
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

LENTA: Longitudinal Exploration for Network Traffic Analysis / Morichetta, Andrea; Mellia, Marco. - ELETTRONICO. -
(2018), pp. 176-184. (Intervento presentato al convegno ITC 30 - 2018 tenutosi a Vienna, AU nel 3-7 September 2018)
[10.1109/ITC30.2018.00035].

Original

LENTA: Longitudinal Exploration for Network Traffic Analysis

Publisher:

Published
DOI:10.1109/ITC30.2018.00035

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2715459 since: 2018-10-20T11:38:08Z

IEEE

LENTA: Longitudinal Exploration
for Network Traffic Analysis

Andrea Morichetta, Marco Mellia

Politecnico di Torino
andrea.morichetta@polito.it, marco.mellia@polito.it

Abstract—In this work, we present LENTA (Longitudinal
Exploration for Network Traffic Analysis), a system that sup-
ports the network analysts to easily identify traffic generated
by services and applications running on the web, being them
benign or possibly malicious. First, LENTA simplifies analysts’
job by letting them observe few hundreds of clusters instead
of the original hundred thousands of single URLs. Second, it
implements a self-learning methodology, where a semi-supervised
approach lets the system grow its knowledge, which is used in
turn to automatically associate traffic to previously observed
services and identify new traffic generated by possibly suspicious
applications. This lets the analysts easily observe changes in the
traffic, like the birth of new services, or unexpected activities.

We follow a data driven approach, running LENTA on real
data. Traffic is analyzed in batches of 24-hour worth of traffic.
We show that LENTA allows the analyst to easily understand
which services are running on their network, highlights malicious
traffic and changes over time, greatly simplifying the view and
understanding of the traffic.

I. INTRODUCTION

In the recent years we witnessed the consolidation of
internet services toward the usage of HTTP at the application
layers, making this protocol the de-facto new “narrow waist”
of the internet [11]. Video streaming, music, VoIP, chat, and
traditional access to web pages today run on the top of HTTP
or HTTPS. Even malware prefers HTTP as protocol to, e.g., let
infected clients communicate to command and control (C&C)
servers [2]. This originates from the easiness for HTTP traffic
to bypass network firewalls and intrusion prevention systems.

While this has simplified the structure of the protocol
stack, the complexity of modern services has complicated the
analysis of web traffic, so that it is very hard to understand
which services are running in the network. To give the intuition
of the variety of traffic today, Fig. 1 reports the growth in the
number of unique URLs that are observed in a real network
where hundreds of users are connected to the Internet. Data
refers to March 2016, where still more than 40% of traffic
was carried by HTTP [7]. As it can be seen, every hour
several tens of thousands unique URLs (solid curve - left y-
axis) are accessed via HTTP, with the total number (dotted
curve - right y-axis) that grows to more than unique 430 000
URLs after one week. In a corporate scenario, the network
security analyst is interested in periodically processing traffic
to observe which services are accessed by terminals, to then

The research leading to these results has been funded by the Vienna Science
and Technology Fund (WWTF) through project ICT15-129, "BigDAMA"

16-03-01 00:00

16-03-02 00:00

16-03-03 00:00

16-03-04 00:00

16-03-05 00:00

16-03-06 00:00

16-03-07 00:00

16-03-08 00:00
0

2000

4000

6000

8000

10000

12000

14000

Ho
ur

ly
 v

isi
te

d
un

iq
ue

 U
RL

s Hourly visited unique URLs
Cumulative of unique visited URLs

0

100000

200000

300000

400000

Cu
m

ul
at

iv
e

of
 u

ni
qu

e
vi

sit
ed

 U
RL

s

Figure 1: Evolution of unique URLs observed on a real
network.

take informed actions in case some anomaly is detected. They
need to process a consistent amount of traffic so to guarantee
the correlation and comparison between events that in a too
detailed analysis would be missed. This work needs clearly
the support of automatic tools to process, analyze and extract
useful information from the raw data.

In this context, big data approaches are starting to emerge
to scale the analysis of traces [3], [4], [6], [9], [13]. They
offer the ability to process massive data [9], and run machine
learning methodologies for traffic classification [6], [13], traf-
fic monitoring analytics [4], or in general to support the so
called data science process, i.e., the extraction of insights from
massive data [3]. For the latter case, unsupervised machine
learning, i.e., clustering algorithms [1], allows one to reduce
the size of the problem from a hundred thousand single objects
– the unique URLs – to few hundreds clusters, which contain
“similar” URLs. Notice that most URLs carried by a network
are not generated by an intentional user action (e.g., the click
of a link on a page), but are instead due to applications fetching
objects (e.g., objects in a web page, or system component for
a web-app) [15], including malware that periodically contact
C&C server or execute automatic actions. These latter have
often a regular syntax, which makes them strictly different,
but similar in the format. Designing a clustering solution of
URLs requires ingenuity, given URLs are strings, for which
the notion of similarity and distance is not trivial to define.

