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A Control-Oriented Model for Mobility on Demand Systems

Giuseppe Carlo Calafiore, Christian Bongiorno, Alessandro Rizzo

Abstract— In this paper, we propose a control-oriented model
for mobility-on-demand systems (MOD). The system is first
described through dynamical stochastic state-space equations
in discrete time, and then suitably simplified in order to
obtain a control-oriented model, on which a control strategy
based on Model Predictive Control (MPC) is devised. The
control strategy aims at maintaining the average number of
vehicles at stations within prescribed bounds. Relevant features
of the proposed model are: i) the possibility of considering
stochasticity and heterogeneity in the system parameters; ii)
a state space structure, which makes the model suitable for
implementation of effective parameter identification and control
strategies; and iii) the possibility of weighting the control effort,
leading to control solutions that may trade off efficiency and
cost. Simulation results on a synthetic network corroborate the
validity of our approach under several operational conditions.

I. INTRODUCTION

Mobility on Demand (MOD) systems are becoming per-
vasive in cities of any size. As of December 2016, bike-
and car-sharing programs had been adopted by more than
1,000 cities worldwide [1]. The concept behind a MOD
system is straightforward: a user requires a vehicle, picks it
up from a designated location, executes the trip, and finally
drops off the vehicle at her/his destination. MOD systems
can be station-based, with vehicles parked at fixed locations
(stations), or free floating, with vehicles parked with no
constraints, at the user’s wish.

As required to every service provider, a MOD system
should be designed to meet the customer demand. In fact,
such a demand is extremely heterogeneous, due to several
factors, such as the time of the day, the season, commuting
patterns, up-hill or down-hill stations (for bikes), and so
on [2], [3]. The impossibility of meeting customer demand
is usually caused by a lack of vehicles at some locations
and in a corresponding surplus of vehicles somewhere else.
This issue can be mitigated through the implementation of
repositioning policies, also called rebalancing.

Rebalancing strategies are typically obtained as the so-
lution of optimization problems and are typically executed
during time periods where traffic is low, especially at night.
This activity, called static rebalancing, assumes that vehicles
are not used by customers during repositioning operations.
Rebalancing in bike-sharing systems is usually executed
by trucks able to displace high volumes of bikes, even
within relatively long distances [4], [5], [6], [7], [8], [9],
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[10]. Dynamic repositioning, on the other hand, assumes
that customers are traveling while rebalancing operations
occur, and the effects of such travels are not negligible.
This repositioning is usually performed with smaller vehicles
and/or over shorter distances [11], [12]. Users may also be
involved in system rebalancing through incentives [13], [14].

Optimization algorithms generating repositioning strate-
gies are based on suitable models of the MOD system.
Several modeling techniques have been proposed in the liter-
ature, mostly based on statistical and data-driven approaches,
to account for the stochasticity of the system under exam
[15], [16], [17], [18], [19].

In this paper, we propose a novel control-oriented model
for a station-based MOD system. In its general formulation,
it is a dynamical model with stochastic state variables in
discrete time. The model accounts for heterogeneity and
stochasticity in the MOD system. It quantifies the vehicle
flows from stations, and accounts for stochasticity in cus-
tomer demand and traveling times. A linear and steady-
state version of the model is then derived, and an MPC-like
technique [20] is applied to control the expected values of the
state variables, representing the expected quantity of vehicles
at each station. The control problem yields a constrained
optimization problem, with the objective of maintaining the
number of vehicles within prescribed bounds at each station.
Our approach is assessed through simulations on a synthetic
MOD system.

The paper is structured as follows. In Section II, we
present our model and the related assumptions, which lead to
a simplified control-oriented model. In Section III, an MPC-
based control algorithm to obtain rebalancing vehicle flows is
presented. In Section IV, simulation results are illustrated and
commented. Finally, Section V summarizes our conclusions
and future work.

II. A CONTROL MODEL OF THE MOD SYSTEM

We model a MOD system as a network composed by
nodes, representing the vehicle stations, and links between
nodes, representing the vehicles’ routes. The set .% of station
nodes is composed of N vehicle stations, and the set .Z is
composed of N? links between any two station nodes in .. A
link (i, j) between departure station i and destination station
j does not necessarily represent a specific physical route,
rather the ensemble of all routes that are typically travelled
by customers moving from i to j.

