October events. 
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Figure 6.60. Histograms of damage levels in Tufo: (a) after the 24 August, and (b) the October 
events. 

Figure 6.61 shows locations of selected buildings for which we show photos taken after the 

August and October events. Figure 6.62 shows these pictures, which were taken from a 

common perspective. Table 6.5 summarizes locations and damage levels for each of the 

representative structures. Structures M2, M3, and M4 (P1 and P2 in Figure 6.62) are 

unreinforced masonry buildings. They had damage levels ranging from D1-D3 after the August 

events and D5 (complete collapse) following the October events. We documented the 

performance of one reinforced concrete structure (RC1). It had no apparent damage from the 

August events and damage level D2 after the October events (P3 in Figure 6.62). 

An important monument in Tufo is the Santissima Maria Annunziata Church. It is a church 

built in the XVII century that appears to have been recently retrofitted. The church had no 

apparent damage (D0) from the August events (P4, P5, and P6 in Figure 6.62) and damage level 

D3 (partial collapse of façade around the rose window; P4 in Figure 6.62) following the October 

events. Figure 6.62 also shows multiple layers of untied bricks and significant new cracks at 

corners (P5 and P6), possibly from lack of lateral reinforcement at the corner. 

 

Figure 6.61. Map of the selected representative structures in Tufo. 
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After August event After October events 

  
P1 

 
After August event After October events 

  
P2 

After August event After October events 

  
P3 
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After August event After October events 

  
P4 

 
After August event After October events 

  
P5 

After August event After October events 

  
P6 

Figure 6.62. Comparative pictures of selected structures in Tufo after the 24 August event, and 
after the October events. 
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Table 6.5. Summary of selected representative structures in Tufo (all pictures show the 
comparison between September (left) and December (right) inspection). 

Picture DATUM Description 
Location September 

Damage 
Level 

December 
Damage 

Level 
Lat. Long. 

P1 WGS-84 
Entrance of the historical 

center (M2-M3) 
42.7353° 13.2532° D3 D5 

P2 WGS-84 Masonry buildings (M4) 42.7354° 13.2528° D1 D5 

P3 WGS-84 
Reinforced concrete 

building (RC1) 
42.7351° 13.2519° D0 D2 

P4 WGS-84 
Santissima Maria 

Annunziata Church (M1) 
42.7351° 13.2522° D0 D3 

P5 WGS-84 
Santissima Maria 

Annunziata Church (M1) 
42.7351° 13.2522° D0 D3 

P6 WGS-84 
Santissima Maria 

Annunziata Church (M1) 
42.7351° 13.2522° D0 D3 

 

6.1.7 Montegallo and surrounding hamlets 
The village of Montegallo is comprised of 23 dispersed hamlets (Section 5.4.5 of GEER 2016). 

Here we focus on the hamlets of Astorara, Balzo, Castro, Collefratte, Colleluce, Colle, Piano and 

Pistrino, which were visited following both the August and October event sequences. As shown 

in Table 6.1, Montegallo experienced estimated ground motions during the 30 October event of 

PGA = 0.25 g; corresponding values for the 24 August event were PGA = 0.24 g. These ground 

motion estimates do not include possible influences of local site effects.   

Damage levels were variable across Montegallo, which is likely a result of variable ground 

motion levels (mostly as a result of different site effects) and variable construction types and 

quality. In general, we encountered significant increased damage levels (approximately one 

class, e.g., D2 to D3) following the October events.  A notable exception is Piano, which showed 

no evidence of damage following either event sequence, despite some examples of apparently 

poor construction (P14 in Figure 6.63).  

Table 6.6 summarizes observed damage patterns for each hamlet. Most of these hamlets 

were visited (Astorara, Collefratte, Colleluce, Colle, Piano and Pistrino), although Balzo and 

Castro were assessed from afar due to limited access. In particular, the main access road to 

Castro was blocked by debris (see Picture P06 below). 

Representative pictures of observed damage are reported below and listed in Table 6.7 and 

shown in Figure 6.63. Multi-epoch photos of the same structures following both event 

sequences are only available for a limited number of the representative structures.  
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Table 6.6. Summary of reconnaissance results for Montegallo hamlets. 

Hamlet Structures Damage description 

Astorara P01*-P02-P03 

At the entrance, there are recent buildings with evidence of recent 
structural retrofitting (D0 level). Many older structures at the back of 
the village show a D4/5 damage level. At the highest portion of the 
village a full collapse occurred. 

Balzo P04 
General D2/D3 damage level. The village is completely abandoned, 
while in September after the August main shock it was still populated 
and with shops and restaurants still in operation. 

Castro P05-P06 
Church with a full collapsed apse and the rest of the hamlet with 
diffused D4/5 damage level. A recent house on the main road with no 
damage (D0) and still inhabited. 

Colle P07-P08-P09 
Similar to Astorara with various levels of structures vulnerability. 
Recently restored buildings with D0; old masonry buildings with partial 
or full collapses (D4/D5). 

Collefratte P10-P11*-P12 Very damaged hamlets D3/D3 and a full collapse D5. 

Colleluce P13 Totally D4/5. 

Piano P14* Generally D0/D1. 

Pistrino 
P15*-P16*-P17* 

 

The initial part of the village (Pistrino di Sopra) was seriously damaged 
(D3/D4), whereas the other part (Pitrino di sotto, 1 km from Piano) 
showed minor problems (D0/D2) except for a collapsed small stones 
wall. 

* Pictures that show the comparison between September (left) and December (right) inspections 

Table 6.7. Summary of pictures and structures inspected in Montegallo hamlets. 

Picture Hamlet DATUM 
Position September 

damage 
Level 

December 
damage 

Level 
Lat. Long. 

P01* Astorara WGS-84 42.837436° 13.31119° D0-D1 D0-D1 

P02 Astorara WGS-84 42.837222° 13.31055° - D0-D1 

P03 Astorara WGS-84 42.837222° 13.31055° - D4-D5 

P04 Balzo WGS-84 42.8425° 13.33222° - D2-D3 

P05 Castro WGS-84 42.84583° 13.32527° - D4-D5 

P06 Castro WGS-84 42.84722° 13.32638° - D4-D5 

P07 Colle WGS-84 42.84416° 13.30583° - D4-D5 

P08 Colle WGS-84 42.84416° 13.30583° - D4-D5 

P09 Colle WGS-84 42.84416° 13.30583° - D4-D5 

P10 Collefratte WGS-84 42.83952° 13.31907° - D5 

P11* Collefratte WGS-84 42.83934° 13.31907° D3 D3 

P12 Collefratte WGS-84 42.83952° 13.31907° - D3-D4 
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Table 6.7 cont. Summary of pictures and structures inspected in Montegallo hamlets. 

Picture Hamlet DATUM 
Position September 

damage 
Level 

December 
damage 

Level 
Lat. Long. 

P13 Colleluce WGS-84 42.83805° 13.30722° - D4-D5 

P14* Piano WGS-84 42.854116° 13.339129° D0 D0 

P15* Pistrino WGS-84 42.855579° 13.332649° D0-D1 D0-D1 

P16* Pistrino WGS-84 42.855579° 13.332642° D0-D1 D0-D1 

P17* Pistrino WGS-84 42.855579° 13.332649° D0-D1 D0-D1 

* Pictures that show the comparison between September (left) and December (right) inspection 

After August event After October events 

 

P01 (Astorara) 

After October events 

 

P02 (Astorara)                  P03 (Astorara) 
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P04 (Balzo) 

 

P05 (Castro)                  P06 (Castro) 

 

P07 (Colle)                  P08 (Colle) 
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P09 (Colle)                    P10 (Collefratte) 

 

P11 (Collefratte) 
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P12 (Collefratte)     P13 (Colleluce) 

After August event After October events 

 

P14 (Piano) 

After August event After October events 

 

P15 (Pistrino) 
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After August event After October events 

 

P16 (Pistrino) 

 

P17 (Pistrino) 

Figure 6.63. Representative pictures taken in Montegallo during the GEER survey (see Table 6.6 
and Table 6.7). 

6.2 Newly inspected areas 

6.2.1 Visso 
Visso is a village of about 1100 inhabitants located in the Macerata province. Besides the main 

village, Visso also contains the hamlets of Aschio, Borgo San Giovanni, Croce, Cupi, Fematre, 

Macereto, Mevale, Molini di Visso, Orvano, Ponte Chiusita, Rasenna, Riofreddo, Villa 

Sant'Antonio. We performed reconnaissance only in the main town.  

Visso is located 4 km northwest of the epicenter of the M5.9 26 October 2016 event and 10 

km north of the M6.5 30 October earthquake. As shown in Table 6.1, Visso experienced 



6-54 
 

estimated ground motions during the 26 October event of PGA = 0.44, corresponding values for 

the 30 October and 24 August events are PGA = 0.38 and 0.25 g respectively.  

The village was reported to have suffered intensity IX MCS during the 1 December 1328 

Valnerina earthquake (M=6.5) and VII-VIII MCS during the 12 May 1730 Valnerina earthquake 

(M=6) (Rovida et al. 2016). 

From a morphological viewpoint, Visso is located in a depressed area of the Sibillini 

Mountains, at the Umbria-Marche regional boundary, where the thrust-and fold belt of the 

Central Apennines involves a Meso-Cenozoic multilayered sedimentary sequence composed of 

limestones, marly limestones, marls and flysches (e.g. Calamita et al., 1994). Thrust sheets are 

incorporated to form an east-verging tectonic wedge that was definitively uplifted at the Lower 

Pliocene. The compressive structures are reworked and dissected by normal fault systems, 

mainly striking NW-SE. Quaternary normal faults led to the formation of morphological 

depressed areas and the evolution of intramountain basins. (Gaudiosi et al., 2016). In the 

studied area of Visso, the tectonostratigraphic setting includes the Cretaceous Miocene basinal 

succession made of, from bottom to top (Figure 6.64), the Scaglia Rossa Fmt (SAA), Scaglia 

Variegata Fmt (VAS) and Scaglia Cinerea Fmt (SCC), (also known as Scaglia Formation), the 

Bisciaro Fmt (BIS) and the Marne con Cerrogna Fmt (not shown in Figure 6.64). 

These formations are organized in a monoclinal architecture striking from NNW-SSE to N-S, 

and dipping to W with low-to-moderate angles (see also the regional geological cartography 

available at http://www.ambiente.marche.it/Territorio). Quaternary continental deposits cover 

all the basinal succession. The latter consist of alluvial deposits, eluvio-colluvial deposits, and 

widespread slope deposits. The maximum thickness of the continental sedimentary deposits 

occurring in the central part of Visso village is about 40 m (Figure 6.64). 

