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Abstract: Fabrication tolerances can significantly degrade the performance of fabricated photonic
circuits and process yield. It is essential to include these stochastic uncertainties in the design
phase in order to predict the statistical behaviour of a device before the final fabrication. This paper
presents a method to build a novel class of stochastic-based building blocks for the preparation
of Process Design Kits for the analysis and design of photonic circuits. The proposed design
kits directly store the information on the stochastic behaviour of each building block in the
form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly
exploiting stochastic collocation and Galerkin methods. Using these macro-models, only a single
deterministic simulation is required to compute the stochastic moments of any arbitrary photonic
circuit, without the need of running a large number of time-consuming circuit simulations thereby
dramatically improving simulation efficiency. The effectiveness of the proposed approach is
verified by means of classical photonic circuit examples with multiple uncertain variables.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (250.5300) Photonic integrated circuits ; (000.5490) Probability theory, stochastic processes, and statistics
(230.7370) Waveguides.
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1. Introduction

Recent advances in photonic integration are making possible the implementation of complex
photonic circuits combining many functions on a single chip, significant production volumes
and reduced fabrication costs [1]. Boosted by these progresses, Process Design Kits (PDKs)
have recently emerged in photonics as a powerful tool for the analysis and design of complex
circuits and as useful framework for in-depth exploitation of the potential of photonic for the
large-scale integration. A PDK contains a large amount of foundry-specific information that
can be used to design, simulate and fabricate circuits exploiting a given fabrication technology.
Among these information, a PDK offers to the users a library of the building blocks made
available by the foundry, incorporating in particular a deterministic mathematical macro-model
of the behaviour of each device, generally in the form of either a transmission or a scattering
matrix [2]. In this scenario, a major issue is represented by fabrication tolerances, which can
be particularly detrimental in large and complex circuits. Statistical variations in the fabrication
processes of a device, such as waveguide width or height, proper gap opening or changes in
material composition can have a strong effect on its functionality and ultimately affect the entire
circuit performance [3–6]. The possibility to include information on the expected variability
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in each building block and the availability of efficient computational strategies to predict the
statistical behaviour of the final circuit are hence of primary importance.
Monte Carlo is a robust, accurate, and easy-to-implement approach, and is often considered

as the standard for stochastic analysis. However, its high computational cost can hamper its
application to the analysis of even relatively simple circuits because a large number of simulation
runs (generally in the order of 104 − 105) is required to obtain reliable results. For this reason,
the generalised polynomial chaos approach has been introduced in several application fields
as an efficient alternative to the classical Monte Carlo method [7, 8], and recently it has been
proposed also for the variability analysis of photonic devices [9–11]. The generalised polynomial
chaos technique allows approximating the dependence of the simulation output on the stochastic
input parameters with a set of orthonormal polynomials. The computation of the coefficients
of the polynomial basis functions is the core task of this approach and can be done either
through intrusive methods (e.g. stochastic Galerkin [12] and stochastic testing [13]), that require
modifying the internal code of an existing deterministic solver, or non-intrusive sample-based
methods (such as stochastic collocation [14]), that use the deterministic solvers as black boxes.
The few Generalised Polynomial Chaos (gPC) implementations described in the literature for
photonics applications are based on nonintrusive methods. Figure 1(a) schematically reports the
common approach for stochastic analyses at circuit level. The building blocks available in the
process design kit are exploited by the designer to build a circuit model [15] depending on a set
of random parameters. During simulations, the value of these parameters is sampled according to
their probability density function (e.g. Monte Carlo simulations) and the deterministic circuit
simulator is used iteratively to compute the response of the designed circuit for each sample
exploiting the deterministic model (e.g. scattering matrices) included in each building block.
However, although the required number of simulations depends on the specific problem, it is
generally smaller than few hundreds, as opposed to the case of direct Monte Carlo analysis. This
small pool of initial Monte Carlo simulations is used to approximate the stochastic behaviour
of the circuit through a generalized polynomial chaos expansion. This approach is obviously
circuit-specific and has to be repeated each time the circuit parameters or its layout change.