We characterize link (i, j) by its state v;;(r), representing
the cardinality of the set %;(r) of all the vehicles en route
from i to j at time ¢, and by the (random) fraction §;;(t,0) €



[0,1] of the v;;(r) vehicles that reach their destination j
within the time interval (¢, + J].

We characterize node i by its state z;(r), denoting the
number of vehicles parked (and hence available for pick
up) at station i at time ¢, and by the instantaneous mean
rate [;(f) € RT of random service requests that arrive at
station / at time ¢. Analogously, 1/u;(¢) describes the mean
of the random inter-arrival time of service requests at station
i. The station’s throughput A;(¢) is instead the mean rate at
which vehicles depart from station i. In reality, it always
holds that A;(r) < p;(z), since not all the service requests
may be fulfilled, due to the fact that there may exist station-
empty periods in which no vehicles are available at the
station, and hence no departure is possible from the station,
even if demand from customers exists. This issue is further
discussed in Section II-A.4. Node state z;(¢) is bounded as
0 < z(t) < c¢;, where ¢; is the maximum number of vehicles
that can be simultaneously parked at the station, i.e., the
station capacity. Both extremes of the bounding interval are
not desirable for efficient operation the station, since vehicle
cannot be picked up (z;(¢) = 0) or dropped off (z;(t) = ¢;).
The goal of rebalancing strategies is indeed to keep the
number of vehicles at the station within the prescribed limits.

If a customer request is generated at station i at time ¢, and
if station i has a vehicle available, then the customer takes
that vehicle and starts a trip towards a destination station
Jj. We model the selection of the destination via a set of
(possibly time-varying) routing probabilities, i.e., we assume
that, at time ¢ and for each station i, there exist probabilities
pij(t) € RY, with ¥ p;;(z) = 1, such that a generic customer
departing from i chooses destination j with probability p;;(z).

Fig. 1.

Example of network modeling a MOD system with three stations
§1,82,83, and corresponding itinerary links /;;.

A. Simplifying assumptions for a “control” model

We next develop a control-oriented model for the MOD
system. Contrary to a simulation model, whose aim is to be
an extremely accurate proxy of reality, our model is devise
with the objective of allowing efficient design of suitable
control strategies (e.g., rebalancing policies) for the system.
A good control model should be simple enough to allow
for effective synthesis of the control law, although this may
come at the expense of some approximation. In the end,

however, the performance of the control law should be tested
and evaluated on the real system, or on a proxy of it (i.e., on
a simulation model). With this in mind, we next present the
main simplifying assumptions used to construct our control-
oriented model of the MOD system.

1) Piece-wise constant parameters: The model discussed
so far has naturally time-varying parameters. Previous anal-
yses performed on logged service data suggest that system
parameters can be conveniently approximated as piece-wise
constant functions [15], [16]. Motivated by this observation,
here we focus on the case of constant parameters, without
loosing generality. Stochasticity, on the other hand, is kept
on the fraction of vehicles traveling from one station to the
other, as detailed afterwards.

2) Exponential inter-departure times: Departures from
each station i follow a counting process with instantaneous
rate A;(¢). For simplicity, we shall assume specifically that
they form a Poisson process of rate A;(¢), although this latter
assumption is not critical for our developments. Since we
assume that each vehicle departing from i at ¢ chooses des-
tination j with probability p;;(r), we have that the vehicles
departing from i with destination j at time ¢ also follow a
Poisson process with rate p;;(¢)A;(r).

3) Densities for link arrival proportions: As previously
discussed, we model the transit of vehicles through the (i, j)
link by assuming that, at each given ¢ and given §, only a
(random) fraction g;(t,0) € [0, 1] of the v;;() vehicles reach
their destination j within the time interval (z,7 + 6]. We let
qij(t,8) =E{gij(¢,8)} €0,1], and we assume that g;;(t, )
is statistically independent from v;;(¢). We have verified that
this assumption is plausible as long as the traffic rates are
high enough, which is the situation in which rebalancing
policies are mostly required. The characterization of g;;(t, )
should be done via a specific statistical analysis of log data.
Here, we simplify the model assuming that g;;(¢,0) = ¢;;(95)
is not stochastic and is independent from time.

