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Abstract—This paper proposes a decoupled and iterative cir-
cuit implementation of the stochastic Galerkin method (SGM)
for the variability analysis of electrical circuits via polynomial
chaos (PC). The method is based on a perturbative reformulation
of the SGM, resulting in a decoupled system with equivalent
sources that is solved iteratively by suitably updating the sources
at each step. This alternative approach is easier to implement
and its computational cost scales linearly with the number of
unknown PC coefficients. This contribution addresses the case of
stochastic resistors. As a validation, the technique is applied to
the variability analysis of a boost converter.

Index Terms—Circuit simulation, perturbation methods, poly-
nomial chaos, statistical analysis, stochastic Galerkin method,
switching converters.

I. INTRODUCTION

Polynomial chaos (PC) techniques have recently become

widely popular in the variability analysis of electrical cir-

cuits [1]–[7]. They are based on expanding circuit voltages

and currents into a series of orthogonal polynomials, whose

coefficients directly provide relevant statistical information.

Most of the strategies to solve for these unknown expansion

coefficients rely on either the intrusive so-called stochastic

Galerkin method (SGM) [1]–[3] or on non-intrusive (typically,

sampling/collocation based) approaches [5]–[7].

The choice between intrusive and non-intrusive methods

mainly depends on whether the goal is to achieve a higher

accuracy or a higher computational efficiency and ease of

implementation. Indeed, the SGM is considered to be the

most rigorous and accurate technique, but it suffers from

a few important limitations. The SGM recasts the original

stochastic equations into a deterministic augmented problem

coupling all the PC expansion coefficients. Because of this,

it scales unfavorably with the number of unknowns (which

is in turn related to the number of random parameters) and

possibly requires to develop an ad-hoc solver to handle the

new problem.

The latter issue was partially mitigated by the approach

proposed in [3], in which an equivalent circuit interpretation

was given to the SGM problem. This allowed generating

a companion deterministic circuit starting from the original

stochastic circuit, which could be simulated by many available

circuit simulators without modifications of the underlying

solver. Nevertheless, besides not solving the first issue, the

models require the extensive use of controlled sources, which

limits the applicability to advanced circuit simulators only, and

still requires to develop ad-hoc circuit models depending on

the specific library components that are available.

This paper proposes a novel solution that alleviates both

aforementioned limitations. By leveraging a perturbative ap-

proach, an iterative and decoupled reformulation of the SGM

is introduced, with several important benefits. First of all, the

solution involves the iterative solution of multiple problems

that have the same size as the original one, thus scaling linearly

with the number of unknown PC coefficients. Second, these

problems have a much simpler circuit interpretation, which is

very similar to the original circuit, but where each stochastic

element is treated as being deterministic and is equipped with

a suitable equivalent independent source.

This contribution addresses the case of stochastic resis-

tors and shows the feasibility of the proposed approach. To

illustrate the method, the analysis of a DC-DC boost con-

verter is considered, in which components uncertainties affect

conducted emissions [8]. The simulations are carried out in

Simulink, which is a powerful environment for the simulation

of time-varying systems, but for which the implementation of

the circuit models in [3] would become rather cumbersome.

II. CIRCUIT ANALYSIS VIA PC AND SGM

Consider the case of a stochastic resistor, whose resis-

tance R exhibits a Gaussian distribution with mean value R0

and standard deviation R1, i.e., R ∼ N (R0, R
2
1). The stochas-

tic value of the resistance can be expressed as R(ξ) =
R0+R1 ·ξ, where ξ ∼ N (0, 1) is a standard Gaussian random

variable with zero mean and unitary variance.

The Ohm’s law relating the current and voltage across the

resistor at each time t reads

v(t, ξ) = R(ξ) · i(t, ξ) = (R0 +R1ξ) · i(t, ξ), (1)



where the voltage v and the current i become also function of

ξ, and hence stochastic.