In this work, we propose a Building-Block-based gPC method (BB-gPC) in which we exploit a
generalized polynomial chaos expansion approach to realize a completely novel class of device
models to be used within photonic PDKs. These stochastic models inherently convey stochastic
information, which allows performing statistical analyses without any repeated simulation end
enables an unprecedented simulation efficiency compared to classical gPC implementations.
Stochastic collocation and stochastic Galerkin are combined to build augmented macro-models
of each building block, directly embedding stochastic information in the form of gPC coefficients.
The BB models, in the form of transmission or scattering matrices, are circuit independent and
can be stored and replace the original deterministic macro-model of the building blocks in the
process design kit [see Fig.1(b)]. The new matrices can hence be combined according to the
building blocks connections to derive with a single run of the deterministic circuit simulator the
stochastic behaviour of any circuit. The stochastic properties of the BB can reflect for example the
foundry technological process and they are embedded in the PDK and should not be recalculated
for every circuit.

The paper is structured as follows. A background overview of the generalised polynomial chaos
approximation properties is given in Section 2, while the proposed method "BB-gPC" to build
stochastic process design kits for photonic circuits is described in Section 3. The validation of
the BB-gPC technique is performed in Section 4, assessing the accuracy and speed-up compared
to direct Monte Carlo and classical gPC by means of two classical photonic circuit examples
with multiple uncertain input variables. Conclusions and future perspective are summarized in
Section 5.
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Fig. 1. (a) Typical approach for the stochastic analysis of photonic circuit exploiting standard
process design kits, Monte Carlo simulations and nonintrusive generalized polynomial chaos
approximation. (b) Computation of the stochastic behaviour of the circuit exploiting the
proposed stochastic process design kits. In both cases PDK and stochastic PDK are circuit
independent.

2. Polynomial chaos background

The generalised polynomial chaos expansion is a well-known technique to describe finite-variance
stochastic process Y depending on a vector of normalised random variables ®ξ as a summation of
basis functions φi( ®ξ) with suitable coefficients yi [16]:

Y ( ®ξ) =
∞∑
i=0

yiφi( ®ξ). (1)

In this expression, ®ξ = [ξ1, ξ2, · · · , ξN ] are independent standard normal random variables, N is
the number of random variables and φi are orthogonal polynomials with respect to the probability
measure W( ®ξ),

〈φi( ®ξ), φ j( ®ξ)〉 =
∫
Ω

φi( ®ξ)φ j( ®ξ)W( ®ξ)d ®ξ = aiδi j (2)

where δi j is the Kronecker delta and ai are positive numbers. The construction of the gPC
expansion in Eq. (1) entails the following three-step process. The first step is to determine the
orthogonal polynomials. The second step is to truncate the series to a finite order for computational
purposes, and the last step is to compute the gPC coefficients yi . Since the random variables ®ξ are
assumed independent, the corresponding basis functions φi( ®ξ) are computed as the product of
the orthogonal polynomials corresponding to each individual random variable ξi . It is important
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to note that for random variables with a specific distribution (i.e., Gaussian, Uniform, Beta, etc.),
the polynomials tabled in the Wiener-Askey scheme can be used as basis functions, yielding
an optimal (exponential) convergence rate [17]. For example, for the variables with Gaussian
probability density function (PDF), the basis functions are the Hermite polynomials, while for the
uniform PDF the basis functions are the Legendre polynomials. Considering all N-dimensional
polynomials φ( ®ξ) of order P (total-order expansion), the expansion (1) can be truncated to M + 1
terms

Y ( ®ξ) =
M∑
i=0

yiφi( ®ξ), (3)

with the number of gPC basis function given by [18]

M + 1 =
(N + P)!

N! P!
. (4)

After the determination of the basis functions and truncation of the series in Eq. (3), the M + 1
scalar coefficients yi can be computed, for example, with a nonintrusive approach based on linear
regression [16]. An initial small pool of Monte Carlo simulations is generated for the process
Y and the coefficients yi are calculated in order for Eq. (3) to match the known solutions in a
least-mean-square sense. In this work, the fabrication uncertainty is represented as independent
and Gaussian-distributed random variables. In case linear correlation exist between variables,
the problem could be solved by decorrelation techniques and will be treated in future works.
Also, we consider as the stochastic process under study the complex frequency response (transfer
function) of photonic devices and circuits, which can be handled by considering Eq. (3) for each
wavelength and calculating the coefficients yi as wavelength dependent. Alternatively, another
method to handle the frequency dependence is a rational approximation of the frequency response
through the vector fitting algorithm to obtain a state-space model of the transfer function that can
then be approximated through Eq. (3) [5, 19].