4) No blocking: We assume, for the sole purpose of the
control-oriented model, that stations have unlimited capacity,
i.e., ¢; = +oo, Vi. Also, we assume that demand is always
satisfied. In reality, a station’s state z;(¢) remains bounded in
[0,¢;] at all times. In our control-oriented model we allow
the state variable z;(r) to go beyond the boundaries, but
we penalize out-of-boundary behavior in the control design
phase.

B. The MOD control model

We let 6 = A/ng, where ng is a positive integer, and A
is the time period defined in Section II-A.1, during which
the system parameters are assumed to be constant. Under
the assumptions of Section II-A, we define the following
quantities:

o d;j(t+ ) is the number of vehicles driven by users that
depart from i with destination j in the time interval
(¢,t + 8]. According to the assumption in Section II-



A.2, d;j(t+ &) has a Poisson probability mass

Prob{dy(i-+ 8) =k} = 1 (piy(1) ()8 P02,
for k=0,1,.... (1)

o rij(r) is the deterministic number of “control” vehicles
(i.e., vehicles used for rebalancing purposes) that are
moved from i to j as dictated by the rebalancing control
strategy. We assume that & is sufficiently small with
respect to the average link transit times 7;;, so that there
is a (practically) zero probability that any of the d;;(r +
0) or of the r;j(r) vehicles reaches its destination by
time 7+ .

o a;j(t+ 8) is the number of vehicles, among the ones
in 7;(t), that reach the j-th station by time ¢+ 9.
According to the assumption in Section II-A.3, the count
a;j(t + &) can be written equivalently in terms of the
random proportion §;;(t,8) as

aij(t +8) = §ij(t,8)vij (7). 2)
We observe that we are implicitly allowing a;;(t + ) to

be real valued.

Fori,j=1,...,N, straightforward conservation arguments
and equation (2) yield the discrete time model that describe
the system behavior

vij(t+6) = (1—qi(t,8))vij(t) +
+dij(l+6)+rij(f) 3)
zj(t+68) = Z/(f)+267ij(h5)vi/(t)+

_Z(djh(t+6)+rjh(t)) .4
h

The system above is a linear discrete time stochastic one
in the z; and v;; state variables, with stochastic inputs
given by the d;; departures, and control inputs given by the
rebalancing departures 7;;. Given initial conditions, Egs. (3)-
(4) can be used to predict forward behavior of the system’s
state. In the following, we will derive the dynamics of the
expected value of the model state variables, which will be
used to design the MPC-based controller.

C. The expected state dynamics

Observing that Y, d;,(t + 0) is Poisson with parame-
ter Y, pjnAj0 = A;0, denoting with an over bar expected
quantities (i.e., v;;(r) = E{vi;(r)}, Z;(t) = E{z;(1)}, etc.),
and recalling that ;;(z,8)) and v;;(r) are assumed to be
independent, we can write the evolution of the expected value
of the state equations in (3)-(4) as

17,']'([+5) = (lfqi‘j(l,g))ﬁij(l)+
+pij(t)Ai(t)8 +rij(t)  (5)
Zi(t+8) = Zj(t)+Zq,-,-(z,6)vij(t)+

—lj(t)5—2rjh(t). (6)
h

Equations (5)-(6) constitute a linear discrete-time determin-
istic dynamical system in the expected state variables Z;()

and 7;;(¢), with inputs given by the mean departure rates
Ai(t), and control inputs given by the rebalancing departures
rij(t). With both constant parameters and rebalancing inputs,
i.e., rij(t) =rij, Vt, since 1 —g;;(8) < 1, it can be proved that
system (5)-(6) admits a steady-state behavior, denoted with
ﬁij(ss) and Zj(ss).

III. CONTROL OF THE EXPECTED DYNAMICS

We next discuss a Model Predictive Control (MPC) ap-
proach for the control of the expected system’s dynamics
described by Egs. (5)-(6). We fix a time horizon T = nd,
where ny, is a positive integer. We denote with R(t + k) the
N x N matrix whose (i, j)-th element is r;;(r +4k8), and let

R={RcR"N:R>0, and R; =0,i=1,...,N}.