In this article, we propose LENTA (Longitudinal Explo-
ration for Network Traffic Analysis). Here, first, we improve

classic clustering algorithms by automating the choice of
parameters, an often cumbersome process. We demonstrate
that this strategy offers better results with respect to what
we obtained in our previous work CLUE (Clustering for URL
Exploration) [10], using the original DBSCAN algorithm. Sec-
ond and more important, we design a self-learning approach
that lets the system build its knowledge. This knowledge
grows thanks to a comparison methodology, which associates
clusters obtained from a new snapshot of data with previously
observed clusters. In this way LENTA offers the analyst only
new and previously undetected clusters, while known traffic
is automatically labeled. This highlights changes and birth of
previously unseen applications in the traffic pattern, building
a longitudinal view of traffic.

We test LENTA on a real use case where a passive probe
observes thousands of users in an ISP network, during one
week. Our prototype is able to process one day worth of traffic
in slightly more than two hours. Results show both LENTA
ability in creating few clusters, which are easy to investigate
and associate to services or malicious activities, and the
capability of identifying new traffic generated by previously
unknown systems. For instance, in our experiment LENTA lets
us discover traffic related to well-known services (e.g., CDN,
video services, online tracking and advertisement systems),
unexpected applications (e.g., Chinese chatting applications)
and even traffic generated by infected machines (e.g., malware
contacting C&C servers).

These results show the potential of LENTA to support the
analysis and discovery of services running on the top of HTTP,
and to help the security analyst in understanding current web
services.

II. MOTIVATION AND SYSTEM OVERVIEW

In this paper, we target the analysis of HTTP traffic, which
still today amounts to more than 40% of web traffic, according
to global statistics [7]. Furthermore, the majority of malicious
traffic is in HTTP too [2], while well-behaved services are
moving on HTTPS.

A. Motivation

We chose to leverage string similarity to generate homoge-
neous groups of URLs instead of simply merge together those
elements that have, e.g., a common domain name. Ideally, we
aim at grouping together all those URLs that refer to the same
service, while URLs of different services should be grouped
separately. We provide some examples to give the reader the
intuition (and the complexity) of doing this. Tab. I shows
examples of URLs. A1, A2 and A3 belong to the same malware
called TidServ – that we identified in our dataset using a
professional IDS. All URLs have common substrings in the
object path, but strictly different domain names and URLs.
This is a common behaviour in malicious applications which
apply approaches to rapidly change the domain name to evade
static blacklist-based controls, the so called DGA (Domain
Generation Algorithm) techniques. B1 and B2 illustrate two
URLs generated by Sony connected Smart-TVs which access

Table I: Examples of similar URLs

swltcho81.com/[...]VyPTQuMCZiaWQ9[...] A1
rammyjuke.com/[...]VyPTQuMCZiaWQ9[...] A2
iau71nag001.com/[...]VyPTQuMiZiaWQ9[...] A3

bravia.dl.playstation.net/bravia/WidgetBundles/BgmSearch-2ndDisp/info.xml B1
applicast.ga.sony.net/WidgetBundles/SNY_RSSReader/icon.png B2

google.com/flights/#search;f=TRN,ITT,TPY;t=LAX;d=2018-01-22
;r=2018-01-26 C1
google.com/mail/u/0/#inbox/160c745d9e5f6684 C2

the same service, but with different URLs. This is typical
of services that use the same web platform and that can be
interesting to point out. In both the above examples, we would
like the algorithm to identify these regular patterns, and form
two groups, one for the malware, one for Smart-TV traffic.

Notice that grouping by domain name is not sufficient.
Indeed, there are services which are hosted on the same
domain name, but are logically very different. This is the case
of the third example, C1 and C2, where Google Flights and
Gmail URLs are shown. In this case, we would like to identify
two groups, one for each service.

B. System Overview

Fig.2 sketches the overall process. Our goal is to group all
those URLs in the same cluster by only looking at the URLs
themselves. For this, we process URLs in batches, UG(i),
where we insert all unique URLs seen during the i-th time
interval of a desired amount of time ∆T . Only unique URLs
are considered since our goal is to understand which resources
are fetched by clients, independently of their popularity. At the
end of a period, collected URLs are clustered in C(i). Several
challenges arise here, from the computation of the similarity
between two URLs (i.e., strings), to the proper choice of
clustering algorithm, from the parameter settings, to a scalable
design.

Once clusters are identified, we reduce the dimensionality
of the data by applying a sampling process, i.e., by extracting a
summary of URLs found in each of them, obtaining in output
Ĉ(i). This has the benefit to reduce the footprint of the data,
and limit the computational complexity of the next steps.

Next, we compare clusters found in the current batch with
those found in the past, Ẑ(i− 1), which are stored in the
System Knowledge. If no match is found, then the current
cluster is considered new, and added to the System Knowledge
after eventually an inspection of the network analyst to provide
a meaningful label. As we will show, the labeling process is
greatly simplified by the availability of several URLs of the
same type that let a domain expert take informed decisions.