3. Augmented macro-model via polynomial chaos expansion

The polynomial chaos formalism described in the previous section is exploited here to create an
augmented-macro model of a building block embedding its stochastic behaviour. The formalism
presented in this section is based on the concept of augmented macro-modelling which has
recently been introduced in electronics and microwave for the stochastic analysis of printed
circuit board [20], transmission line [19,21], micro-strip interconnects [22–24] and high-speed
links [25]. The description provided is based on scattering matrix formalism and is only valid for
linear and passive photonic devices. However, the same approach can be immediately extended
also to transfer matrices. For a given building block, the scattering matrix represents the relation
between the complex amplitude of the incoming fields waves and the complex amplitude of the
outgoing waves. In this formalism, the behaviour of a building block with np ports is expressed as

®b = ®S ®a, (5)

where vectors ®a ∈ Cnp×1 and ®b ∈ Cnp×1 are the complex input and output waves at all the np

ports and ®S ∈ Cnp×np is the scattering matrix containing all the scattering parameters of the
building block. In the case of stochastic behaviour, the scattering matrices of the BB and the
complex wave amplitudes depends on the set of random variables ®ξ . Using the gPC expansion
(3), the wave relation (5) becomes

M∑
i=0

®biφi( ®ξ) =
M∑
i=0

M∑
j=0

®Si ®a jφi( ®ξ)φ j( ®ξ), (6)
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where ®ai , ®bi , ®Si are now the polynomial chaos coefficients of the input and output wave amplitudes
and of the building block scattering parameters for each port, respectively. A non-intrusive
approach can be used to obtain the gPC coefficient ®Si of a given building block. Similarly to the
method described in section 2, in this work we exploit Monte Carlo simulations sampling an
initial set of Q discrete samples of the normalised random variables ®ξ , indicated as [ ®ξ j ]Q1 . The
gPC coefficients are calculated solving the least square system

Ψ ®Si = R, (7)

where the j th row of the matrix Ψ contains the multivariate polynomial basis evaluated at ®ξ j and
the j th column of the matrix R represents the corresponding complex response of the building
block. In order to build the augmented scattering matrix of the building block, the Galerkin
method [16, 19] is used. The projection of Eq. (6) on the pth gPC basis function φp gives

®bkp =
M∑
i=0

M∑
j=0

®Si ®a j 〈φi( ®ξ)φ j( ®ξ), φp( ®ξ)〉, (8)

where the elements ®bkp represent the pth gPC coefficients at the k th port (k = 1 . . . np) for the
output wave. The factors 〈φi( ®ξ)φ j( ®ξ), φp( ®ξ)〉 arising in Eq. (8) are real scalar numbers, which
can be computed upfront solving multi-dimensional integrals analytically only once and then
stored [26]. It is worth mentioning that most of the integrals are zero and therefore the resulting
matrix is highly sparse, limiting the computational cost. Repeating this operation for all the M + 1
gPC basis functions leads to

®bPC = ®SPC ®aPC, (9)

where the vectors ®aPC ∈ C(M+1)np×1 and ®bPC ∈ C(M+1)np×1 contain the gPC coefficients of
the input and output waves respectively, while the augmented matrix ®SPC ∈ C(M+1)np×(M+1)np

of the building block is a weighted combination of gPC coefficients. As an example, Fig. 2(a)
shows a standard photonic circuit in which the port A of BB1 (ring) is connected with port B
of BB2 (directional coupler). Figure 2(b) shows the augmented representation of the standard
circuit in which ports A0, A1 and A2 are connected with B0, B1 and B2, respectively. Note that
the augmented circuit has no physical meaning. The augmented BBs are larger as each port is
scaled by the factor (M+1), however the corresponding matrices are highly sparse with a large
number of null entries. The additional overhead in handling the sparse augmented matrices, at
least for few tens of parameters, is negligible compared to the time required to run a Monte Carlo
analysis. In order to clarify the procedure adopted to compute ®SPC, let us assume that the building