The cost function we consider is the total rebalancing effort
over the considered time horizon Jr = ZZ”;OI |R(t 4+ kS)|1,
where we define ||R[|; = Y;Y;|R;j|. The control goal is to
maintain the expected states Z;(f +kd) within given limits
[1,¢j], at all times, while minimizing the rebalancing effort.
Formally, we solve
min " VI|R(1 4 k6
R(t),. R(t+(ny—1)8) R Lo IIR( i
s.t.: Zj(t+k6) € [1,¢j], for
j=1,...,N, and k=1,...,ny,

where Z;(t +k0) is given by the recursion in (5)-(6), initial-
ized with given initial conditions Z;(¢), vi;(r), i,j=1,...,N.

Imposing strict feasibility for the state limits Z;(r + k&) €
[1,¢;] may result in infeasibility, or in high rebalancing effort.
A more flexible approach is therefore to consider a tradeoff
between rebalancing effort and constraint satisfaction, by
introducing slack variables s;(t +k8). We first rewrite the
state constraint as ‘Zj(t +k68) — C’;—l ‘ < C-/z_l
the problem to

, and then relax

nh—l
min Z Zsj(t+k5)+?’HR(f+k5)||1
k=0 j

for j=1,...,N, and k=1,...,ny,
R(t),...,R(t+ (n, —1)0) € Z,
Sj(t+6) ZO,...,Sj(t+n]18) >0,

where ¥ > 0 is a tunable tradeoff parameter.

IV. RESULTS

We now validate the proposed approach with numerical
results obtained on three synthetic transportation networks
comprising N = 5 stations. Due to the synthetic nature of
the case study, we consider an adimensional time span
[ts,t£]=[0,1]. An adimensional time-step is set to § = 0.02,
such that the discrete time index k spans the time interval as
t =k0, withk=0,1,...,n;. Consequently, in our simulations
it results n, = 50. We perform the MPC on the expected
dynamics by solving problem (7) along a time-horizon equal



to the whole simulation time, i.e., considering ¢ € [0,1].
At each time-step t, problem (7) is solved and the control
commands {R(t),R(t+ ), ---,R(ty — )} are derived for
every time step within the considered time-horizon. The
control commands are functions of the expected values of the
stochastic parameters {d;;(), d;j(t +90), -+, d;j(tf)}. Then,
only the control command corresponding to the current time-
step R(t) is applied to the dynamics (Egs. (3)-(4)), after a
rounding of the obtained values. We observe that the time-
horizon considered to solve problem (7) shrinks at each time
step, since we do not predict the system dynamics after
t = ty. The number of vehicles arriving from i to j are
selected via a stochastic rounding [21] of g;;(8)vi;(r — ).
All the presented simulations are realized using a Monte
Carlo method, averaging the obtained results over 1,000
independent trials.

In the first set of simulations we consider the system
in a steady-state condition, with time-invariant parameters.
Specifically, we set the routing matrix to

00 025 025 025 025
07 000 0.10 0.10 0.10
p(t)= 107 0.0 0.00 0.10 0.10
07 0.10 0.10 0.00 0.10
07 010 0.10 0.10 0.00

This choice mimics a system comprising a station that is
mostly “attractive” to the others, while traffic from the
other stations is uniformly distributed. Then, we set A(z) =
{102.9,36.8,36.8,36.8,36.8}, modeling the highest rate of
customer requests at the most attractive station and a uniform
rate of requests at the others, and such that }; 4;(¢)p;;(t) =
Ai(t) holds. For simplicity, we set ¢;;(6) = 0.75 for every
i # j and ¢;(8) = 1, independently from time. The initial
value of v;j(f) is set to the corresponding steady-state value
Vi j(ss>, with r;; = 0. For all the sets of simulations, we initially
assign to each station z;(t;) = 7,V}, vehicles, and we fix
the lower and upper capacity limits to 1 and c¢; = 13, V],
respectively.