III. METHODOLOGY

A. URL Extraction

The first step of the process is to extract URLs from HTTP
traffic. Visibility in HTTP traffic can be obtained using a

UG(1) UG(2) UG(3)
∆T � 1 day

!"(1)

∆T ∆T t

System Knowledge
Enhancement

� 10 Sample each
Cluster for Data
Reduction

� 300 Clusters
grouping URLs

� 100,000 Unique
URLs ⋯

Complexity	
reduction

!"(0) !"(2) !"(3) !"(4)

!;(1) !;(2) !;(3)

;(1) ;(2) ;(3)

Figure 2: System overview

passive sniffer, or a proxy, which, in case of a MITM proxy,
would allow the processing of HTTPS traffic too. In this work,
we rely on Tstat [14], a scalable passive network monitor
solution that is able to process data in real time on high speed
links. Tstat implements an efficient DPI architecture that logs
HTTP requests observed in the traffic. For our experiment we
use a one-week-long HTTP trace collected in March 2016 in
an ISP network. To protect users privacy, all parameters in the
URL have been removed, and only unique URLs were saved1.
As shown in Fig. 1, we observe more than 430 000 unique
URLs during a week, more than 60 000 per day (detailed in
first row of Table IV).

Every period of duration ∆T , a URL group UG(i) is
formed and analyzed. In our experiments, we choose ∆T =
24h. This is justified by the daily periodicity of traffic (see
Fig. 1) which reflects the typical daily periodicity of users.

B. Distance definition

Clustering is the task of grouping a set of objects in such a
way that the ones in the same group (i.e., the cluster) are more
similar to each other than to those in other groups. We build
on DBSCAN [1] to design a proper clustering algorithm.

In our case, objects are URLs, i.e., strings, for which there is
no well-accepted notion of similarity. As such, we focus on a
particular class of similarity metric, the edit-distance [5]. The
distance between two given strings s1 and s2 is intended as
the minimum number of steps required to convert the string s1
into s2. We propose a custom modification of the Levenshtein
distance, dLV S [8]. Specifically, we count the total number

1The usage of this data set has been discussed and approved by our
institution ethic committee, and by the ISP security group.

of insertions and deletions, and weight each replacement by
two. The rationale is that a replacement corresponds to one
combined operation of deletion and insertion. Given the pecu-
liarity of URLs, whose length may vary widely, we normalize
the results in a [0, 1] range by dividing by the sum of string
lengths,

dURL(s1, s2) =
dLV S(s1, s2)

(|s1|+ |s2|)
.

This leads to a bounded distance metric, where dURL = 0 if
s1 = s2, while dURL = 1 if the two strings are completely
different.

C. Self-tuning Clustering

For clustering, we built upon and improve the well-known
DBSCAN algorithm. DBSCAN falls under the family of
the density based clustering techniques, where a cluster is
identified as the concatenation of consecutive dense areas in
the data space. Given an object o, its density can be measured
by the number of elements close to it. DBSCAN finds the core
points, that are those objects that have dense neighborhoods;
then it connects these core points and their neighbors to form
the dense regions, i.e., the clusters. To define the neighborhood
area, the ε parameter is used. This represents the radius of the
sphere that has o as center. A neighborhood is dense if there
are at least MinPoints in the sphere of radiusε.

Despite the good results, the setting of the MinPoints and
ε parameters remains open. In particular, MinPoints can be
reasonably set using domain knowledge since it represent the
minimum number of elements of a cluster. ε is instead hard
to get, especially if the used distance is not well known.
In the original CLUE, ε was manually selected. Here we

propose a new approach to automatically compute ε, while also
improving the final clustering. The intuition is to iteratively
run DBSCAN, each time using a proper setting of ε, and
each time accepting only those clusters that are well-shaped.
Objects in bad-shaped clusters are eventually re-clustered in
the next step, with a different choice of ε. This produces
a remarkable improvement of LENTA’s clustering stage, by
further splitting/merging clusters at each iteration, until they
eventually form well-shaped cluster. After a maximum number
of iterations, or in case of a dead loop, the algorithm stops
and labels all the remaining elements as noise points (i.e., not
assigning them to any cluster). Those are outliers that would
have to be ignored.

We define ε by using an a-priori rule, i.e., we want the
algorithm to cluster a given percentage η of objects at each
iteration. To choose the proper ε that would guarantee this,
we rely on the k-Distance graph rule [1]. Let k = MinPoints.
For each object i = 1, . . . , N in the current dataset, the k-
th nearest point is found, whose distance is di. We next sort
{di} from the lowest to the highest distance, and look for the
minimum threshold dth for which di < dth for η = 75% of
points. We set ε = dth. With this choice, 75% of objects have
at least k = MinPoints objects at a distance smaller than ε.
Those would become core points, and form a cluster.

To identify well-shaped clusters, we rely on the silhouette
analysis, an unsupervised cluster evaluation methodology to
find how well each object lies within its cluster [12]. The
silhouette coefficient s(i) measures how close the point i ∈ C
is to other points in C, and how far it is from points in other
clusters. Let a(i) be the average distance of i with all points in
its cluster. Let b(i) be the minimum among average distance
of i to points in other clusters. In formulas, we have:

a(i) =
1

‖C‖
∑

j∈C 6=i

dURL(i, j)

b(i) = min
C′ 6=C

 1

‖C ′‖
∑
j∈C′

dURL(i, j)


s(i) =

b(i)− a(i)

max(a(i), b(i))

It results s(i) ∈ [−1, 1]. Values close to 1 indicate that the
sample is far away from the other clusters, and very close to
all other points in its cluster, i.e., cluster C is very compact.
Instead, values close to 0 indicate that i is on or very close to
the decision boundary between two clusters. Finally, negative
values indicate that i might have been assigned to the wrong
cluster. The average S(C) = E[s(i), i ∈ C] over all points in
cluster C is a measure of how tightly grouped all the elements
in C are.