Locations of representative structures inspected in Visso by the GEER team are reported in 

Figure 6.65, while details (WGS-84 coordinates, damage level of buildings, other notes) are 

given in Table 6.8.  

The pictures are presented in Figure 6.66. The historical center consists mainly of 

unreinforced masonry structures (some of which have been recently retrofitted), 2-3 stories in 

height. Outside of the historical center, modern reinforced concrete structures were 

encountered (see P01-P02).  
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(a) 
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 (b) 
Figure 6.64. Geological map (a) and cross-sections (b) of the Visso village area (Regione Marche, 
2012)  

 

Figure 6.65. Locations of representative structures inspected in the Visso village (see Table 6.8 
for details). 
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Table 6.8. Locations of representative structures with damage descriptions. 

 

Lat Long

P01 WGS-84  42.933162°  13.082982° D2/D3

P02a WGS-84  42.931833°  13.083941° D3

P02b WGS-84  42.931833°  13.083941° D3

P03 WGS-84  42.931775°  13.085806° D5 

P04 WGS-84  42.931675°  13.085514° D4

P05 WGS-84  42.931780°  13.086362° D3

P06 WGS-84  42.931513°  13.085827° D3

P07 WGS-84  42.931193°  13.086627° D5

P08 WGS-84  42.931358°  13.087140° D3/D4

P09 WGS-84  42.931451°  13.087402° D3/D4

P10 WGS-84  42.931493°  13.087173° D4

P11 WGS-84  42.930915°  13.087582° D3/D4

P12 WGS-84  42.930899°  13.088604° D4

P13 WGS-84  42.931320°  13.088029° D1

P14 WGS-84  42.931400°  13.088317° D1

P15 WGS-84  42.931441°  13.088427° D2/D3

P16 WGS-84  42.929789°  13.089711° Scaglia Rossa outcropping

P17 WGS-84  42.930484°  13.088355° D3/D4

P18a WGS-84  42.930618°  13.087851° D3/D4

P18b WGS-84  42.930618°  13.087851° D3/D4

P19 WGS-84  42.930221°  13.087917° D3

P20 WGS-84  42.930042°  13.088132° D3

P21 WGS-84  42.929836°  13.087886° D3/D4

P22 WGS-84  42.929783°  13.088463° D1

P23 WGS-84  42.930057°  13.088793° D3

P24 WGS-84  42.929911°  13.088493° D2

P25 WGS-84  42.929883°  13.089065° D1

P26 WGS-84  42.929676°  13.089440° D2

P27 WGS-84  42.930756°  13.089196° D3/D4

Visso

Picture Datum
Location

Damage Level / notes
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Figure 6.66. Representative pictures taken in Visso during the survey (see Table 6.8). 
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The village was significantly damaged by the October events. However, the degree of 

damage to buildings is spatially variable. A tentative damage zonation map is reported in Figure 

6.67. Damage levels as high as D3-D4 are concentrated in the historical center, especially the 

portion founded on the quaternary continental deposits (alluvial deposits, eluvio-colluvial 

deposits, and widespread slope deposits). Minor damage (D1-D2) was encountered in the 

portion founded on the SCC rock (Scaglia Cinerea Formation). In the NW portion (outside the 

historical center), we encountered D2-D3 on average. This part of the village is located on 

quaternary deposits. However, the relatively minor vulnerability of buildings was probably 

responsible for the minor damage observed in this part of the historical center.  

 

Figure 6.67. Damage zonation within the villages of Visso village. 

Microtremor noise measurements (location T01 in Figure 6.67) were carried out during the 

survey in the most damage zone of the historical center. A portable Tromino tomograph was 

employed and the total duration of each measurement was approximately 15 minutes. 

Horizontal-to-vertical (H/V) spectral ratios were computed by using the geometrical mean of 

horizontal components. Moreover, in order to investigate preferential directions of the 

amplification (i.e., polarization of ground motion), H/V ratios were computed by rotating the 

horizontal component between 0° and 180° (directional or polar HVSR). Both H/V and polar H/V 



6-66 
 

are reported in Figure 6.68. We observe no large H/V peaks at T1, suggesting the lack of a site 

condition producing a strong resonant site response.  

 
 

 
Figure 6.68. Noise measurement T01 results in terms of H/V spectral ratio (up) and H/V polar 
plots (bottom). 

The damage in Visso was likely related both to the presence of some vulnerable buildings in 

the historical center and to stratigraphic amplification effects related to the presence of 

quaternary soils resting on Scaglia rock formation (see also preliminary conclusions by Gaudiosi 

et al., 2016). 

6.2.2 Ussita 
Ussita is a small village of about 450 inhabitants located in the Macerata province. Ussita 

consists of 13 small hamlets, including Fluminata (the administrative center), Pieve, Vallazza, 

Tempori and Sasso. Ussita is crossed by the Ussita creek (tributary of Nera River). Most of the 

buildings in the historical center are of masonry construction. As shown in Table 6.1, Ussita 

experienced estimated ground motions during the 26 October event of PGA = 0.46 g, PGA = 

0.38 g during the 30 October event, and PGA = 0.22 g during the 24 August event.  

Figure 6.69 shows locations of representative structures inspected in Ussita and maps 

damage zones within the village. Damage levels were generally between D3 and D4. Figure 6.70 

shows pictures of selected structures in the area of Ussita that experienced the higher level of 

damage. 
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Figure 6.69. Locations of representative structures inspected in Ussita, and damage zonation 
within the village. 
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Figure 6.70. Representative pictures taken in Ussita (P13) 

6.2.3 Tolentino 

Tolentino is a town of about 20000 inhabitants, located in the province of Macerata in the 

Marche region, in the middle Chienti valley. Tolentino comprises more than 40 hamlets and it is 

one of the most populated towns in the earthquake area. As shown in Table 6.1, Tolentino 

experienced estimated ground motions during the 26 October event of PGA = 0.10 g, PGA = 

0.11 g during the 30 October event, and PGA = 0.09 g during the 24 August event. Historically 

the Tolentino area was involved in many important seismic events, in particular in 1690, 1941, 

1781, 1943, 1972 and 1997.  

The area is a crucial point for the San Nicola da Tolentino Church and Monastery (Figure 

6.71), which represent an iconic monument for the catholic community of the region. It is a 

Roman Catholic Church and minor basilica that is part of the Augustinian monastery in 

Tolentino. The church is a former cathedral of the Roman Catholic Diocese of Tolentino, 

suppressed in 1586. It contains architecture and art from the 14th through the 17th century. The 

imposing marble façade of the church was constructed over the centuries, and was completed 

in the 17th century. The most relevant portion is an important decorated chapel of the Giotto’s 

Facade: 2011 (Google Maps) December 2016
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school. The façade is presently the most critical part of the structure, since the 30 October 

earthquake triggered a relative movement at the highest part of the façade. Moreover, there 

are plans for the installation of a permanent seismic monitoring system by Politecnico di Torino 

and Nagoya City University.  

Geologically the mountainous area close to Tolentino is mainly composed of calcareous 

deposits, very resistant to erosion, which then originate steep slopes like those along the 

Chienti valley upstream of Pievefavera. More easily eroded sediments, such as marl, clay and 

sandstone, form the hilly area (Regione Marche, 2012). Tolentino is underlain by the Camerino 

geological formation, which is a mixture of chalky-sulphurous 30-40 m thick layers. The area 

shows blackish clays and bituminous laminated marl, reddish-brown limestone, microcrystalline 

gypsum in thin layers and laminated gypsum. In the same area calcareous marl, marl gray-

greenish clay, sometimes with reddish bands at the base of thickness about 200 meters are also 

encountered. The geological map in Figure 6.72 and the Italian Carg Project define two main 

formations for Tolentino: 

Chalky-sulphurous: Outcropping from Villa Martinozzi (Valley of the Potenza River) and just 

west of Tolentino and sits directly on the Schlier. It has similar characteristics to those of the 

same unit outcropping in the southern part of the Aliforni-S.Severino basin; here the level of re-

sedimented chalks is missing. There are also stromatolitic limestones, sometimes with traces of 

bioturbation. 

Laga, post-evaporitic part: It consists of a turbidite sequence predominantly pelitic-sandstone, 

containing three arenaceous-pelitic horizons. The first consists of an alternation of clays and 

silty clay marl gray-blue color, thin to medium layers, and sandstones in thin to medium layers 

with sand-clay ratio less than one. Sandstones of yellowish fine-grained and medium, in tabular 

layers medium to thick, and marl gray-blue silty clays represent the arenaceous-pelitic horizons. 

Under the second horizon, the guide volcano-derived level is located of variable thickness 

between 0.5 m and 3 m, consisting of 3-4 layers of blended whitish volcanic ash. This area 

forms the new fore deep turbidite post-evaporite. The overall characteristics are similar to 

those seen in the pre-evaporitic. 

Tolentino was deeply damaged during the freedom battles conducted by the Italian 

resistance movement against the Nazi army after the World War II. For this reason, the town 

was almost totally reconstructed except for the center that was likely protected by the citizens 

(especially the San Nicola church). Figure 6.73 outlines three zones with different building 

types: (1) ancient town center (red), (2) industrial (yellow), and (3) contemporary-residential 

(blue). In the town center, masonry one or multi-stories structures are very common and 

retrofitting was adopted for many of them. The industrial part is located on the downhill and it 

is the most recent part of the town. The residential area is the typical postwar housing with a 

widespread use of the first reinforced concrete technologies of the 1960s and 1970s. Here also 

many 5-6 stories apartment buildings are diffused. Figure 6.73 also shows in green the locations 
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of the detailed inspection areas and the numbering of the following pictures described in Table 

6.9. 

Table 6.9 lists the locations of representative structures photographed and documented in 

the GEER reconnaissance. Figure 6.74 shows these structures. The town-center was partially 

damaged, especially Piazza della Libertà (main square of the town), where most of the buildings 

were strengthened with structural supports. 

The San Nicola church is out of service and not accessible to the public as a result of diffused 

damage to the façade and the unstable wood decorated roof. The adjacent convent is a 

complex and heterogeneous building made by different and subsequent enlargements. For this 

reason, there are different states of damage inside the huge complex, depending on the 

structural type (masonry or reinforced concrete). 

Very interesting is the Viale Vittorio Veneto-Viale Martin Luther King-Via Kennedy area. In 

this neighborhood, an evident site effect was observed, since diffused building damages are 

observed much more prominently than in the other parts of the town. In particular, the 

buildings along the eastern side of Martin Luther King road are recent reinforced concrete 

frames 5-to-8 floors above ground from the 1980s. Most of these buildings where seriously 

damaged and abandoned at the time of the reconnaissance. On the other side of the road, 

smaller buildings (most of them 3 floors above ground) suffered much less damage and were 

apparently in use at the time of the reconnaissance. 