Fig. 2. (a) Connection of two standard building blocks. (b) Connection of equivalent
augmented building blocks where each port is scaled by factor (M+1).

block under study depends only on one random variable and the gPC expansion of its scattering
parameters is formed by two basis functions. In this case Eq. (6) becomes

®b0φ0 + ®b1φ1 = ®S0 ®a0φ0φ0 + ®S1 ®a0φ1φ0 + ®S0 ®a1φ0φ1 + ®S1 ®a1φ1φ1. (10)
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For the sake of clarity, the dependence on the randomvector ®ξ is omitted. Due to the orthonormality
relation in Eq. (2), the projection of Eq. (10) onto the first basis function φ0 yields

®b0 = ®S0 ®a0〈φ0( ®ξ)φ0( ®ξ), φ0( ®ξ)〉 + ®S1 ®a0〈φ1( ®ξ)φ0( ®ξ), φ0( ®ξ)〉

+ ®S0 ®a1〈φ0( ®ξ)φ1( ®ξ), φ0( ®ξ)〉 + ®S1 ®a1〈φ1( ®ξ)φ1( ®ξ), φ0( ®ξ)〉.
(11)

Further, projecting Eq. (10) onto the second basis function φ1 gives

®b1 = ®S0 ®a0〈φ0( ®ξ)φ0( ®ξ), φ0( ®ξ)〉 + ®S1 ®a0〈φ1( ®ξ)φ0( ®ξ), φ1( ®ξ)〉

+ ®S0 ®a1〈φ0( ®ξ)φ1( ®ξ), φ1( ®ξ)〉 + ®S1 ®a1〈φ1( ®ξ)φ1( ®ξ), φ1( ®ξ)〉.
(12)

Upon calculation of the scalar products in Eqs. (11) and (12), the augmented matrix relating the
expansion coefficients of the input to the coefficients of the output is derived as

®SPC =

[
®S00

PC
®S01

PC
®S10

PC
®S11

PC

]
, (13)

with

®S00
PC =

®S0〈φ0( ®ξ)φ0( ®ξ), φ0( ®ξ)〉 + ®S1〈φ1( ®ξ)φ0( ®ξ), φ0( ®ξ)〉,
®S01

PC =
®S0〈φ0( ®ξ)φ1( ®ξ), φ0( ®ξ)〉 + ®S1〈φ1( ®ξ)φ1( ®ξ), φ0( ®ξ)〉,

®S10
PC =

®S0〈φ0( ®ξ)φ0( ®ξ), φ1( ®ξ)〉 + ®S1〈φ1( ®ξ)φ0( ®ξ), φ1( ®ξ)〉,
®S11

PC =
®S0〈φ0( ®ξ)φ1( ®ξ), φ1( ®ξ)〉 + ®S1〈φ1( ®ξ)φ1( ®ξ), φ1( ®ξ)〉.

(14)

Hence, Eq. (13) describes the "augmented model" of the building block which depends on the
considered random variables. It is important to mention that ®SPC is still a unitary and loss-less
scattering matrix and the use of orthonormal gPC basis functions preserves the symmetry of ®SPC,
as can be seen from Eq. (14). Next, the procedure can be repeated for all the needed frequency
points in a given frequency range to obtain frequency-dependent augmented models ®SPC(λl ) for
l = 1, · · · , L. Note that the expansion is calculated independently at each wavelength but starting
from the initial set of QMonte-Carlo samples that are in the form of wavelength-dependent transfer
function thus including the dependence on wavelength in the augmented model. Alternatively, a
frequency model based for example on vector fitting can be exploited. Moreover, if the original
matrix ®S depends also on a set of non-random design parameters, the gPC coefficients can be
calculated for different values of these parameters. The coefficients of the gPC approximation
are then fitted in the allowed range of the design parameters, to obtain a parametric augmented
model.
The library of BBs modeled by frequency-dependent augmented matrices in form of Eq. (6)

realize a Stochastic Process Design Kit. Using standard procedures [2, 27], the BBs augmented
scattering matrices can be combined according to the circuit layout with a single simulation run
of available deterministic circuit simulators and the stochastic behaviour of any arbitrary circuit
is obtained.