Given a cluster C, we say it is well-shaped if S(C) >
Smin. Therefore, if C is well-shaped, we insert C in the set
of clusters found so far. Otherwise, we put all points in C
in the remaining set of points to be considered for the next
iteration of clustering.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Silhouette Values

0

50

100

150

200

250

Nu
m

be
r o

f C
lu

st
er

s

Classic DBSCAN LENTA DBSCAN

Figure 3: CDFs obtained by extracting the silhouette of
clusters obtained with the classic DBSCAN and the updated
algorithm proposed in LENTA.

At the end of iterations, we are guaranteed to have all well-
shaped clusters, with the final clustering C being

C =
⋃
j

{Cj |S(Cj) > Smin}

We ran several experiments to check the quality of clus-
tering for different values of Smin and η. In a nutshell, the
algorithm is robust to the choice of η, while any value of Smin

> 0 gives good results. For the sake of brevity we do not report
outcomes here. Our choice of η = 75% and Smin = 0.3 is
conservative and produces very well-shaped clusters.

The benefits of this self-tuning clustering are shown in
Fig. 3. Here we report the silhouette values of clusters obtained
running the classic DBSCAN algorithm and the self-tuning
version over one day of traffic, with more than 59 000 URLs.
Bad clusters (Smin < 0.3) are recomputed and separated in
more meaningful groups, increasing both the cohesion and the
number of final clusters, that in this experiment grows by 25%
(from 226 clusters of the classic DBSCAN to 283).

D. Sampling for Data Reduction

Next, we sample a subset of elements from each cluster. The
rationale is twofold: to ease the comparison between clusters
reducing computational complexity, while maintaining their
information quality; and to keep a digest of the collected traffic
in the System Knowledge, reducing its footprint.

We sample each cluster Cj ∈ C using either a ratio r ∈ [0, 1]
of the cluster population, or a fixed specimen. At the end of the
process, a set of sampled clusters Ĉ =

⋃
j Ĉj is obtained. Let

m be the number of elements to extract. In case of fixed ratio
r, we set m = dr||Cj ||e, and then pick Ĉj = sample(Cj ,m).
In case of a fixed sampling2, we select elements as Ĉj =
sample(Cj ,m).
sample(Cj ,m) is a function that extracts m samples. We

consider two samplings:
• Random sampling: selecting m objects at random from

the elements of Cj , i.e., sample(Cj ,m) = rand(Cj ,m);

2In case |Cj | ≤ m, all elements are selected.

• Percentile sampling: selecting the subset of elements that
best represents the different kind of URLs present in a
cluster, i.e., sample(Cj ,m) = percentile(Cj ,m).

percentile(Cj ,m) extracts m representatives by looking at
the distribution of mean intra-cluster distances for each URL
si ∈ Cj {

Esk∈Cj
[dURL(si, sk)],∀si ∈ Cj

}
(1)

The elements selected are the ones that correspond to values
that divide in equally sized sets the cluster, i.e., that correspond
to the m percentiles. The idea behind percentile selection is to
have a set of cluster’s subsamples that includes both elements
that are in the center area of a cluster and the ones at its
border. Note that in case of m = 1, percentile(Cj ,m) would
select the so called medoid, i.e., the element whose average
dissimilarity to all the objects in the cluster is minimal3.
The medoid is generally a good choice to describe a group
of elements, but it is more appropriate for spherical and
homogeneous clusters. Being a cluster in DBSCAN made
by a chain of interconnected smaller spherical dense areas,
the choice of only one point would exclude other possibly
interesting instances. In this sense, the percentile sampling
produces a sampling that is more peculiar to the population
of the cluster.

E. System Knowledge enhancement intuition

LENTA maintains the set of clusters found in the past in
the System Knowledge Ẑ(t), t being the time slot. At the
beginning Ẑ(0) = ∅. Given a sampled cluster Ĉi we want to
identify the closest cluster found in the past. Let

dmin(Ĉ, Ẑ) = min
Ẑ∈Ẑ

(
d
(
Ĉ, Ẑ

))
where d(Ĉ, Ẑ) = min

c∈Ĉ
z∈Ẑ

dURL(c, z) (2)

Let Ĉ(t) the result of the clustering of the current batch.
We need to check if a cluster Ĉj(t) ∈ Ĉ(t) has been already
found in the past, or if it represents new traffic. For the cluster
Ĉj(t), the most similar cluster Ẑl(t− 1) ∈ Z(t− 1) is

Ẑl(t− 1) = arg min
(
dmin

(
Ĉj(t), Ẑ(t− 1)

))
A cluster is then considered as new if the minimum distance is
larger than the threshold α. The System Knowledge is updated
as follows:

ˆZ(t) = Ẑ(t−1)∪
{
Ĉj(t) ∈ C(t) | dmin

(
Ĉj(t), Ẑ(t− 1)

)
≥ α

}
That is, we add a new cluster found at time t if its distance

to the closest cluster is higher than α.

F. Ageing

When dmin(Ĉj(t),Z(t− 1)) < α, two clusters are consid-
ered similar, so they contain the same kind of information.
The new cluster, that is associated to the old one, may contain
new knowledge, e.g., some important changes in the particular

3The medoid is different from the centroid since the first is selected among
the elements of the cluster.

service or differences in the structure or information carried
by URLs. It is vital to register, if possible, those updates.