At the roundabout connecting Viale Vittorio Veneto e Viale Martin Luther King a retaining 

wall next to a rail bridge was seriously damaged. In particular, the wall was secured by huge 

concrete blocks in order to maintain the stability of the back private garden.  

  

Figure 6.71. San Nicola da Tolentino church, façade (left) and interior part (right) (before 
earthquake events). 
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Figure 6.72. Geological map of the Tolentino area. 

 

Figure 6.73. Tolentino reconnaissance map: in green the most damaged zones. 
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P01 (Piazza della Libertà)  

 

P02a-b-c Basilica di San Nicola (Saint Nicholas Church) 

 

P02d-e-f Basilica di San Nicola (Saint Nicholas Church) 
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P03a-b Cloister of the Basilica di San Nicola (Saint Nicholas Church) 

 

P03c-d-e Monastery of the Basilica di San Nicola (Saint Nicholas Church) 

 

P04 (Via Filzi)                      P05 (Viale Vittorio Veneto) 
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P06-P07 (Viale Vittorio Veneto) 

 

P08-P09 (Via Martin Luther King) 

 

 

P10 (Via Kennedy)    P11 (Retaining wall) 
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P12 (Damaged rail bridge) 

Figure 6.74. Representative pictures taken in Tolentino during the GEER survey (see Table 6.9). 

Table 6.9. Summary of pictures and structures inspected in Tolentino. 

Picture DATUM Description 
Location October 

Damage 
Level Lat. Long. 

P01a WGS-84 Piazza della libertà (town hall) 43.20851° 
 

13.28464° 
 

D1-2 
 

P01b WGS-84 Piazza della libertà (bell tower) 

P02a WGS-84 San Nicola Church (facade) 

43.21344° 13.28864° D2 

P02b WGS-84 San Nicola church (lateral facade) 

P02c WGS-84 San Nicola Church (chapel) 

P02d WGS-84 San Nicola church (damaged nave column) 

P02e WGS-84 San Nicola church (damaged entrance wall) 

P02f WGS-84 
San Nicola church (retaining nest above the 

main altar) 

P03a WGS-84 Monastery (retrofitted main tower) 

43.20748° 13.2862° D2 

P03b WGS-84 Monastery (damaged cloister walkway) 

   

P03c WGS-84 Monastery (damaged room) 

P03d WGS-84 Monastery (damaged room) 

P03e WGS-84 Monastery (damaged room) 

P04 WGS-84 Viale Filzi 43.20673° 13.2849° D1-2 

P05 WGS-84 Viale Vittorio Veneto 43.21416° 13.28944° D2 
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Table 6.9 cont. Summary of pictures and structures inspected in Tolentino. 

Picture DATUM Description 
Location October 

Damage 
Level Lat. Long. 

P06 WGS-84 Viale Vittorio Veneto 43.21399° 13.28918° D2 

P07 WGS-84 Viale Vittorio Veneto 43.21694° 13.29416° D2 

P08 WGS-84 Via Martin Luther King 43.21505° 13.29764° D3 

P09 WGS-84 Via Martin Luther King 43.21555° 13.2975° D3 

P10 WGS-84 Via Kennedy 43.21722° 13.29777° D3 

P11 WGS-84 Retaining wall 43.21874° 13.29686° D3 

P12 WGS-84 Damaged rail bridge 43.21874° 13.29686° D2 

 

6.2.4 San Severino 
San Severino Marche is a village (municipality) in the Province of Macerata in the Italian region 

Marche, located about 50 kilometers southwest of Ancona and about 25 kilometers southwest 

of Macerata. It is an important center in Macerata County and it is roughly 8 km from Tolentino 

(Figure 6.75), on the opposite side of the Potenza River. It is populated by about 12000 

inhabitants and it comprises more than 40 hamlets: Agello, Aliforni, Berta, Biagi, Cagnore, 

Carpignano, Case Bruciate, Casette, Castel San Pietro, Cesolo, Chigiano, Colleluce, Collicelli, 

Colmone, Colotto, Corsciano, Cusiano, Elcito, Gagliannuovo, Gaglianvecchio, Granali, Isola, 

Maricella, Marciano, Monticole, Orpiano, Palazzata, Parolito, Patrignolo, Pitino, Portolo, 

Rocchetta, San Mauro, Sant'Elena, Serralta, Serripola, Serrone, Stigliano, Taccoli, Ugliano and 

Villanova. As shown in Table 6.1, San Severino experienced estimated ground motions during 

the 26 October event of PGA = 0.12 g, PGA = 0.12 g during the 30 October event, and PGA = 

0.07 g during the 24 August event. 

The artistic heritage of San Severino Marche is remarkable and strongly linked to the period 

of maximum independence of the municipality and the first decades of church government. The 

numerous Gothic churches located in the city and in the territory and the works left by the local 

school of painting belong to that period. At the beginning and the end of the fifteenth century, 

brothers Salimbeni and Lorenzo d'Alessandro were the leaders of that important school of 

painting. The most important and known square is Piazza del Popolo (Figure 6.76). 

San Severino Marche was hardly damaged by the October 2016 event sequence, which is 

notable given its proximity to Tolentino (both villages have essentially identical estimated 

ground motions). As a result of the October earthquake events, more than 500 buildings 

collapsed, with 1500 displaced people without any accommodation. Especially in the Uvaiolo 

neighborhood, (one of the four red zones of the village) more than 40 buildings were scheduled 

for demolition by the Italian Firefighters Department (CNVVFF).  
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The local geology is similar to Tolentino and three formations are most frequent in the 

territory of San Severino Marche: Schlier, chalky-sulphurous formation (as in Tolentino) and the 

Laga formation. The first is characterized by marl, calcareous marl and marl clay grayish 100-

250 m thick. The second is made up of clay and blackish bituminous marl, laminated, reddish 

brown in color, microcrystalline gypsum in thin layers and laminated gypsum overall thickness 

of 30-40 m. The third formation is divided into pre-evaporitic, pelitic-sandstone, sandstone, 

arenaceous-pelitic typologies. An excerpt of the geological map with the legend is provided in 

Figure 6.77.  

Table 6.10 lists the locations of representative structures photographed and documented in 

the GEER reconnaissance. Figure 6.78 shows the locations of these structures, while Figure 6.79 

shows a close-up view of the Uvaiolo neighborhood. Figure 6.80 shows photographs of these 

structures.  

Major attention during the reconnaissance was paid to Via Mazzini and Via Rossini 

neighborhoods, since evident site effects were detected. The first is located on a rise and is 

parallel to another very damaged road (Via Monti Sibillini). The latter is very close to the 

Potenza River and the structures were likely built up on the ancient riverbed. Close to Via 

Rossini there is Villa Collio, a restaurant-villa that was severely damaged. Furthermore, a quick 

inspection of two towers located on the village hill was carried out (Torre Smeducci and the old 

Cathedral Tower), as there are plans for the installations of a permanent monitoring system by 

Politecnico di Torino and Nagoya City University.  

 

Figure 6.75. Relative position and distance between San Severino Marche and Tolentino. 
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Figure 6.76. Piazza del Popolo, San Severino Marche (before seismic events). 

 

Figure 6.77. Geological map of the San Severino area. 
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Figure 6.78. Summary reconnaissance map for San Severino Marche. 

 

Figure 6.79. Summary reconnaissance map for San Severino Marche (zoom on the Uvaiolo 
neighborhood). 
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P3                  P4 
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P5a                  P5b 

 

P6a                                                P6b                                                    P6c 
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P7                  P8 

 

P9                  P10 
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P11             P12 

 

P13           P14 

Figure 6.80. Representative pictures taken in San Severino Marche during the GEER survey (see 
Table 6.10). 
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Table 6.10. Summary of pictures and structures inspected in San Severino Marche. 

Picture DATUM Description 
Position October 

Damage 
Level Lat. Long. 

P01 WGS-84 Via Mazzini 76 43.22710° 13.18678° D1-D2 

P02 WGS-84 Via Mazzini 84 43.22605° 13.18883° D2-D3 

P03 WGS-84 Via Mazzini 86 43.2259° 13.1890° D2 

P04 WGS-84 Via Mazzini 91 43.2257° 13.1893° D2 

P05a WGS-84 Via Mazzini 94 43.2255° 13.1897° D4 

P05b WGS-84 Via Mazzini 94 43.2255° 13.1897° D4 

P06a WGS-84 Via Mazzini 115 43.2249° 13.1907° D4-D5 

P06b WGS-84 Via Mazzini 115 43.2249° 13.1907° D4-D5 

P06c WGS-84 Via Mazzini 115 43.2249° 13.1907° D4-D5 

P07 WGS-84 Intersection Mazzini-Monti Sibillini 43.2255° 13.1897° D2 

P08 WGS-84 Via Monti Sibillini 6 43.2250° 13.1899° D2 

P09 WGS-84 Via Monti Sibillini 15 43.2248° 13.1902° D2-D3 

P10 WGS-84 Via Monte San Vicino 43.2246° 13.1898° D0 

P11 WGS-84 Via Rossini 1 43.2336° 13.1845° D4 

P12 WGS-84 Via Padre Giuseppe Zampa 30 43.2326° 13.1863° D2 

P13 WGS-84 Villa Collio 43.2369° 13.1841° D2 

P14 WGS-84 Smeducci Tower 43.2258° 13.1760° D0 

 

6.2.5 Camerino  
Camerino (43.134666, 13.067698) is a village of about 7000 inhabitants located in the province 

of Macerata. Apart from the main village, Camerino has 43 hamlets: Arnano, Baregnano, 

Calcina, Campolarzo, Canepina, Capolapiaggia, Cappuccini, Casale, Colle, Costa San Severo, 

Letegge, Mecciano, Mergnano San Pietro, Mergnano San Savino, Morro, Nibbiano, Paganico, 

Palentuccio, Parrocchia Palente, Piegusciano, Polverina, Pontelatrave, Pozzuolo, Raggiano, 

Sabbieta, Sabbieta di Sopra, Sabbieta di Sotto, San Luca, San Marcello, Sant'Erasmo, Santa 

Lucia, Sellano, Selvazzano, Sentino, Sfercia, Statte, Strada, Torrone, Tuseggia, Valdiea, Valle San 

Martino, Valle Vegenana and Varano di Sotto. Our reconnaissance activity focused on the 

historic center. As shown in Table 6.1, Camerino experienced estimated ground motions during 

the 26 October event of PGA = 0.16 g, PGA = 0.20 g during the 30 October event, and PGA = 

0.07 g during the 24 August event. 