4. Numerical Results

In this section, the proposed approach is applied to compute the augmented models of two different
building blocks that are hence exploited to analyze the stochastic behaviour of two different
photonic circuits, an unbalanced second-order Mach-Zehnder filter and a fifth-order coupled
ring resonator filter. In the following we consider standard silicon-on-insulator technology. In
order to demonstrate the potential of the proposed approach, circuits are assembled combining

                                                                                                       Vol. 26, No. 5 | 5 Mar 2018 | OPTICS EXPRESS 5900 



the same standard elementary building blocks: the directional coupler and the single waveguide.
The augmented macro-models of these two building blocks are calculated once and stored as
described in Section 3. The complex frequency response (transfer function) of the photonic
filters is considered as the stochastic process under investigation. The fabrication uncertainty is
represented as independent and Gaussian-distributed random variables and the corresponding
basis functions are products of Hermite polynomials.
In order to calculate the augmented macro-models, we computed the following steps as

described in Section 3:

1. the gPC model of the directional coupler (BBK) and waveguide (BBW) are calculated for
250 wavelength samples between 1.549µm and 1.551µm in the form of Eq. (6) considering
an order of expansion P = 2 and a number of uncertain parameter N = 1. The gap of
the coupler and the waveguide width are the uncertain parameters for BBK and BBW,
respectively. The polynomial chaos coefficients are calculated with Q = 30 Monte Carlo
samples for each BB;

2. A matrix in the form (8) is built via Galerkin projection method for both elementary BBs
and for each wavelength considering the uncertain parameters of the whole circuit. The
building blocks BBW and BBK have np = 2 and np = 4 ports, respectively;

3. The scattering matrix of the directional coupler and waveguide are combined to obtain the
scattering matrix of the whole circuit. The first row or column of the final matrix contains
the coefficients of the gPC approximation of the overall circuit response [see Eq. (8)].

The obtained wavelength-dependent gPC coefficients allow to calculate the stochastic moments,
such as mean and variance, simply as [14]

µ(λ) = ®S00
PC(λ), (15)

σ(λ) =
M∑
i=1

®Si0
PC(λ)〈φi( ®ξ)φ j( ®ξ)〉. (16)

Stochastic functions such as the probability density function (PDF) and the cumulative density
function (CDF) can be computed following standard analytical formulae or by applying Monte
Carlo sampling on the gPC approximation of the circuit under study, described by the scattering
coefficients

®S(λ) =
M∑
i=0

®Si0
PC(λ)φ( ®ξ). (17)

In order to validate the reliability of the proposed technique, two classical and well known filters,
a second-order cascaded Mach-Zehnder filter and a fifth-order coupled ring resonator filter are
considered. We compare the obtained results by BB-gPC with those obtained by classical gPC
method as described in Section 2 and by Monte Carlo analysis. The total number of samples
chosen for the Monte Carlo analysis represents a trade-off between accuracy and associated
computational cost in estimating not only simple stochastic moments, such as mean and standard
deviation, but also the probability density function. The simulations are performed with the
commercial circuit simulator ASPIC [15] on a laptop with an Intel Core i5 processor at 2.4 GHz
and 8-GB RAM.