We use random replacement policy. That is, we substitute
each element zi ∈ Ẑl(t− 1) with the element ci ∈ Ĉj(t) with
a certain probability p. So,

zi := ci ← p ∀i ∈ [1,m], zi ∈ Ẑl(t− 1), ci ∈ Ĉj(t)

In doing so, we update the system knowledge clusters, ageing
and replacing “old” representatives with fresher information.

G. Implementation and complexity

LENTA has been implemented using the Apache Spark
framework. Running DBSCAN over N elements requires
the computation of O(N2) distances between each pair of
elements. This results in a very expensive task, since dURL

complexity is O(len(s1), len(s2)) and URLs can be very long
strings. Spark parallelism helps to compute the N2 distance
matrix by letting each executor compute a subset of the entire
matrix. For instance, considering a data set of approximately
60 000 elements, a single executor requires more than 24
hours, while a Spark clusters with 60 active executors less than
1 hour. After computing the matrix, the iterative clustering can
run on a single executor without penalties, while the System
Knowledge enhancement step complexity is bounded by the
sampling process. These last two steps are completed in less
than 30 min on a single executor. More details are provided in
Sec. IV-B.

IV. RESULTS

A. Clustering analysis and labeling

In this section we provide experimental results. We choose
∆T = 24 h, η = 0.75, Smin = 0.3, p = 0.2 and
MinPoints = 20 to look for well-shaped and big enough
clusters. We tested different parameters, observing little
changes. Experiments are not reported here due to lack of
space.

Foremost we analyze the first day of traffic. LENTA obtains
283 clusters from the set of 59543 original unique URLs. The
Silhouette coefficient S(C) has a value of 0.5 or more for 183
clusters, with 55 of them with S(C) > 0.75. That is, clusters
are very well shaped.

Top part of Tab. II shows the biggest clusters, while bottom
part those with the highest silhouette. Table reports the sil-
houette S(C), the most frequent hostname (in brackets the
total number of hostnames), the number of unique URLs,
and the type of the service. Although the majority of clusters
are relatively small, some contain a considerable number of
distinct URLs and of different hostnames. That behavior is
not to be taken from granted, as often the complexity of
URLs structure tend to increment the distance also for actually
similar elements.

y, include e-commerce websites, blog services, chat plat-
forms, etc.

Some suspicious clusters are also identified. For instance,
30 unique URLs form a cluster where URLs have all the same
IP address 219.129.216.161 – but apparently random

Table II: Insight of the clustered HTTP traffic from the first day of analysis. On the top, the largest clusters. On the bottom,
the top well-shaped clusters.

S(C) Main hostname (unique hostnames) Elements Activity
0.52 scontent-mxp1-1.cdninstagram.com (4) 4359 Instagram CDN
0.92 se-rm3-18.se.live3.msf.ticdn.it (6) 3504 Entertainment - Streaming CDN
0.36 skyianywhere2-i.akamaihd.net (9) 2087 Entertainment - Streaming CDN
0.30 www.google-analytics.com (29) 1940 Tracking
0.95 rtinfinityh2-a.akamaihd.net:80 (1) 1227 Entertainment - Streaming CDN
0.76 videoassets.pornototale.com (1) 751 Adult content
0.57 tracking.autoscout24.com (2) 592 Tracking
0.37 ec2.images-amazon.com (10) 575 Image CDN
0.56 thumbs-wbz-cdn.alljapanesepass.com (1) 393 Adult Content
0.66 video-edge-8fd1c8.cdg01.hls.ttvnw.net (4) 359 Entertainment - Streaming
0.98 iframe.ad (1) 27 Advertising
0.97 news.biella.it (1) 23 News
0.95 rtinfinityh2-a.akamaihd.net:80 (1) 1227 Entertainment - Video Streaming CDN
0.93 motoitalia01.wt-eu02.net (1) 45 Tracking
0.92 skygo.sky.it (1) 45 Entertainment - Video Streaming
0.92 se-rm3-18.se.live3.msf.ticdn.it.msf.ticdn.it (6) 3504 Entertainment - Video Streaming CDN
0.92 219.129.216.161 (1) 30 Malware
0.92 a.applovin.com (1) 20 Analytics
0.92 rum-dytrc.gazzetta.it (1) 47 Entertainment - Analytics

paths. After further analysis4, this cluster is actually found
malicious. Other suspicious clusters emerge as well. At last,
it is important to mention that the same service, i.e., the same
hostname, may be broken apart in multiple clusters, each
one containing a specific content. For example the Chinese
messaging system msg.71.am is divided into two clusters,
one serving images (.GIF), and the other exchanging control
information like devices reports.

These results clearly show that LENTA let the services that
commonly characterize the traffic emerge. The security analyst
can then analyze clusters and consequently label them.

B. Parameter setting

Once clusters are identified, we extract a digest via sam-
pling. This represent the most critical step, since is essential to
balance representativeness, and the complexity of the System
Knowledge enhancement step. Here we discuss the impact
of the parameters related to this step, namely, the sampling
methodology sample(Cj ,m), the number of samples m to
keep, and the threshold α to associate a new cluster with an
old one.