To assess the performance of the control procedure, we
consider the number of vehicles that exceed the capacity
limits per time-step over the whole station set, and indicate
it with fr. We perform a stress test by adding an addi-
tional expected rate of departures to station 5, indicated
with ),;’ , which takes the system out of the steady-state
condition. In Fig. 2(a) and (b) we plot fg as a function of
15* obtained through a series of Monte Carlo simulations
without and with control, respectively. We observe that, even
when the system is at steady-state (l; = 0), the control
procedure provides a significant improvement of the system
performance. Due to the stochastic components, in fact, the
uncontrolled system, nominally at steady-state, exhibits an
average of fr = 9.3 excess vehicles. This value reduces to
fe = 0.6 for the controlled system. When QLSJF increases,
the advantage of applying the control procedure becomes
apparent. Figs. 2(c) and (d) illustrate the trend over time of
the number of vehicles in each station l; =100, for the
uncontrolled and the controlled system, respectively. While

in the uncontrolled system station 5 tends to become empty,
whereas the remaining station tends to fill up, the application
of the control action keeps the number of vehicles within the
prescribed limits. Although the control is designed on the
expected value of the state variables, it consistently helps in
mitigating fluctuations about such expected values. For the
value l;“ = 100 used to realize Figs. 2(c) and (d), in fact,
we observe from Figs. 2(a) and (b) that the control action
substantially decreases the performance parameter fr from
77.6 to 1.5.
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Fig. 2. Average number of excess bikes over the whole station set fg

as a function of 7@ , in the uncontrolled (a) and controlled (b) system for

y=10.01. Whiskers correspond to the standard deviation. Time evolution of
zj(t) for )L;r =100 in the uncontrolled (c) and controlled (d) system. Dashed
black lines indicate capacity limits, colored dotted lines refer to different
stations.

The second set of simulations reflects the case of an asym-
metry in the journey times. This can happen, for example,
when there are stations located on a hill and, therefore, the
journey time from these stations and those located downbhill
is asymmetric. To emulate the situation where station 1 is
located uphill and the others downhill, we fix matrix g as

1.00 0.75 075 0.75 0.75
g 100 075 0.75 0.75
q8)=| ¢ 075 1.00 075 0.75],
¢ 075 0.75 100 0.75
¢ 075 0.75 0.75 1.00

where ¢* is a constant parameter that is tuned to emulate the
effect under observation. Notably, strong asymmetries in the
journey time are modeled using small values of g*.

We also fix the initial v;;(0) as in the first simulation set,
so that when g* # 0.75, the system is no more in equilibrium.
Figure 3(a) illustrates the time evolution of variables z; for
q* = 0.1. As expected, station 1 suffers from a lack of
vehicles, due to the fact that the journey time toward it is
increased. The application of the control strategy mitigates
this phenomenon, as illustrated in Fig. 3(b), showing that the
control action drives the system toward an equilibrium condi-
tion, where the number of vehicles is within the prescribed
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Fig. 3. Time evolution of z;(t) for ¢* = 0.1, for the uncontrolled (a)

and the controlled system (b). The control tradeoff parameter is set to
Y = 0.01. Number of rebalancing vehicles in the controlled system, in
equilibrium and with symmetric journey times, that is, g* = 0.75 (c), and
with asymmetric journey times, that is, g* = 0.1. Performance parameter fg
(e) and rebalancing effort per time-step Jr /ny, (f) as a function of ¢* in the
controlled system.

limits. Figures 3(c) and (d) highlight the outcome of the
control activity at the link level, that is, showing the number
of rebalancing vehicles required to travel per time-step from
a station to another. In particular, Fig. 3(c) illustrates the
rebalancing activity computed for ¢* = 0.75, that is, in the
equilibrium condition and with symmetrical journey times.
In this case, we observe a modest rebalancing activity,
which is only generated to compensate the stochasticity
around the system equilibrium. On the other hand, Fig. 3(d)
illustrates the rebalancing activity when ¢* = 0.1 is selected.
As expected, the rebalancing algorithm dictates that a larger
number of bikes should be displaced from all the stations
toward station 1, while the rebalancing activity among all the
remaining stations remains moderate, although greater than
in the equilibrium condition. Figures 3(e) and (f) illustrate the
average system performance fr and the average rebalancing
effort over time Jr/m, as a function of the asymmetry
parameter ¢*, in the controlled system. The numerical results
confirm the intuition that a stronger asymmetry yields a
worse system performance and a higher rebalancing effort.