4.1. Example A: Unbalanced Mach-Zehnder filter

The second-order Mach-Zehnder filter is assembled using two standard elementary building
blocks, BBW and BBK, as schematically shown in Fig. 3(a). The nominal design of the filter
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was obtained with the synthesis technique described in reference [28]. The Mach-Zehnder filter
has a nominal 3-dB bandwidth of BW0 = 62 GHz and the corresponding coupling coefficients
for the three directional couplers are K1=K3=0.865 and K2=0.532, with in-band isolation larger
than 20 dB. For the directional coupler building block, the considered nominal gap distance
is gi=0.3 µm, leading to coupling lengths of Lc1=Lc3=23.45 µm, and Lc2=16.09 µm. For the
waveguide building block the nominal waveguide width is Wi=408 nm and thickness is 220
nm, corresponding to an effective index and group index of about 2.23 and 4.402, respectively.
Both have the same unbalance lengths of 680.8 µm, corresponding to a free spectral range of
100 GHz. Figure 3(b) shows the ideal transfer function of the Mach-Zehnder filter at the bar
(bold black) and the cross (bold red) ports respectively. These spectral responses do not take into
account the unavoidable process variations affecting real fabricated circuits. In the stochastic
analysis, the waveguide width uncertainty (∆Wi) and the gap uncertainty (∆gi) are assumed as
independent normal distributed random variables with standard deviation σW=10 pm and σg=5
nm, respectively. Figure 3(b) shows, in addition to the nominal response, several spectral transfer
function of the Mach-Zehnder filter at bar and cross ports (grey lines) obtained by classical
Monte Carlo analysis. It can be clearly seen that the transfer function of the original nominal
design (bold lines) is largely distorted in case of the small considered uncertainties with large
fluctuations in both the pass-band and the in-band isolation.

input bar

cross
BBK BBW

g1Δg1 Δg2 Δg3
ΔW1 ΔW2

BBWBBK BBK

BBW BBW

Bandwidth(BW0)

(a)

(b)

Fig. 3. (a) Schematic of the second-order Mach-Zehnder filter (b) Transfer function of the
Mach-Zehnder filter at the bar (black) and the cross (red) ports for the nominal design. The
thin grey lines show the effect of fabrication uncertainties on the waveguide widths and the
gap of couplers.

Since the BBK and BBW are considered independent of each other, the number of random
variables is N = 5. This makes the size of the augmented matrix BBW 42 × 42 with M = 21,
np = 2 and BBK 84 × 84 with np = 4 and same M [see Eqs. (4) and (8)]. It is worth mentioning
that these are large sparse matrices and so the increase of computational effort to combine them
is marginal. The augmented scattering matrices of BBK and BBW are combined as usual and the
augmented matrix description of the whole circuit is readily obtained. The first row or column
of the matrix contains the gPC coefficients in form of Eq. (17). Using the BB-gPC, the circuit
statistical behaviour is computed in terms of mean and variance with only one single simulation
and by MC sampling of the model (17) the PDF is readily obtained. Results are shown in Figs.
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4 and 5. A comparison between the direct Monte Carlo, classical gPC analysis and BB-gPC is
shown. For both classical gPC and BB-gPC, the probability density function of any quantity
of interest can be obtained by Monte Carlo sampling of the approximation of the circuit at a
negligible computational cost. We used 104 samples for every Monte Carlo analysis. To build
the gPC approximation through the classical approach in the form of Eq. (3) [see Section 2] we
used Q = 80 samples for linear regression at the output ports (bar and cross in Fig. 1(a)) at each
wavelength.
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Fig. 4. Comparison between (a) the mean and (b) the standard deviation of the magnitude
of bar (black) and cross (red) ports of the filter obtained with BB-gPC (blue dashed-dotted
line), MC analysis (solid line) and the classical gPC method (circles). The MC analysis is
carried out using 104 samples.
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Fig. 5. PDF of the intensity transfer function at the (a) bar (black) and (b) cross (red) ports
of the filter at a centre wavelength 1.5502 µm respectively. (c) PDF of the 3-dB bandwidth
at the bar port of the filter. Blue dash-dot line: PDF computed using the BB-gPC. Full line:
PDF computed using MC technique. Circles: PDF computed using the classical gPC method.
For all three methods 104 samples are used.
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Figures 4(a) and 4(b) show the mean and the standard deviation of the transmission at the bar
(black) and the cross (red) ports of the filter. Blue dash-dot lines represent the result obtained
by BB-gPC while full line and circles shows the result obtained using Monte Carlo and gPC
analysis, respectively. The proposed BB-gPC technique is in excellent agreement compared with
the classical MC and gPC analysis in computing mean and standard deviation of the circuit.
Figure 5(a) and 5(b) show the probability density function of the intensity transfer function at the
bar (black) and the cross port (red) of the filter at the centre wavelength 1.55025 µm, respectively.
Blue dash-dot line represents BB-gPC while full line and circles shows the results of classical
MC and gPC respectively. Note that for both ports, the probability density function is asymmetric.
The cross port of the filter suffers from a broader deviation of the intensity, while the bar port is
more robust for the same process uncertainties. The obtained gPC approximation (17) can be used
to perform the analysis of other desired quantities of interest, for example the 3-dB bandwidth of
the filter. The transfer functions obtained with MC analysis on the original circuit and on both
classical gPC and BB-gPC approximations are used to calculate the PDF of the 3-dB bandwidth
of the filter at the bar port as shown in Fig. 5(c). The nominal bandwidth BW0 is marked with
a dashed line for reference. The bandwidth PDF is asymmetric. The obtained results are also
exploited to estimate the yield that can be achieved by the process (percentage of fabricated
devices respecting a certain performance constraint). For instance, considering the bandwidth
constraint (BW0± 2 GHz), the achievable device yield for the considered uncertainties is equal
to 89 %. The results obtained with all the three methods are in good agreement demonstrating
that the BB-gPC provides reliable results not only for simple stochastic moments such as mean
and variance but also for complex stochastic moments as the probability density function of
any quantity of interest. The computational time of this test case is summarized in Table 1.