Geological bedrock in the area consists of alternation of layered soils, mainly composed of 

arenaceous and pelithic-arenaceous lithofacies, sometimes with clayey-calcareous marl, called 

“Scaglia cinerea” and “Schlier”. The above formations are locally covered by eluvio-colluvial 

soils, made of silt or low-plasticity clay, or alluvial soil in the valley. The historic center is placed 



6-85 
 

on the arenaceous formation referred to as “Formazione delle Arenarie di Camerino” (Figure 

6.81). 

The village was reported to have been damaged during the seismic sequence of 1279 and 

1328 and the Reatin earthquake of 1703, which destroyed Norcia. The strongest earthquake in 

Camerino was in 1799. An excerpt of the historical seismicity as reported in the CPTI database 

by INGV is reported in Figure 6.82. 

(a) 

 

(b) 

 

Figure 6.81. Geological map of Camerino (a) and cross section BB’ (b) (Regione Marche, 2012). 
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Figure 6.82. Historical earthquakes occurred in Camerino (CPTI- INGV). 

Figure 6.83 and Table 6.11 show locations of representative buildings inspected in the 

historic center of Camerino, including the red zone. Figure 6.84 shows photographs of these 

representative structures, which include both masonry and reinforced concrete dwellings two 

to four stories in height. The average damage level in the inspected zone was D2.  

 

Figure 6.83. Locations of the representative structures inspected in Camerino (including red 
zone) (see Table 6.11 for details). 
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Table 6.11. Locations of representative structures with damage descriptions. 

Picture DATUM 
Location October Damage 

Level Lat. Long. 

P01 WGS-84 43.135994 13.068003 D0 

P02 WGS-84 
43.135741 13.067888 D1 

P03 WGS-84 

P04 WGS-84 43.135960 13.068939 D1 

P05 WGS-84 43.135602 13.068546 D2 

P06 WGS-84 43.135548 13.068208 D1 

P07 WGS-84 43.135506 13.067865 D1 

P08 WGS-84 43.135373 13.067644 D1 

P09 WGS-84 43.135123 13.067159 D1 

P10 WGS-84 43.134963 13.067013 D1 

P11 WGS-84 43.135038 13.067331 D1 

P12 WGS-84 43.134792 13.067035 D1 

P13 WGS-84 43.134883 13.066948 D1 

P14 WGS-84 43.134697 13.066760 D1 

P15 WGS-84 43.134601 13.066622 D1 

P16 WGS-84 43.134589 13.066787 D1 

P17 WGS-84 

43.134287 13.066866 D1 P18 WGS-84 

P19 WGS-84 

P20 WGS-84 43.134461 13.066458 D1 

P21 WGS-84 43.134261 13.066439 D1 

P22 WGS-84 43.134685 13.065791 D1 

P23 WGS-84 43.134871 13.065710 D1 

P24 WGS-84 

43.134946 
 

13.065849 
 

D2 

P25 WGS-84 

P26 WGS-84 

P27 WGS-84 

P28 WGS-84 

P29 WGS-84 

P30 WGS-84 
43.135224 13.065621 D2 

P31 WGS-84 

P32 WGS-84 43.134340 13.065885 D1 

P33 WGS-84 43.134232 13.065760 D1 

P34 WGS-84 43.134087 13.065607 D1 

P35 WGS-84 43.133977 13.065722 D1 

P36 WGS-84 43.133901 13.065422 D1 

P37 WGS-84 43.133760 13.065284 D1 

P38 WGS-84 43.132951 13.064639 D1 

P39 WGS-84 43.132966 13.065040 D2 

P40 WGS-84 
43.132579 13.064910 D0 

P41 WGS-84 

P42 WGS-84 43.132345 13.064641 D1 
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Table 6.11 cont. Location of representative structures with damage descriptions. 

Picture DATUM 
Location October Damage 

Level Lat. Long. 

P43 WGS-84 
   

P44 WGS-84 

P45 WGS-84 43.131907 13.064037 D4 

P46 WGS-84 

43.131885 13.063674 D2-D3 

P47 WGS-84 

P48 WGS-84 

P49 WGS-84 

P50 WGS-84 

P51 WGS-84 43.132024 13.063564 D1 

P52 WGS-84 43.132091 13.063757 D1 

P53 WGS-84 43.132374 13.063907 D1 

P54 WGS-84 43.132246 13.064093 D2 

P55 WGS-84 43.132351 13.064252 D1 

P56 WGS-84 43.131747 13.062434 D2 

P57 WGS-84 43.131631 13.063391 D4 

P58 WGS-84 43.131555 13.063705 D1 

P59 WGS-84 
43.131457 13.062811 D1 

P60 WGS-84 

P61 WGS-84 
43.130020 13.060464 D0-D1 

P62 WGS-84 

P63 WGS-84 43.129763 13.060739 D1 

P64 WGS-84 43.139449 13.070221 D0 

P65 WGS-84 
43.137732 13.068879 D4 

P66 WGS-84 

P67 WGS-84 43.138131 13.068340 D0 
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Figure 6.84. Representative pictures taken in Camerino (see Table 6.11 for details). 

6.2.6 Pievebovigliana 
Pievebovigliana is a municipality in the Province of Macerata (Marche), located about 70 km 

southwest of Ancona and about 40 km southwest of Macerata, within the Monti Sibillini 

National Park. As shown in Table 6.1, Pievebovigliana experienced estimated ground motions 

during the 26 October event of PGA = 0.20 g, PGA = 0.23 g during the 30 October event, and 
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PGA = 0.09 g during the 24 August event. According to historical documents (Rovida et al., 

2016), the village suffered a maximum macroseismic intensity of VII-VIII MCS during the 4 

December 1832 Appennino umbro-marchigiano earthquake (M=5.4) while an I=VII is reported 

for the 28 July 1799 Appennino umbro-marchigiano earthquake (M=6.2). 

The area is characterized by the well-known Umbria-Marche Succession and, from a 

structural viewpoint, the area represents a connecting point between limestone/marly 

limestones ridges at west and the depressed area in the eastern sector. Alteration of clayey 

marls, limestones and Marly limestones characterize this area. The regional geological 

cartography, available at http://www.ambiente.marche.it/Territorio), are represented by 

lithologic units of Scaglia Cinerea (SCC), Bisciaro (BIS), Schlier (SCH) and alternation of 

arenaceous, pelitic-arenacous and pelitic lithotypes, called « Molasse ». In the geologic-

geotechnical map (Figure 6.85) SCC and SCH formations are indicated as COS (Cohesive and 

layered bedrock), while BIS and Molasse as ALS (bedrock characterized by a layered lithotypes 

alternation). Regarding the cover soils, they are represented by holocene alluvial terraced 

deposits of Musone River Synthem, MUSbn in the regional geological cartography, end by 

holocenic colluvial/eluvial deposits, MUSb2 in the regional geological cartography. The first are 

mostly made of coarse soils (silty gravel, mixture of gravel, sand and silt) with a shear wave 

velocity (VS) of about 400 m/s (Regione Marche, 2014), the second are made of inorganic silt, 

silty fine sand and clayey fine sands, silt and clay of low plasticity. These latter deposits are 

characterized by a shear wave velocity (VS) of about 300 m/s. 

Locations of representative photos taken in Pievebovigliana by the GEER team are reported 

in Figure 6.86. The pictures are presented in Figure 6.87. The historical center consists mainly of 

un-reinforced old masonry structures, 2-3 stories in height. Some of these structures have 

retrofitted. Outside of the historical center, isolated modern masonry and reinforced concrete 

structures were found (see P17-P18). Table 6.12 shows details and damage levels for the 

inspected structures. 

Pievebovigliana was significantly damaged by the October events. However, the degree of 

damage to buildings is quite variable across the village. A preliminary damage zonation is 

reported in Figure 6.88. Damage levels as high as D3-D4 are concentrated in the southern 

portion (area of Castello or S. Maria Assunta church) built on a slight ridge oriented NNW-SSE 

that is comprised of Scaglia-Cinerea bedrock. Topographic site effects may have impacted 

structural performance in this area. The northern and central portions of the village generally 

have damage levels D2 to D2-D3. These areas are mainly located on alluvial terraced deposits. 

Minor damage was observed along the western portion of the village; the northern part of this 

area, located on alluvium, has relatively modern buildings (see P17) while the southern area is 

on bedrock at the toe of the Scaglia-Cinerea ridge.  

http://www.ambiente.marche.it/Territorio
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 a)

 b) 
Figure 6.85. (a) Geological map of Pievebovigliana village and (b) geological section showing the 
main stratigraphical relationships (Regione Marche, 2014). 
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Figure 6.86. Locations of representative structures inspected in Pievebovigliana (see Table 6.12 
for details).  
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Figure 6.87. Representative pictures in Pievebovigliana during the survey (see Table 6.12). 
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Table 6.12. Locations of representative structures with damage descriptions 

 

Lat Long

P01 WGS-84  43.062787°  13.083464° D3

P02 WGS-84  43.061945°  13.084577° D3

P03 WGS-84  43.063389°  13.084261° D3

P04 WGS-84  43.063783°  13.083991° D3

P05 WGS-84  43.063783°  13.083991° D3

P06 WGS-84  43.063899°  13.082638° D2

P07 WGS-84  43.064250°  13.084019° D3-D4

P08 WGS-84  43.064200°  13.084639° D2-D3

P09 WGS-84  43.060806°  13.084796° D2

P10 WGS-84  43.060468°  13.084825° D3-D4

P11 WGS-84  43.060045°  13.085259° D1-D2

P12 WGS-84  43.061275°  13.084864° D1-D2

P13 WGS-84  43.059584°  13.085267° D3-D4

P14 WGS-84  43.060023°  13.085500° D2-D3

P15 WGS-84  43.059860°  13.085446° D3

P16 WGS-84  43.063751°  13.084271° D3

P17 WGS-84  43.061613°  13.084808° D1

P18a-P18b WGS-84  43.063833°  13.082469° D2-D3

P19 WGS-84  43.061650°  13.084506° D2

P20 WGS-84  43.060083°  13.084933° D1

P21 WGS-84  43.060303°  13.085108° D1

P22 WGS-84  43.059975°  13.085269° D3

Picture Datum
Location

Damage Level

Pievebovigliana
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Figure 6.88. Damage zonation within the villages of Pievebovigliana village. 

Three microtremor noise measurements (T01-T02-T03 in Figure 6.88) were carried out 

during the survey in the most damaged zone of the historical center. The same instrument and 

data acquisition procedures described for Visso were employed here. Average horizontal-to-

vertical (H/V) spectral ratios and polar H/V are reported in Figure 6.89. The data indicate 

relevant H/V peaks in the 3-5 Hz range. The highest peak in T01 can be related to the resonance 

of alluvial soils on bedrock while peaks in T02 and T03, slightly lower in amplitude and strongly 

polarized, are probably influenced by the topographic feature present in southern portion of 

village.  