We propose several methods for sample selection
sample(Cj ,m): fixed size m, or proportional to the cluster
dimension, with r ratio, and random or percentile sampling.

To choose which strategy works best, we run an experiment
in which we split the clusters obtained from the first day C(0)
into two sets. The first part builds the System Knowledge Z(0)
and contains half clusters selected at random from C(0). The
second set C(1) = C(0) contains all clusters. Sampling is
applied, and Ĉ(1) is compared to Ẑ(0). We expect half of
the clusters to be identified as already known, and half to be
new.

4Google results: https://goo.gl/q3DgT8, VirusTotal results
https://goo.gl/fqrNkG

Results are depicted in the plots of Fig. 4 which show
dmin(Ĉj(1), Ẑ(0)), in increasing order, respectively compar-
ing results for fixed random m = {4, 8, 16}, r = 0.1, 0.2, 0.3
and finally for m fixed percentile based samples m =
{4, 8, 16}.

We would expect to see an approximation of a step curve,
where the first half of the distances are equal to 0 because the
same clusters are compared; the second half of the distances
have a value larger than 0 – the higher the better. Fig. 4 clearly
shows that, in case of random sampling, the more the number
of samples, the more the ideal step-curve-behavior is visible.
The approximation is very good, picking a fixed m equal to
16, and very similar to the step curve with proportional r of
20% or 30%.

Situation improves when using percentiles, whose smart
sampling guarantees best results. Indeed, when we consider
the percentile, we always obtained a perfect distance of 0 for
the clusters that contains the same elements of the compared
ones. That is happening because two sets are equal and we
deterministically select the points.

To consider the content of a cluster as belonging to a
previously detected entity, its minimum distance with all
clusters in the System Knowledge has to be larger than the
threshold α. Fig. 4a, Fig. 4b and Fig. 4c clearly show that
the new clusters tend to be very dissimilar from the old ones,
and that any α ∈ [0.2, 0.4] is a proper choice. To not discard
potentially new and interesting clusters, in the following we
choose a value of α = 0.3.

As a drawback, increasing the number of representatives
increases the computation complexity, due to the need to
compute O(m2) dURL(.). Fig. 5 shows the experimental
computational time using lin/log scales. For variable fraction
r, the average number of elements in the cluster was chosen
for a value of x. As expected, the curve grows quadratically for
m (logarithmically in log scale), with m = 32 and r = 20%

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of clusters

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

 d
m

in
m = fixed 4 m = fixed 8 m = fixed 16

(a) Fixed sampling approach.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of clusters

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

 d
m

in

r = 0.1 C size r = 0.2 C size r = 0.3 C size

(b) Proportional sampling approach.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of clusters

0.0

0.2

0.4

0.6

Di
st

an
ce

 d
m

in

m = 4 perc. m = 8 perc. m = 16 perc.

(c) Percentile sampling approach.

Figure 4: dmin when 50% of traffic is the same and 50% is new. Different choices of sampling approaches.

1 2 4 8 12 16 23 32 35 40
m

101

102

103

Co
m

pu
ta

tio
na

l t
im

e
(s

)

Fixed m values
r = 10% cluster size

r = 20% cluster size
r = 30% cluster size

Figure 5: Computation time for different sampling strategies.

or 30% that already have a complexity larger than 3 000 s.
Considering the System Knowledge would have thousands of
clusters, the best trade-off between cluster similarity identifica-
tion and computational time is obtained using a fixed m = 16.5

V. EVOLUTION OVER TIME

In this section we show the results of running LENTA on
a real scenario. We first consider a controlled experiment and
then we apply LENTA over 7 days of traffic collected from
the ISP network.

A. In vitro experiment

To evaluate the reaction of LENTA with respect to the ap-
pearance of anomalous elements, we design a controlled exper-
iment in multiple stages. We start from an initial group UG(0)
of almost 33 000 unique URLs extracted at random from
the previous dataset. We then artificially create new groups
UG(1), UG(2) and UG(3) where we progressively inject
URLs belonging to different applications. We first add a block
of 200 torrent URLs, i.e., UG1 = UG0 ∪ {TorrentURLs}.
Next, we add 228 malicious URLs generated by hosts infected
by TidServ, i.e., UG(2) = UG(1)∪{TidservURLs}. Finally,
we inject 549 URLs generated by a popular streaming service,
i.e., UG(3) = UG(2) ∪ {StreamingURLs}.

5Also in this case CPU time can be reduced by computing dURL in parallel.

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Fraction of clusters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Di
st

an
ce

 d
m

in

torrent injection malware injection streaming injection

Figure 6: Curves of distances when new traffic is injected in
the controlled experiment. Top 20% clusters are reported.

After each stage, we run LENTA and check if it is able to
identify the new traffic. Results are reported in Fig. 6, which
shows the minimum distance dmin(Ĉ(t),Z(t − 1)) between
clusters found in UG(t) and those in the System Knowledge
build on previous steps. We report only the first 20% of
clusters, ordered by distance. As clearly shown, LENTA is
able to recognize the new traffic: first, dmin is equal to zero for
those clusters in UG(t) that were already present in UG(t−1).
Second, and more important, the new traffic is clustered in
totally different clusters, whose dmin is much higher than
α = 0.3.