The third set of numerical results models time-varying
flows of users that commute between the periphery and
the center of a hypothetical city during daytime, with a
heterogeneous use of stations. To mimic this scenario, we
fix at first a set of initial heterogeneous departure rates

in stations as A(#) = {100, 56.2,31.2,17.8, 10}, and the
corresponding final expected departure rates as A;(t;) =
An—i(ts) Vi. Then, we generate the expected departure rate
profiles using A;(t) =t A;(ty) + (ty —t) Ai(t;). Similarly, we
fix a heterogeneous set of initial routing probabilities as

046 026 0.15 0.08 0.05
0.46 0.26 0.15 0.08 0.05
p(ts) = 1046 0.26 0.15 0.08 0.05
0.46 0.26 0.15 0.08 0.05
0.46 026 0.15 0.08 0.05

and the corresponding final values as p;;(tf) = pin—;(ts).
The routing probability profiles in time are obtained as
pij(t) =t pij(ty) + (ty — 1) pij(ts). We fix the initial velocity
vij(0) = 0 Vi, j. Finally, we choose ¢;;(§) = 0.75 for every
i # j and ¢;(8) = 1, independently from time.

Figure 4(a) illustrates the evolution over time of the
state variables z;(¢) of the uncontrolled system. The system
dynamics is characterized by two pairs of stations with an
opposite behavior. Specifically, the violet and the red stations
exceed the upper capacity limit during the central part of the
simulation interval, whereas the orange and the blue ones
exceed the lower capacity limit in the same time-window.
In particular, the violet and the blue stations have the largest
deviations from the initial condition. The green station works
around an equilibrium condition, since it is characterized by
a similar rate of departures and arrivals per time-step.
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Fig. 4. Time evolution of variables z;(r) for (a) the uncontrolled system;
(b) the controlled system with ¥y = 1; and (c) the controlled system with
y=107%. In (d), the total number of rebalancing vehicles in the controlled
system, for y=1 and y=1079 .

Figure 4(b) illustrates the evolution of z;(z) over time,
with a tradeoff parameter y = 1. Such value implies a
high penalization of the rebalancing action, yielding a weak
control effort. This is confirmed in Fig. 4(d), which illustrates
the control effort, that is, the number of balancing vehicles
over time. Vehicles from the violet and red stations are
directed towards the blue and orange ones by the control
algorithm, whereas the green station is almost untouched.



However, the control effort is not sufficient to satisfy the
lower capacity limit for the blue and the violet stations.
Decreasing the tradeoff parameter to ¥ = 107, we observe
from Fig. 4(c) that all the capacity limits are satisfied in
every station, at the expenses of a higher control effort (see
Fig. 4(d)). We observe that, in this case, the control action is
enforced by moving vehicles from the green station, which
operates around its equilibrium, toward the blue and orange
stations. We finally observe from Fig. 4(d) that the control
action has a similar trend, but different absolute values, in
accordance with the selection of the tradeoff parameters. In
particular, our results confirm the intuition that the control
action is stronger when the variability in the demand is
higher.

V. CONCLUSIONS

In this work, we have defined a novel control-oriented
model for MOD systems, which accounts for the inherent
heterogeneity and stochasticity in the system parameters. The
model is a dynamical stochastic one, and evolves in discrete
time. A control strategy to achieve system rebalancing has
been devised using model predictive control on the expected
values of the state variables. We have validated our approach
over three sets of numerical simulations on a synthetic
system comprising five stations. The proposed numerical
experiments aim at assessing the system performance in
some fundamental aspects of a realistic urban mobility
system. Notably, the heterogeneous use of the stations and
the intra-day time-varying flow of users, who commute from
the periphery to the city center throughout the day, have been
modeled.

Our analysis shows that a control effort concentrated at the
beginning and at the end of the day can be sufficient to signif-
icantly mitigate the unbalance of the stations. Furthermore,
an important feature of our model is that the control effort
can be tuned by a tradeoff parameter between performance
and cost.

Future work will include the application of our method
to a real system, using real logged service data from large
bike- or car- sharing networks, and to assess the results by
using different objective functions, which would possibly
have different repercussions in the impact of variables in the
overall performance. We will also account for heterogeneity
in the travel time, and, most importantly, we will devise a
control model that explicitly takes into account stochastic
fluctuations of the system variables, rather than limiting the
focus to their expected values.
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