 

 
T1 
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Figure 6.89. Noise measurements results in terms of H/V spectral ratio (on the left column) and 
H/V polar plots (on the right). 

6.2.7 Pieve Torina 
Pieve Torina is a village of about 1500 inhabitants located in the Macerata province. In addition 

to the main village it has the following hamlets: Antico, Appennino, Capecchiara, Capodacqua, 

Capriglia, Casavecchia Alta, Fiume, Giulo, Le Rote, Lucciano, Piè Casavecchia, Piecollina, 

Seggiole, Tazza, Torricchio, Vari. GEER reconnaissance occurred in the main village and a few 

additional hamlets described in other sections below. This section concerns the main village 

only. As shown in Table 6.1, Pieve Torina experienced estimated ground motions during the 26 

October event of PGA = 0.47 g, PGA = 0.34 g during the 30 October event, and PGA = 0.17 g 

during the 24 August event. 

Pieve Torina is crossed by the Sant’Angelo creek. Most of the buildings are masonry 

structures. Figure 6.90 shows the locations of representative structures inspected and a 

preliminary damage zonation. Figure 6.91 shows details of a building complex, and a damaged 

structure located in the center of the village. Two microtremor noise measurements (T01-T02 in 

Figure 6.90) were carried out during the survey in the most damaged zone of the town. Figure 

6.92 shows noise measurements results in terms of H/V spectral ratio and H/V polar plots. Both 

measurements show a peak at about 10 Hz. This value is compatible with the high level of 

damage observed for one-two stories buildings (usually characterized by similar values of 

fundamental frequency), indicating possible double resonance phenomena. 
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Figure 6.90. Locations of representative structures inspected in Pieve Torina, and damage 
zonation within the village. 

 

Figure 6.91. Representative pictures taken in Pieve Torina. 
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T1 
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Figure 6.92. Noise measurements results in terms of H/V spectral ratio (on the left column) and 
H/V polar plots (on the right). 

6.2.8 Fiume  
Fiume is part of the municipality of Pieve Torina, in the province of Macerata, in Marche region. 

The village is 3.70 kilometers (2.3 mi) from the Pieve Torina main village. As shown in Table 6.1, 

Fiume experienced estimated ground motions during the 26 October event of PGA = 0.24 g, 

PGA = 0.26 g during the 30 October event, and PGA = 0.10 g during the 24 August event. 

The west part of the hamlet is built on Holocene travertine, travertine plaques and calcium-

carbonate-encrusted. These materials are indicated as MUSf1 in Figure 6.93 and on regional 

geological cartography, available at http://www.ambiente.marche.it/Territorio. In some cases, 

these materials are tender and crumbly (VS=500-700 m/s, Regione Marche, 2012). The Eastern 

part of the hamlet, is built on Holocene eluvial colluvial deposits, consisting mainly of silty sandy 

clay intercalated with marl and limestone fragments (thickness higher than 3 m with estimated 

maximum of about 10 m); recent alluvial deposits, mainly made of silts and sandy clay 

intercalated with marl and limestone (MUSb); and debris flow deposits, mainly limestone debris 

and gravels with silty-sandy matrix (MUSa) (Figure 6.93). The geologic bedrock of the study area 

is represented by the Scaglia Cinerea Formation, that represents a cohesive bedrock, finely 

bedded and highly fraturated (SCC in Figure 6.93). Scaglia Cinerea is made of grey clays and 

calcareous marls with marly limestones intercalations (estimated VS = 700-800 m/s). 

Locations of representative structures inspected in Fiume by the GEER team are reported in 

Figure 6.94, while details (WGS-84 coordinates, damage level of buildings) are given in Table 

6.13. Pictures of these structures are presented in Figure 6.95. Buildings in the village consist of 

un-reinforced old masonry structures, 2-3 stories in height, some of which appear to have been 

retrofitted.  

http://www.ambiente.marche.it/Territorio
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Fiume was significantly damaged by the October events. However, the degree of damage to 

buildings is strongly variable across the village (Figure 6.94). In particular, the eastern portion, 

founded on colluvial and alluvial deposits resting on bedrock, experienced high levels of 

damage (D3, see pictures P01-P02) whereas the western portion located on travertine rock had 

negligible damage (see P03).  

Two microtremor noise measurements (T01-T02 in Figure 6.94) were carried out during the 

survey in the damage zone. The same instrument and data acquisition procedures described for 

Visso were employed. Average horizontal-to-vertical (H/V) spectral ratios and polar H/V are 

reported in Figure 6.96. Both measurements show a large H/V peak around 4 Hz that is likely 

related to stiffness contrast between soil cover and underlying bedrock.  

 (a)

(b) 
Figure 6.93. (a) Geological map of Fiume (Pieve Torina) village and (b) EW Geological cross-
section (Regione Marche, 2012). 
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Figure 6.94. Locations of representative structures inspected in Fiume (Pieve Torina) and 
damage zonation (see Table 6.13 for details). 

Table 6.13. Locations of representative structures with damage descriptions. 

 

Lat Long

P01a,b WGS-84  43.042201°  13.001130° D3

P02 WGS-84  43.042146°  13.001298° D3

P03 WGS-84  43.042172°  13.000544° D0/D1

P04 WGS-84  43.041870°  13.001228° D3

Picture Datum
Location

Damage Level

Fiume (Pieve Torina)
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Figure 6.95. Representative pictures taken in Fiume (Pieve Torina) during the survey (see Table 
6.13). 
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Figure 6.96. Noise measurements results in terms of H/V spectral ratio (on the left column) and 
H/V polar plots (on the right). 

6.2.9 Casavecchia Alta 
Casavecchia is part of the municipality of Pieve Torina, in the province of Macerata, Marche 

region. Casavecchia hamlet is located about 5 kilometers from Pieve Torina. Table 6.1 shows 

estimated ground motion levels.  

The upper part of Casavecchia hamlet (called Casavecchia Alta) is built on a synclinal ridge, 

an elongated hill underlain by a syncline whose core is formed by marl and calcareous marl, 

belonging to the Schlier Formation (Vs = 700-800 m/s) with a high fracturation value (Jv > 30); 

that can be considered as a cohesive and layered bedrock. About 20-60 m below the Schlier, 

there is the Bisciaro Formation. This latter consists of alternations of limestone, flint and marly 

limestone with calcareous marl and flint nodules. Bisciaro Formation is characterized by a Jv 

index between 21 and 30, and a VS> 800 m/s (Regione Marche, 2012b). The lower part of the 

village (Piè Casavecchia), located at the toe of the ridge, is founded on both Schlier Formation 

and alluvial terraced deposits (Figure 6.97).  

Locations of representative structures inspected in Casavecchia Alta and Piè Casavecchia by 

the GEER team are reported in Figure 6.98, while details (WGS-84 coordinates, damage level of 

buildings) are given in Table 6.14. The pictures are presented in Figure 6.99.  

The village consists essentially of un-reinforced old masonry structures, 2-3 stories in height. 

It was significantly damaged by the October events, being the damage level slightly higher in 



6-118 
 

the upper part (Casavecchia Alta) where several partial and full collapses took place (see P03-

P04) with respect to Piè Casavecchia (P01-P02).  

A noise measurements (T01 in Figure 6.98) was carried out during the survey in the upper 

part. The same instrument and data acquisition procedures described for Visso survey were 

employed. Average horizontal-to-vertical (H/V) spectral ratios and polar H/V plot are reported 

in Figure 6.100. A broad band H/V peak appears at 2-6 Hz polarized in the direction of about 

60°, i.e. perpendicular to the axis of the ridge, thus indicating possible topographic site effects 

(Pagliaroli et al., 2015).  

(a) 

(b) 

Figure 6.97. (a) Geological map of Casavecchia Alta village, and (b) Geological cross-section 
(Regione Marche, 2012b). 
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Figure 6.98. Locations of representative structures inspected in Casavecchia (see Table 6.14 for 
details). 

Table 6.14. Locations of representative structures with damage descriptions.

 

 

  
P01 P02 

Lat Long

P01 WGS-84  42.996714°  13.060456° D3-D4

P02 WGS-84  42.997693° 13.064266° D2-D3

P03 WGS-84  42.998803°  13.062181° D4-D5

P04 WGS-84  42.998500°  13.061722° D4-D5

Casavecchia Alta / Piè Casavecchia

Picture Datum
Location

Damage Level
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Figure 6.99. Representative pictures taken in Casavecchia during the survey (see Table 6.14). 

 
 

 

Figure 6.100. Noise measurement T01 results in terms of H/V spectral ratio (up) and H/V polar 
plots (bottom). 
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6.2.10 Sellano  
Sellano and related hamlets are located about 15-20 km W from the epicenters of seismic 

events of October. GEER reconnaissance occurred in the main village and several hamlets, 

identified below. As shown in Table 6.1, Sellano experienced estimated ground motions during 

the 26 October event of PGA = 0.07 g, PGA = 0.20 g during the 30 October event, and PGA = 

0.13 g during the 24 August event. 

Locations of representative structures inspected by the GEER team are reported in Figure 

6.101, while details (WGS-84 coordinates, damage level of buildings) are given in Table 6.15. 

The pictures are presented in Figure 6.102.  

No or negligible damage was observed in the hamlets of Terne and Villamagina (on average 

D0-D1). Slightly higher damage (D1-D2) was reported in the upper part of Sellano (area of Santa 

Maria Assunta and Municipio, see P04 and P06). 

A noise measurement was carried out during the survey in the upper part of Sellano (close to 

P06 in the Municipio square), about 30 m from a slope. The same instrument and data 

acquisition procedures described for Visso survey were employed. Average horizontal-to-

vertical (H/V) spectral ratios and polar H/V plots are reported in Figure 6.103. A broad band 

peak can be identified at about 3-5 Hz that is clearly polarized in the direction of about 90°, 

which is roughly orthogonal to the strike of the adjacent slope.  

   

Figure 6.101. Locations of representative structures inspected in Sellano and surrounding 
hamlets (see Table 6.15 for details). 
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Table 6.15. Locations of representative structures with damage descriptions 

 

 

 
 

P01 P02 

 
P03 

Lat Long

P01 WGS-84  42.915280°  12.884264° D0

P02 WGS-84  42.891653°  12.913796° D0

P03 WGS-84  42.886215°  12.921222° D0

P04 WGS-84 42.888617° 12.927153° D2

P05 WGS-84  42.870454°  12.924667° D0-D1

P06 WGS-84 42.888828° 12.926805° D1

Picture Datum
Location

Damage Level

Sellano/Terne/Villamagina
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Figure 6.102. Representative pictures taken in Sellano and surroundings during the survey (see 
Table 6.15). 
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Figure 6.103. Noise measurement results in terms of H/V spectral ratio (top) and H/V polar 
plots (bottom) (Sellano, Municipio square, 42.888828°- 12.926805°). 