In details, Tab. III depicts the results of the experiment.
First, all clusters contain only new URLs injected in each step
of the process. Second, notice that LENTA identifies multiple
new clusters for each stage. This is welcome, since each cluster
corresponds to a semantically different service. For instance,
for the video streaming case, each cluster corresponds to
videos served for different platforms (iOS, Android, and
PC), and torrent clusters correspond to different swarms and
trackers. Third, dmin > 0.3 for all clusters but one in the
Torrent data, for which dmin = 0.23. This cluster would
be associated to a previously seen cluster. The association
is correct, and URLs have a very similar syntax to the one
already found and related to a tracker service, tntvillage.

Table III: New clusters highlighted during the comparison with the system knowledge.

Experiment
stage dmin Main hostname(s)

UG1 Torrent
0.75
0.57
0.23

i-1006.b-0.ad.bench.utorrent.com, i-1005.b-0.ad.bench.utorrent.com
b.scorecardresearch.com, pixel.quantserve.com
tracker.aletorrenty.pl:2710, torrent.gresille.org

UG2 Malware
0.76
0.76
0.76

wuptywcj.cn
rlyg0-6nbcv.com,riygo-6nbcv.com, riyg0-6nbcv.com,iau71nag001.com

bangl24nj14.com,switcho81.com, rammyjuke.com,skolewcho.com

UG3 Streaming

0.75
0.74
0.74
0.73
0.72

198.38.116.148
23.246.50.136, 198.38.116.148

198.38.116.148
23.246.50.136, 198.38.116.148

198.38.116.148

Table IV: Behavior of the system during the week.

Mar-01 Mar-02 Mar-03 Mar-04 Mar-05 Mar-06 Mar-07
Unique URL 59543 62842 67789 61849 77770 87928 88396

Daily Clusters 283 322 348 304 396 428 431
System knowledge 283 475 643 765 927 1097 1267

System enhancement 283 192 168 122 162 170 170

B. Real case scenario

We now run LENTA on a one week of data collected
in an ISP network. Table IV detail results. Figure 7 shows
the growth of the system knowledge ||Ẑ(t)|| over time (blue
bars), and the daily amount of clusters that are added during
the enhancement phase (red bars). Table gives the actual
figures. During each day, 280 ÷ 430 clusters are identified,
with the variability due to the daily activity of users. Some
of those correspond to clusters already present in the System
Knowledge (typically more than 50-70%), which grows over
time of less than 170 clusters per day. Compare the growth
with Fig 1, where the number of unique URLs tops to more
than 420 000, with on average 72 000 unique URL per day.
In a nutshell, LENTA is able to decrease the amount of
information the security analysts have to process by 3 orders
of magnitudes, so that they have to inspect about less than 200
clusters per day instead of managing several tens of thousands
unique URLs.

Mar-01
Mar-02

Mar-03
Mar-04

Mar-05
Mar-06

Mar-07
0

200

400

600

800

1000

1200

Cl
us

te
rs

daily total system knowledge
daily enhanced system knowledge

Figure 7: Daily enhancement of system knowledge

The variability of URLs grouped in the same cluster also

simplifies the investigation of the service being involved. For
instance, we checked some clusters that came into sight after
each System Knowledge enhancement phase. We report, for
each day, five new clusters among those that were reported
to be among the most different with respect to the previous
collected traffic, i.e., those for which dmin(Cj(t), Ẑ(t − 1))
is higher.

Tab. V details the results. Also in this case, the services
are related to streaming, advertising, e-commerce services.
Some unexpected or at least not so frequent traffic emerges
as well; for instance, on March 3rd, the c.3g.163.com
cluster emerges. It is related to the Chinese webportal
www.163.com, which was never seen in the previous days.
URLs are related to a newsfeed specific service. During
March 4th and 5th, some suspicious or malicious traffic
is identified. Clusters are related to hijacking services and
aggressive advertisement targeting, and are likely generated
by some hosts infected by some malware. March 6th is
extremely captivating. Eight out of ten most different clusters
are formed by URLs characterized by IP addresses which
resolve Netflix Italy or Netflix Germany CDNs. These were
not found in the previous days, highlighting a change in the
Netflix load balancing policies. The other cluster contain traffic
from 178.18.31.55:8081, connected to liverepeater, a
keyword related to illegal streaming content. Finally, in the last
day some suspicious traffic is visible: an uncommon services
like aww.com.au, an australian news website, and webpages
translated using the Google Translate online service (curiously
translating adult content website, possibly to evade content
filtering policies).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented LENTA, a methodology for
the fast identification of HTTP-based service by looking at
URLs string similarities. We designed a recursive version of
a clustering algorithm over daily HTTP traffic generated by
hosts in a network. We performed the clustering algorithm for
an entire week, comparing the result of each 24 hours with
a collection of previously observed services. We found that
LENTA allows to reduce the traffic to manually check and

Table V: Most interesting clusters obtained by the daily comparison with the system knowledge in the controlled experiment.