Table 1. Efficiency of BB-gPC
Technique Computational time
Classical circuit MC analysis [104 samples] 10 hour 58 minutes
gPC analysis [80 MC circuit samples] 5 minutes 26 seconds
BB-gPC analysis 5.6 seconds
Stochastic BB-gPC preparation (one-time) 3 minutes and 9 seconds

The direct Monte Carlo analysis took about 11 hours, while the classical gPC technique took
around 5 minutes and 26 seconds, using 80 samples to build the model and run 104 MC samples.
Advantageously, the proposed method required only 5.6 seconds to build augmented model, to
retrieve gPC approximation of the entire circuit and to run 104 MC samples analysis. In addition,
it requires 3 minutes and 9 seconds to compute gPC model using initial 30 samples for each BB
in the form of Eq. (6). However, this computation is required to be performed only once to create
the library (PDK), which is then used to obtain the statistical information of any circuit layout.

4.2. Example B: Coupled ring-resonators filter

In this example we exploit the same stochastic building blocks models BBK and BBW described
and calculated in Section 4.1 to analyze a fifth-order coupled ring filter schematically shown in
Fig.6(a). The filter is designed according to the synthesis technique described in reference [29].
With a nominal bandwidth BW0=28.5 GHz and FSR=100 GHz, the resulting coupling coefficients
for the six directional couplers are K1=K6=0.82, K2=K5=0.37 and K3=K4=0.22 providing an
in-band isolation larger than 25 dB. Also in this case, silicon photonics technology is considered,
with channel waveguide cross section equal to 408×220 nm, corresponding to an effective index
and group index of about 2.23 and 4.402, respectively, as described in Section 4.1. For the
directional coupler building blocks, the considered nominal gap distance is gi=0.3 µm same
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Fig. 6. (a) Schematic of the fifth-order ring filter (b) Transfer function of the ring filter at
drop (black) and through (red) ports for the nominal design. The thin grey lines show the
effect of fabrication uncertainties on the waveguide widths.

as Section 4.1, leading to coupling lengths of Lc1=Lc6=22.29 µm, Lc2=Lc5=12.90 µm and
Lc3=Lc4=9.6323 µm. Figure 6(b) shows the ideal transfer function of the ring filter at the drop
(bold black) and the through (bold red) ports respectively. In this example, BBK is considered
deterministic and only BBW is affected by stochastic variations, therefore the number of random
variables is N = 5 and the augmented matrix size is 42 × 42 (M = 21 and np = 2). Although in
practice also the couplers should be considered stochastic, this example demonstrate that is it
possible to combine stochastic BBs with deterministic BBs. The computed augmented model
of BBK is still valid, but only the first coefficient of the gPC approximation in the augmented
model is actually used, whereas the remaining coefficient are set equal to zero as the considered
standard deviation for coupling gap is σg=0. For BBW, the waveguide widths (∆Wi) are assumed
as independent standard Gaussian with standard deviation σW=10 pm. The thin grey lines in
Fig. 6(b) show the effect of process uncertainties on the coupled ring resonator filter obtained by
Monte Carlo analysis.
Similar to Section 4.1, the BBK and BBW are combined to obtain the augmented matrix