 

6.2.11 Pié del Colle  
The town of Norcia includes a cluster of hamlets, one of which (Pié del Colle) was visited in 

GEER reconnaissance. Pié del Colle is about 5.6 km from the Norcia center. As shown in Table 

6.1, Pié del Colle experienced estimated ground motions during the 26 October event of PGA = 

0.48 g, PGA = 0.39 g during the 30 October event, and PGA = 0.33 g during the 24 August event. 

Figure 6.104 and Table 6.16 show locations and details of representative buildings inspected 

in Pié del Colle. Figure 6.105 shows representative structures, which include unreinforced 

masonry and reinforced concrete buildings. Damage was observed to both types of structures, 

although among reinforced concrete structures the principal damage was collapse of interior 

tiles from frames. Typical damage levels were between D2 and D3.  
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Figure 6.104. Locations of the representative structures inspected in Ancarano pié del colle (see 
Table 6.16 for details). 

Table 6.16. Location of representative structures with damage descriptions. 

Picture DATUM Location Damage Level Notes 

Lat. Long.   

P01 WGS-84 42.844373 13.101296 D2  

P02 WGS-84 42.844211 13.101267 D2  

P03 WGS-84 42.844400 13.101682 D1  

P04 WGS-84 42.844270 13.101787 D1  

P05 WGS-84 42.844039 13.101900 D1  

P06 WGS-84 42.844130 13.102034 D1  

P07 WGS-84 42.844310 13.102489 D1  

P08 WGS-84 42.844148 13.103076 D1  

P09 WGS-84 42.844152 13.103284 D4  

P10 WGS-84 42.844152 13.103527 D0  

P11 WGS-84 42.844028 13.103713 D5  

P12 WGS-84 42.844166 13.103785 D2  

P13 WGS-84 42.844177 13.103916 D5  

P14 WGS-84 42.843939 13.103436 D3  

P15 WGS-84 42.843826 13.103548 D0  

P16 WGS-84 42.843215 13.102244 D2  

P17 WGS-84 42.843167 13.102265 D2  
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Figure 6.105. Representative pictures taken at Ancarano pié del Colle (see Table 6.16 for for 
details). 

6.2.12 Cessapalombo  
Cessapalombo is a small village of about 540 inhabitants located in the province of Macerata at 

454 m a.s.l. In addition to the main village there are 7 hamlets: Case Colbottoni, Case Meschine, 

Invernale, La Valle, La Villa, Monastero, Trebbio. GEER reconnaissance occurred in the main 
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village of Cessapalombo. As shown in Table 6.1, Cessapalombo experienced estimated ground 

motions during the 26 October event of PGA = 0.11 g, PGA = 0.12 g during the 30 October 

event, and PGA = 0.08 g during the 24 August event. 

Geological bedrock in the area consists of alternation of layered soils (ALSzz), mainly 

composed of arenaceous and pelithic-arenaceous lithofacies. In the main village of 

Cessapalombo, the above formation is covered by alluvial soils (GM) made of gravels and sands, 

locally in silty clayey matrix (ML) (Figure 6.106). In the mountainous region, calcareous and 

marly formations may be found (Monte Codardo, Monte Pretella, Monte di Bozzi, etc.). At the 

base of the mountains, several fans may be recognized with some villages risen just upon fans 

(f.e., La Villa and La Valle).  

Figure 6.107 shows historical seismicity of Cessapalombo (CPTI-INGV database). The village 

was heavily damaged during the seismic event of July 28, 1799 (also known as the Camerino 

earthquake).  

Table 6.17 summarizes locations and details of the representative inspected buildings, while 

Figure 6.108 shows locations of these buildings. Figure 6.109 shows pictures of representative 

structures in the village. The average damage level in the main village is approximately D1 to 

D2.  

 

Figure 6.106. Geological map of Cessapalombo main centre (Regione Marche, 2012). 
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Figure 6.107. Historical earthquakes felt in Cessapalombo (CPTI- INGV). 

 

 

Figure 6.108. Locations of the representative structures inspected in Cessapalombo (see Table 
6.17 for details). 
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Table 6.17. Location of representative structures with damage descriptions. 

Picture DATUM Location Damage Level Notes 

Lat. Long.   

P01 WGS-84 43.108198 13.258378 D5  

P02 WGS-84 43.108592 13.258880 D2  

P03 WGS-84 
43.108566 13.257992 D1 

 

P04 WGS-84  

P05 WGS-84 43.108643 13.258125 D1  

P06 WGS-84 

43.108739 13.258286 D1 

 

P07 WGS-84  

P08 WGS-84  

P09 WGS-84  

P10 WGS-84  

P11 WGS-84 43.108772 13.258107 D1  

P12 WGS-84 43.108713 13.257500 D0  

P13 WGS-84 43.108522 13.257597 D3-D4  

P14 WGS-84 43.108463 13.257340 D1  

P15 WGS-84 43.109235 13.258417 D2  

  

P01 P02 

  

P03 P04 
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Figure 6.109. Representative pictures taken at Cessapalombo (see Table 6.17 for details). 

6.2.13 Preci  
Preci (42.880697, 13.039657) has about 750 inhabitants and is located in the province of 

Perugia. Apart from the main village, it has several hamlets: Abeto, Acquaro, Belforte, casali 

Belforte, Case sparse, Castelvecchio, Collazzoni, Collescille, Corone, Fiano, Montaglioni, 

Montebufo, Poggio di croce, Piedivalle, Roccanolfi, Sacco Vescio, San Lazzaro, Todiano, Villa del 
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Guado. Ground motion levels are reported in Table 6.1. The main village was lightly damaged. 

Figure 6.110 shows the location of representative pictures taken in Preci, while Figure 6.111 

shows a church with damage level D1.  

 

Figure 6.110. Locations of the representative structures inspected in Preci. 

  

P01 P02 
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P03 
 

P04 

Figure 6.111. Representative pictures of church in Preci (Lat = 42.881418, Lon = 13.036290). 

6.2.14 Piedivalle  
The hamlet of Piedivalle (42.866786, 13.060767) belongs to the municipality of Preci and is 

about 2.5 km from the Preci center. Its elevation is 611 m a.s.l. and it has 35 inhabitants. 

Estimated ground motions are given in Table 6.1. We inspected three structures at the location 

shown in Figure 6.112. The building photographs are shown in Figure 6.113. The masonry 

structures have damage level D1.  

 

Figure 6.112. Locations of the representative structures inspected in Piedivalle. 
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P04 

Figure 6.113. Representative pictures taken at Piedivalle. 

6.2.15 Caldarola 
Caldarola (43.13988, 13.22471) is a small village of about 1850 inhabitants located in the 

province of Macerata. Table 6.1 shows the ground motions levels. Figure 6.114 shows the 

locations of inspected buildings, Figure 6.115 shows the building photos. Table 6.18 shows 

details for inspected buildings. Buildings are both unreinforced masonry and reinforced 

concrete. Damage levels vary from D0 to D1.  
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Figure 6.114. Locations of the representative structures inspected in Caldarola (see Table 6.18 
for details). 
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Table 6.18. Location of representative structures with damage descriptions. 

Picture DATUM Location Damage Level Notes 

Lat. Long.   

P01 WGS-84 43.136801 13.226607 D1  

P02 WGS-84 43.137202 13.225963 D0  

P03 WGS-84 43.137617 13.226234 D1  

P04 WGS-84 43.137827 13.225873 D1  

P05 WGS-84 43.138038 13.226472 D2  

P06 WGS-84 43.138212 13.226377 D0  

P07 WGS-84 43.138370 13.226287 D0  

P08 WGS-84 43.138488 13.226146 D0  

P09 WGS-84 43.127572 13.220054 D3  

P10 WGS-84 
43.127735 13.219258 D3 

 

P11 WGS-84  
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P11  
Figure 6.115. Representative pictures taken at Caldarola (see Table 6.18 for details). 

6.2.16 Castello di Campi  
The village of Castello di Campi (42.853729, 13.100582) belongs to the municipality of Norcia 

and is about 11 km from the center of Norcia. It has 172 inhabitants according to the ISTAT 

census of 2001. Table 6.1 shows the ground motions levels. Figure 6.116 shows the locations of 

inspected buildings, Figure 6.117 shows the building photos. Table 6.19 shows details for 

inspected buildings. Observed buildings are unreinforced masonry. Damage levels vary from D2 

to D3.  

 

Figure 6.116. Locations of the representative structures inspected in Castello di Campi (see 
Table 6.19 for details). 

 

 

http://italia.indettaglio.it/eng/lazio/amatrice.html
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Table 6.19. Location of representative structures with damage descriptions. 

Picture DATUM Location Damage Level Notes 

Lat. Long.   

P01 WGS-84 42.853422 13.101411 D4  

P02 WGS-84 42.853480 13.100616 D2-D5  

P03 WGS-84 42.853819 13.100276 D2-D5  
 

  

P01 
 

P02 

 

 

P03 
 

 

Figure 6.117. Representative pictures taken at Castello di Campi (see Table 6.19 for details). 

6.2.17 Colfiorito 
Colfiorito village consists essentially of masonry structures, 2-3 stories in height. Some 

structures were retrofitted following the 1997 earthquake. No or negligible damage was 

observed (on average D0-D1). Table 6.1 lists ground motion levels.  

Coordinates and damage level of representative buildings inspected during the survey are 

given in Table 6.20 while corresponding pictures are presented in Figure 6.118. 
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Table 6.20. Locations of representative structures with damage descriptions 

 

 

 
Figure 6.118 

 
 

P01 P02 P03 
Figure 6.118. Representative pictures taken in Colfiorito during the survey (see Table 6.20) 

6.2.18 San Lorenzo in Colpolina 
San Lorenzo in Colpolina is part of the municipality of Fiastra, in the province of Macerata, 

Marche Region. The hamlet is 6.2 kilometers from Fiastra of which it is part. Table 6.1 shows 

estimated ground motion levels.  