Day Main hostname (unique hostnames) Activity Day Main hostname (unique hostnames) Activity

Mar-
02

adnxs.com (3)
www.bing.com (1)

amazon.it (3)
doubleverify.com (9)
mp.weixin.qq.com (1)

Advertising
Search Engine
E-commerce
Advertising

Chinese Website

Mar-
03

ams1.mobile.adnxs.com (1)
ads1-adnow.com (3)
uk-ads.openx.net (1)

c.3g.163.com
googleapis.com (1)

Advertising
Advertising
Advertising

Chinese Website
Cloud Storage

Mar-
04

banzai-d.openx.net (1)
dt.adsafeprotected.com (1)

gvt1.com (3)
windowsphone.com (1)
ocsp.digicert.com (1)

Advertising
Hijacker
Hijacker

CDN Marketplace
Certificate inspection

Mar-
05

engine.bitmedianetwork.com (1)
62.210.188.202:8777 (1)

adaptv.advertising.com (1)
pubnub.com (16)

irs01.com (1)

uTorrent Adv
Suspicious Port
Suspicious Adv

Messaging
Suspicious Tracking

Mar-
06

23.246.50.130 (5)
198.38.116.148 (3)
23.246.50.136 (3)
23.246.51.136 (2)

178.18.31.55:8081 (7)

Netflix Italy
Netflix Germany

Netflix Italy
Netflix Italy

Suspicious Streaming

Mar-
07

aww.com.au (2)
*.liverail.com (1)

spaces.slimspots.com (1)
googleusercontent.com (2)

s8.algovid.com (1)

News
Advertising

Adware attack
Page Translation
Malicious Adv

to ease the observation of changes in the network behavior.
Furthermore, it exposes well-formed clusters of URLs which
greatly simplifies the identification of possibly malicious and
undesired traffic.

This work goes in the direction of reducing the problem
complexity, quickly producing an outcome for the analyst to
whom are offered few hundreds of clusters instead of several
hundred of thousands of URLs. Our results show that the
methodology, applied in a long-term observation, is promising
in the ability of identifying anomalies in the traffic.

In this work we have focused our attention to HTTP traffic.
The promising results suggest to focus on HTTPS traffic too,
in order to have a complete view on the network activi-
ties. LENTA would indeed work with no changes, assumed
visibility in HTTPS traffic if possible. For example, in a
corporate scenario this could be achieved using a MITM
proxy, or directly instrumenting the browsers with a plug-in to
log HTTP/HTTPS requests. Those techniques, together with
proper privacy preserving practices, would extend the view to
the full scenario.

Supplementary effort is necessary to extend big data ap-
proaches to all the stage of the system to scale the analysis.
Another possible follow-up work is the application of LENTA
over different lexical features, like hostname in DNS queries,
or user-agents in HTTP requests.

REFERENCES

[1] Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Appli-
cations. Chapman and Hall/CRC (2013)

[2] Anderson, B.: Hiding in plain sight: Malware’s use of tls and encryption.
https://blogs.cisco.com/security/malwares-use-of-tls-and-encryption

[3] Apiletti, D., Baralis, E., Cerquitelli, T., Garza, P., Giordano, D., Mellia,
M., Venturini, L.: Selina: A self-learning insightful network analyzer.

IEEE Transactions on Network and Service Management 13(3) (Sept
2016) 696–710

[4] Baer, A., Finamore, A., Casas, P., Golab, L., Mellia, M.: Large-scale
network traffic monitoring with dbstream, a system for rolling big data
analysis. In: 2014 IEEE International Conference on Big Data (Big
Data). (Oct 2014) 165–170

[5] Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string
distance metrics for name-matching tasks. In: IJCAI-03 Workshop on
Information Integration. (2003) 73–78

[6] Grimaudo, L., Mellia, M., Baralis, E., Keralapura, R.: Select: Self-
learning classifier for internet traffic. IEEE Transactions on Network
and Service Management 11(2) (June 2014) 144–157

[7] Khatouni, A.S., Trevisan, M., Regano, L., Viticchié, A.: Privacy issues
of isps in the modern web. In: Information Technology, Electronics and
Mobile Communication Conference (IEMCON), 2017 8th IEEE Annual,
IEEE (2017) 588–594

[8] Levenshtein, V.: Binary codes capable of correcting deletions, insertions
and reversals. In: Soviet physics doklady. (1966) 10–707

[9] Liu, J., Liu, F., Ansari, N.: Monitoring and analyzing big traffic data of
a large-scale cellular network with hadoop. IEEE Network 28(4) (July
2014) 32–39

[10] Morichetta, A., Bocchi, E., Metwalley, H., Mellia, M.: Clue: Clustering
for mining web urls. In: 2016 28th International Teletraffic Congress
(ITC 28). Volume 01. (Sept 2016) 286–294

[11] Popa, L., Ghodsi, A., Stoica, I.: Http as the narrow waist of the future
internet. In: ACM Hotnets. (2010)

[12] Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied
Mathematics 20 (1987) 53 – 65

[13] Suthaharan, S.: Big data classification: Problems and challenges in
network intrusion prediction with machine learning. SIGMETRICS
Perform. Eval. Rev. 41(4) (April 2014) 70–73

[14] Trevisan, M., Finamore, A., Mellia, M., Munafo, M., Rossi, D.: Traffic
analysis with off-the-shelf hardware: Challenges and lessons learned.
IEEE Communications Magazine 55(3) (March 2017) 163–169

[15] Vassio, L., Drago, I., Mellia, M.: Detecting user actions from http
traces: Toward an automatic approach. In: 2016 International Wireless
Communications and Mobile Computing Conference (IWCMC). (Sept

2016) 50–55