description of the whole circuit and the gPC approximation in the form of Eq. (17). Using
BB-gPC, the circuit statistical behavior is computed and comparison with Monte Carlo and
classical gPC analysis is performed. Results for the stochastic moments of the ring filter are
shown in Figs. 7–9. In particular, Figs. 7(a) and 7(b) show the mean and standard deviation of
the coupled ring resonator filter at the drop (black colour) and the through (red colour) ports
respectively. Blue dash-dot lines represent the result obtained by BB-gPC, while full line and
circles shows the result obtained using Monte Carlo and gPC analysis, respectively. Figs. 8(a)
and 8(b) show the PDF of the intensity at the drop and through ports of the filter at the centre
wavelength and Fig. 8(c) shows the PDF of 3-dB bandwidth obtained from direct Monte Carlo
analysis (full line), classical gPC analysis (circles) and BB-gPC method (blue dash-dot line). The
probability density functions of both drop and through ports of the ring filter are asymmetric.
Also in this case, the intensity at the through port suffers form a broader deviation when compared
to drop port of the filter for the same process uncertainties. In this example, to further demonstrate
the potential of the BB-gPC, the statistical behaviour of the group delay at the drop port is
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Fig. 7. Comparison between (a) the mean and (b) the standard deviation of the magnitude of
drop (black) and through (red) ports of the filter obtained with BB-gPC (blue dashed-dotted
line), MC analysis (solid line) and the classical gPC method (circles). The MC analysis is
carried out using 104 samples.
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Fig. 8. (a) PDF of the intensity of (a) the drop port and (b) the through port of the filter at a
centre wavelength 1.55025 µm (c) PDF of the 3-dB bandwidth at the drop port of the filter.
Blue dash-dot line: PDF computed using the BB-gPC. Full line: PDF computed using the
MC analysis. Circles: PDF computed using the classical gPC method. For all three method
104 samples are used.

calculated and shown in Figs. 9(a) and 9(b). The inset in Fig. 9(a) shows the PDF at the centre
wavelength.

Figures 7–9, clearly show that the results of our proposed method are in excellent agreement
with Monte Carlo and classical gPC technique. The results also shows that once the stochastic
augmented macro-model of BBs are build and stored in the PDK, they can be used to perform
the variability analysis of arbitrary photonic circuit by means of only one single simulation run.
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Fig. 9. (a) Group delay of the coupled ring resonator filter at the drop port. (b) The standard
deviation of the group delay at the drop port of the filter. The blue dash-dot line represents
the proposed technique. The full line shows the result of MC analysis using 104 samples.
The circles represents the results obtained using the classical gPC method.

5. Conclusion

In this paper, we presented a novel class of stochastic process design kits for the efficient variability
analysis of photonic circuits. In the proposed framework generalised polynomial chaos expansion
is exploited to build augmented macro-models of each building block directly embedding the
description of its stochastic behaviour. The augmented macro-models are computed through
the stochastic collocation and Galerkin methods and are part of the library (PDK). Using these
augmented models, the stochastic moments of an arbitrary photonic circuit can be evaluated by a
single deterministic simulation run, without the need for repeated simulations. The efficiency and
flexibility of the framework have been illustrated using relevant numerical examples.
Even if in this work we exploited synthetic simulation data to realize the stochastic process

design kit, real experimental data can also be used. The proposed method can be helpful to analyse
the stochastic variability and perform robust design optimization to obtain the circuit design
which is more robust to fabrication process variation and achieve higher yield respecting certain
performance constraints. Additionally, the BB-gPCmethod can be also be advantageous to perform
sensitivity analysis, identifying the most critical parameters affecting circuit performances.
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