As one can see from Figure 6.119 (modified from Regione Marche, 2012), San Lorenzo in 

Colpolina is built on a ridge elongated NNW-SSE and constitued by pelitic-arenacous and 

arenacous litofacies of Camerino Formation, that consists of foredeep turbidites, locally present 

in different silicoclatic lithofacies, having different lateral and overlapping relationships. In 

particular, in the study area there are outcrops of the pelitic-sandstone, and sandstone 

lithofacies; Tortonian-Messinain. In the geologic-geotechnical map Camerino Formation is 

Lat Long

P01 WGS-84 43.026700° 12.890759° D1

P02 WGS-84 43.028375°  12.891436° D0

P03 WGS-84  43.026766°  12.890206° D0

Colfiorito

Picture Datum
Location

Damage Level
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indicated as ALS, bedrock characterized by a layered lithotypes alternation according to the 

Italian standard of seismic microzonation (available at http://www.protezionecivile.gov.it). The 

hamlet is located on a general synclinorium, with nucleus made up of terrigenous turbiditic 

formation, while its sides are made up of pelitic terms belonging to the Schlier Formation (SCH 

in Figure 6.119). The Quaternary continental deposits mainly consist of alluvial soils (SM-tf), 

attributable to the alluvional phases Chienti River. 

Locations of representative structures inspected in San Lorenzo in Colpolina by the GEER 

team are reported in Figure 6.120, while details (WGS-84 coordinates, damage level of 

buildings) are given in Table 6.21. The pictures are presented in Figure 6.121.  

(a) 

http://www.protezionecivile.gov.it/
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(b) 

Figure 6.119. (a) Geological map of San Lorenzo in Colpolina village, and (b) Geological cross-
section (Regione Marche, 2012).  

The village consists essentially of un-reinforced masonry structures, 2-3 stories in height. 

Some structures are retrofitted. The damage at the top of the ridge was quite high (D3-D4 on 

average) with several partial collapses (see P01- P03-P04).  

A noise measurements (T01 in Figure 6.120) was carried out during the survey on the ridge 

on to which San Lorenzo is founded. The same instrument and data acquisition procedure 

described for Visso survey were employed. Average horizontal-to-vertical (H/V) spectral ratios 

and polar H/V plot are reported in Figure 6.122. A peak can be identified at about 3 Hz 

polarized in the direction of about 100°, i.e. perpendicular to the axis of the ridge, thus 

indicating possible topographic site effects (Pagliaroli et al., 2015).  

 

Figure 6.120. Locations of representative structures inspected in San Lorenzo in Colpolina (see 
Table 6.21 for details). 
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Table 6.21. Locations of representative structures with damage descriptions.

 

 

 

 
P01 P02 

  
P03 

 
P04 

Figure 6.121. Representative pictures taken in San Lorenzo in Colpolina during the survey (see 
Table 6.21). 

Lat Long

P01 WGS-84  43.086690°  13.124509° D5

P02 WGS-84  43.086511°  13.124582° D3-D4

P03 WGS-84  43.086319°  13.124638° D4

P04 WGS-84  43.087064°  13.124486° D4

San Lorenzo in Colpolina

Picture Datum
Location

Damage Level



6-146 
 

 

 

Figure 6.122. Noise measurements results in terms of H/V spectral ratio (top) and H/V polar 
plots (bottom). 

6.2.19 Serravalle 
Serravalle is a hamlet part of the municipality of Norcia, in the province of Perugia, Umbria 

region. Serravalle is located about 6 kilometers from Norcia and it has a population of 25 

people. Ground motion levels are reported in Table 6.1 The hamlet was not damaged by the 

earthquake and the generalized damage level was D0 (Figure 6.123, Table 6.22). 

  
P01 P02 
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P03  
Figure 6.123. Representative pictures taken in Serravalle during the GEER reconnaissance (see 
Table 6.22). 

Table 6.22 Locations of representative structures with damage descriptions 

Serravallle 

Picture Datum 
Location Damage 

Level Lat Long 

P01 WGS-84 42.785802 13.022287 D0 

P02 WGS-84 42.785816 13.022504 D0 

P03 WGS-84 42.785852 13.022981 Do 
 

6.2.20 Popoli 
The small village of Popoli is located 4.67 km far from Norcia. Before the 24 August 2016 

earthquake, 47 people lived there. There were 51 buildings, 43 of which for residential use. The 

majority of the structures are one or two-story masonry buildings, constructed before 1919. In 

the last 30 years, only seven buildings were built. Others structural types are also present 

(wooden and steel structures). Before the 24 August event, 32 buildings were assessed in 

excellent conditions, 7 in good conditions and 4 in poor conditions due to aging effects and lack 

of maintenance (http://italia.indettaglio.it/ita/umbria/perugia_norcia_popoli.html, last 

accessed 21 April, 2017). The village is located in a valley floor consisted of alluvial deposits, 

susceptible to seismic amplification phenomena. Ground motion levels are reported in Table 

6.23 Figure 6.124 shows the damage proxy map after the 30 October earthquake. Red zones 

mark zones seriously damaged (damage level D5). Figure 6.125 shows buildings with different 

http://italia.indettaglio.it/ita/umbria/perugia_norcia_popoli.html
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level damage ranging from D0 to D5. Only poorly constructed masonry buildings experienced 

major damage. 

 

Figure 6.124. Damage proxy map of Popoli (http://aria-share.jpl.nasa.gov/events/20161030-
Italy_EQ/DPM/, last accessed 21 April, 2017). 

  
P01 P02 

  
P03 P04 

http://aria-share.jpl.nasa.gov/events/20161030-Italy_EQ/DPM/
http://aria-share.jpl.nasa.gov/events/20161030-Italy_EQ/DPM/
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P05 P06 
Figure 6.125. Representative pictures taken in Popoli during the GEER reconnaissance (see 
Table 6.23). 

Table 6.23. Locations of representative structures with damage descriptions 

Picture DATUM 
Location 

Damage Level 
Lat. Long. 

P01 WGS-84 42.751381 13.106139 D1 

P02 WGS-84 42.751381 13.106139 D1 

P03 WGS-84 42.751800 13.105000 D3 

P04 WGS-84 42.751700 13.105700 D2/D3 

P05 WGS-84 42.751572 13.106256 D4/D5 

P06 WGS-84 42.751300 13.106075 D0 
 

6.2.21 San Pellegrino 
The village of San Pellegrino is located 5.93 km far from Norcia. Before the 24 August event, 156 

people lived there. There were 140 residential buildings, and two buildings were used for 

commercial purposes. The overwhelming majority of the structures was formed by two-story 

masonry buildings, constructed between 1946 and 1990, and just a few reinforced concrete 

buildings. Before the 24 August earthquake, 11 residential buildings were in excellent 

conditions, 128 in good conditions, and 1 was in poor conditions due to aging effects and lack of 

maintenance (http://italia.indettaglio.it/ita/umbria/perugia_norcia_sanpellegrino.html). The 

geology of San Pellegrino is characterized by the presence of screes or alluvial cone and alluvial 

deposits. San Pellegrino was heavily damaged after the 24 August 2016 seismic events. Ground 

motion levels are reported in Table 6.1 Figure 6.126 shows the damage proxy map produced 

after the 30 October event. Red and yellow zones localized the wide area heavily damaged.  

http://italia.indettaglio.it/ita/umbria/perugia_norcia_sanpellegrino.html)
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Figure 6.126. Damage proxy map of San Pellegrino (http://aria-
share.jpl.nasa.gov/events/20161030-Italy_EQ/DPM/) along with the identification numbers of 
the structures with assigned damage level D5. 

During our reconnaissance following the 30 October event, we observed extensive damages 

in almost all the masonry structures (classified as D3-D5) located mainly in the historical center 

of the town, which was in part not accessible. Some pictures of the damaged buildings in the 

historical center are shown in Figure 6.127 (source Repubblica.it, last accessed 21 April, 2017). 

In the new part of the town damages were concentrated on non-structural components of 

some of the reinforced concrete buildings recently constructed (classified as D2). Figure 6.128 

shows multi-epoch pictures (before August and after 30 October, 2017) of selected locations. 

Table 6.24 summarizes the overall damage level observed in these locations. 

  

P04

P03P02

P01

P05

http://aria-share.jpl.nasa.gov/events/20161030-Italy_EQ/DPM/
http://aria-share.jpl.nasa.gov/events/20161030-Italy_EQ/DPM/
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Figure 6.127. Damaged constructions in the oldest part of San Pellegrino 
(http://video.repubblica.it/dossier/terremoto-30-ottobre/terremoto-centro-italia-la-
distruzione-a-san-pellegrino-di-norcia-dal-drone/257495/257761). 

  
P01. Montesanto street 

  
P02. San Pellegrino Church 

  
P03. War memorial 
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P04. Francesco Crispi Street 

 
 

P05. Pasquale Severini Square 
Figure 6.128. Pictures of the structures with assigned damage level D5 in San Pellegrino, before 
and after the October earthquake, along with their identification numbers. 

Table 6.24. Locations of representative structures with damage descriptions. 

Picture Damage Level 

P01 D4 

P02 D4 

P03 D5 

P04 D3/D4 

P05 D4/D5 
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7 Performance of Bridges 
Principal authors:  Luigi Di Sarno, Maria Giovanna Durante, Jonathan P. Stewart  

Contributing authors: Ernesto Ausilio,  Roberto Cairo, Stefania Sica,  Michele Mucciacciaro, 

Paolo Zimmaro 

GEER and the Consortium ReLuis inspected 12 bridges following the 24 August 2016 

earthquake. The outcomes of the survey are presented in Chapter 6 of GEER (2016). Most of 

the reinforced concrete (RC) and composite bridges that were inspected did not experience 

significant seismically-induced damage.  Conversely, the masonry bridges suffered extensive 

damage during the August events that affected roadway operations. The latter damaged 

bridges were re-visited following the October seismic sequences. An additional small masonry 

bridge along SP477 was also checked. The earthquake reconnaissance showed that the 

investigated masonry bridges suffered substantial additional damage during the October 

seismic sequence. The locations of surveyed masonry bridges is shown in Figure 7.1; further 

details are given in Table 7.1.  

 
Figure 7.1. Map of epicentral region showing locations of bridge sites visited by the GEER team 
following the October 2016 seismic sequence.  
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Table 7.1. Details of bridges inspected following October 2016 seismic sequence. 

 Type of 
bridge 

Longitude 
[deg] 

Latitude 
[deg] 

SP477 – 
Castelluccio - Norcia 

Masonry 13.142383 42.782073 

Roman-era SP129 Trisungo-Tufo 
(1 span) 

Masonry 13.254862 42.735981 

Roman-era SP129 Trisungo-Tufo 
(3 spans) 

Masonry 13.253655 42.73538 

SR260 Ponte a Tre Occhi - Amatrice Masonry 13.290176 42.620668 

SR260 Ponte a Cinque Occhi - 
Amatrice 

Masonry 13.250428 42.623178  

 
The inspected masonry bridges include:  

- Single arch bridge along road SP477, located between Castelluccio e Norcia 

villages (Figure 7.2);  

- Two arch bridges along the Roman-era road SP129 Trisungo-Tufo, located near 

the village of Tufo (Figures 7.3 and 7.4); 

- Ponte a Tre Occhi (Three eyes), located along the SR260 road in Amatrice (Figure 

7.5); 

- Ponte a Cinque Occhi (Five eyes) located along the internal road connecting SS4 

(exit of Casale Nibbi) and SR260, in the direction of Amatrice (Figure 7.6). 

Figure 7.2 shows damage observed on the single arch masonry bridge along road SP477. The 

bridge did not appear seriously damaged, but several cracks were observed, especially in the 

road carriage. Transversal and longitudinal cracks along the road surface were documented 

(Figure 7.2a), with a measured maximum opening in the longitudinal direction of about 6 cm. 

From the visual inspection, the transversal cracks close to the road-bridge connection appear 

more recent when compared to those in the longitudinal direction. Longitudinal cracks also 

formed in road fill adjacent to the bridge (Figure 7.2b). Minor additional cracking was observed 

within the bridge arch (Figures 7.2c and 7.2d). Figure 7.2e (from Google earth) shows a photo of 

the bridge in December 2011, when no roadway cracks are evident. Because this bridge was not 

inspected in the reconnaissance performed following the August 2016 sequence, we cannot 

identify which events produced the observed effects.  

Figure 7.3 shows comparative pictures (taken after the 24 August and the October events) of 

the 1-span masonry bridge along the Trisungo route (along road SP129). The bridge presents 

additional cracks following the October events in the interior part of the arch (Figure 7.3b). The 
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width of the crack in the longitudinal direction (Figure 7.3d) has increased with respect to that 

observed in the first reconnaissance (Figure 7.3c). However, there was no additional spalling of 

masonry elements as had been observed following the first event.  

Figure 7.4 shows the response of the second arch along the Trisungo route (3 spans bridge) 

after the different events (24 August and October 2016). The incremental damage was 

significant: part of central arch, already damaged after the first event (Figures 7.4a and 7.4c), 

collapsed as a result of the October earthquakes (Figures 7.4b and 7.4d).  

The Ponte a Tre Occhi (Three eyes) near Amatrice (Figure 7.5) also experienced additional 

damage, consisting mainly of spalling of outer-layer masonry elements located along abutment 

areas (not involving the three arches) (Figure 7.5b). At the time of the reconnaissance 

(December 2, 2016) repairs had been carried out on one of the two abutments (Figure 7.5c), 

while the bridge masonry and structure appeared to have not yet been repaired (Figure 7.5d). 

The Ponte a Cinque Occhi (Five eyes) along the internal road connecting SS4 (from the Casale 

Nibbi exit) to SR260 along Scandarello lake suffered additional damage during the October 

strong motions. The damage was concentrated in the arches and the piers as shown in Figures 

7.6a and 7.6b.  The bridge was retrofitted, as a rapid intervention, in early December 2016 with 

fiber-reinforced mortar and steel mesh (see Figures 7.6c and 7.6d). The latter intervention was 

aimed at restoring the structural capacity to the piers and the abutments. Construction was 

also carried out on the carriage way (bridge deck) and drainage ducts were installed.  

  

(a) (b) 
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(c) (d) 

 

 

(e)  

Figure 7.2. Bridge along SP477 (42.782073 deg, 13.142383 deg): road surface cracks (a); 
longitudinal cracks along the road side (b); cracks between the bridge arch and the main 
structure (c-d); view of the bridge on December 2011 (e). 
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(a) (b) 

   

(c) (d) 

Figure 7.3. Roman-era bridge along the Trisungo route (1 span bridge - Tufo area – Arquata del 
Tronto - N42.735981, E13.254862): view of the arch (a, b) and the road cracks (c, d) after the 24 
August event (photo on September 7 2016 (a, c)) and after the 30 October event (photo on 
December 13 2016 (b, d)). 
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(a) (b) 

  

(c) (d) 

Figure 7.4. Roman-era bridge along the Trisungo route (3 spans bridge - Tufo area – Arquata del 
Tronto - N42.73538, E13.25365): (c) after the 24 August event (photo on September 7 2016) 
and (d) after the 30 October event (photo on December 13 2016). 
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(a) (b) 

 

 

(c) (d) 

Figure 7.5. Ponte a Tre Occhi (42.620668 deg, 13.290176deg): (a) after the 24 August event 
(photo on September 7 2016) and (b,c,d) after the 30 October event (photo on December 13 
2016), repairing works (c) and bridge masonry collapse (d). 
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(a) (b) 

  

(c) (d) 

Figure 7.6. Ponte a Cinque Occhi (42.623178 deg, 13.250428deg): increased sub-vertical cracks 
to the piers after the 30 October event at the top (a) and bottom (b) of the piers (photo on 
November 20 2016) and structural retrofitting of the bridge (c and d) (photo on December 15 
2016). 
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8 High-Value Case Histories 
Jonathan P. Stewart, Paolo Zimmaro 

Earthquake engineering and engineering seismology are disciplines that are experience-driven to 

a substantial extent. Post-earthquake reconnaissance, for example as recorded in this report and 

in GEER (2016) for the 2016 Central Italy earthquake sequence, provides the means by which we 

develop this experience and document it for use by the broader community. In the case of man-

made structures and systems, we examine the effectiveness of our methods and practices. In 

many cases data gathered during reconnaissance is not from engineered systems but from 

natural systems (e.g., ground motions, ground failure, etc.); such data plays a fundamental role 

in the development of engineering methods for seismic risk forecasting (e.g., ground motions, 

ground failure hazards).  

GEER (2016) presented the results of extensive reconnaissance activities undertaken over 

approximately a one month period following the mainshock event on 24 August 2016. This report 

builds upon that earlier document, with a focus on the effects of events on 26 and 30 October 

2016.  

As a GEER team, our objective was reconnaissance related to ground failures (surface rupture, 

landslides, other ground deformations), soil-structure interaction (e.g., retaining wall failures), 

and indicators of local site response effects (such as damage patterns). However, for both the 

August and October events, our mission broadened to include documentation of structural 

performance for a variety of reasons including: (1) it supported our mission of evaluating damage 

patterns; (2) the structural performance data was indeed perishable, and as the principal 

reconnaissance team in many of the visited areas, we felt a duty to document our observations. 

As a result, the reader can find in this report and in GEER (2016) elements of traditional GEER 

reports combined with considerable detail on structural performance, particularly in relation to 

building damage patterns and bridge performance.  

Looking collectively at the observations made in both reconnaissance exercises, we suggest 

the following data as likely to be especially impactful in future research:  

1. Earthquake probabilities: When a large earthquake occurs, there are two schools of 

thought regarding its effect on the risk of subsequent large events. One is that stress 

release lowers earthquake rates relative to the long-term (Poisson) rate until stresses can 

again build-up on the fault.  Another is that stress release on one portion of the fault may 

increase stress on adjoining portions of the same fault segment or adjacent segments. 

This would tend to increase earthquake rates (and hence short-term probabilities) 

relative to the long-term rate. This subject is of substantial practical significance for 

regional risk assessment. As shown in Figure 1.1, the August 2016 and October 2016 

events occupy a gap along the NW striking Apennine chain between the locations of the 

1997 Umbria-Marche and 2009 L’Aquila events. The occurrence of this cluster of 
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earthquakes suggest that latter (probability increasing) mechanism occurred and may 

continue into the future.  

2. Faults as seismic sources: The portions of the Apennines affected by these earthquakes 

have numerous fault segments, many of which are well expressed at the ground surface 

(Chapter 2 of GEER 2016). Despite this, seismic source models used for Italian hazard 

studies in many cases do not take into consideration known attributes of these segments, 

often relying instead on seismic source zones or composite faults. We encourage the use 

of fault sources for seismic source characterization.  

3. Multi-segment rupture: When fault segments are considered as seismic sources, an 

important question is whether single earthquake events can rupture multiple segments. 

It appears the 24 August 2016 event ruptured both the Mt. Vettore and Laga Mountains 

faults (GEER 2016), whereas multiple discontinuous segments of the Mt. Vettore fault 

ruptured during the 30 October 2016 event (Chapter 2).    

4. Surface fault rupture: The data on surface faulting from this event sequence, which was 

observed following all three mainshocks (24 August, 26 and 30 October) will be a valuable 

resource for statistical models of surface rupture characteristics of normal fault 

earthquakes.  

5. Ground motions: For the most part, the ground motions arising from this event sequence 

are compatible with expectation from ground motion models that are customized for 

known fast-attenuation features in Italy. Hence, to a large extent, the event itself and the 

ground shaking that it produced were not a surprise. The ground motions generated by 

these events will significantly extend the world-wide inventory of normal fault ground 

motions in tectonically active regions, as used for the example in NGA-West projects (e.g., 

Bozorgnia et al. 2014).   

6. Landslides: While landslide effects were relatively modest in the August 2016 events, the 

effects were severe from the October events (Chapter 4). The geometry of the landslide 

source zones, as well as depositional areas, are well-documented with 3D models from 

UAVs and LiDAR. The geology of these areas is also documented. Two aspects of these 

case histories are of interest in future work: (1) the occurrence of landslides in some 

events but not others (predictive models should be able to forecast both) and (2) the 

landslide fall/runout distances.  

7. Masonry structure fragility: Data on structural performance during earthquake events, 

including accumulation of damage from event-to-event, can be used to develop empirical 

fragility curves. Such relations are used for seismic vulnerability and risk assessment. 

Several Italy-specific models have been published including Sabetta et al. (1998) (using 

data for 50,000 structures examined following the 1980 Irpinia and 1984 Abruzzo 

earthquakes) and Rota et al. (2008) (using data for 150,000 structures from various events 

between 1980 and 2002). Features of the data collected in this event sequence include: 

(1) good constraint on ground motion characteristics due to multiple near-field sensors; 

(2) mapping that documents structural performance according to a common classification 

scheme at high resolution within major villages and broadly across many villages and 
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hamlets over the breadth of the strongly shaken region; and (3) multi-epoch mapping of 

the same structures following the August 2016 events and the October 2016 events, 

which documents damage accumulation (or lack thereof). We anticipate that fragility 

models will be re-evaluated in consideration of the data from these events.  

8. Retrofit effectiveness: Lack of retrofit in masonry structures, combined with strong 

shaking, too often led to high collapse rates. Where present and well implemented, 

retrofit typically saved structures (and their occupants) from collapse, even across 

multiple events. The effectiveness of various retrofit measures, or lack thereof, can be 

investigated using the data collected here and in GEER (2016).  
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