The PC approach to circuit analysis represents stochastic

voltages and currents as expansions

v(t, ξ) ≈
K∑

k=0

vk(t)ϕk(ξ), i(t, ξ) ≈
K∑

k=0

ik(t)ϕk(ξ), (2)

where the ϕk are polynomials of degree k in the random

variable ξ, which are orthonormal based on the inner product

〈f, g〉 =
∫ +∞

−∞
f(ξ)g(ξ)

e−ξ2/2

√
2π

dξ. (3)

The polynomials satisfying the above orthogonality condition

are the Hermite polynomials [9]. Typically, a second-order

expansion (K = 2 in (2)) suffices and is therefore considered

in the remainder of the paper. The first three orthonormal

Hermite polynomials are ϕ0 = 1, ϕ1 = ξ, ϕ2 = (ξ2− 1)/
√
2.

The sought-for coefficients vk and ik define a compact

stochastic model for the voltages and currents in the form

of (2), from which statistical information is readily extracted

using analytical or numerical (e.g., sampling based) methods.

Moreover, following the properties of PC expansions, the

average and standard deviation are readily given, e.g. for the

voltage, by v0 and

√∑K
k=1 v

2
k, respectively, and similarly for

the current.

Noticing that R(ξ) = R0ϕ0(ξ) + R1ϕ1(ξ), substituting

the PC expansions (2) into (1), and performing a Galerkin

projection [10], yields the following augmented deterministic

equation relating the voltage and current PC coefficients:⎡
⎣ v0(t)

v1(t)
v2(t)

⎤
⎦ =

⎡
⎣ R0 R1 0

R1 R0

√
2R1

0
√
2R1 R0

⎤
⎦
⎡
⎣ i0(t)

i1(t)
i2(t)

⎤
⎦ (4)

It is important to remark that, in the system (4), the voltage

and current coefficients are coupled. Fig. 1(a) shows the corre-

sponding circuit interpretation, where series current-controlled

voltage sources provide the necessary coupling between the

PC expansion coefficients.

Alternatively, the system (4) can be inverted in order to

express the current coefficients in terms of the voltage ones.

In this dual circuit, parallel voltage-controlled current sources

provide the necessary coupling, as shown in Fig. 1(b), where

the elements Gij denote the entries of the inverse of the

resistance matrix in (4). This voltage-driven model is more

suitable for circuit solvers that are based on the modified

nodal analysis (MNA) formalism [11], since the former would

introduce two additional unknowns (i.e., the voltage of the

node between the resistor and the voltage source, and the

current flowing through the voltage source itself).

Once the model of the stochastic resistor is obtained, it

is connected to analogous models for the other stochastic

and non-stochastic components in the network, in accordance

with the original topology. This results in an augmented

and coupled deterministic network that is simulated once to
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Fig. 1. Equivalent circuit interpretation of the SGM problem for a stochastic
resistor: current-driven model (a) and voltage-driven model (b).

obtain the PC expansion coefficients of all circuit voltages and

currents [3].

The generalization to multiple random parameters is

straightforward. The multivariate basis functions include all

the combinations of the univariate polynomials up to a total

degree p. The resulting number of terms in the PC expansion

is given by [9]

K + 1 =
(p+ d)!

p!d!
, (5)

where d is the number of random parameters.

The system of equations (4) has the same size as the number

of coefficients (5). In the general case, the system (4) and the

corresponding circuit are fully coupled, making the complexity

to grow faster than linearly. Furthermore, the implementation

of the couplings could be cumbersome, for example in simula-

tors that do not allow a straightforward definition of controlled

sources with multiple controlling variables. While keeping this

in mind, the discussion in the following section considers again

the case of a single random parameter (d = 1) for the sake of

simplicity.

III. PERTURBATIVE MODEL

The novel approach starts by interpreting the resistance

variation as a random perturbation of its nominal (mean) value,

i.e.,

R(ξ) = R0 +ΔR(ξ) (6)

with ΔR(ξ) = R1 · ξ. The substitution into (1) leads to

v(t, ξ) = R0i(t, ξ) + ΔR(ξ)i(t, ξ). (7)

In the above equation, the second term in the r.h.s. can be

thought of as a first order perturbation of the resistor voltage.

As such, (7) can be solved iteratively, with the voltage and



current at the mth iteration step, denoted with v(m) and i(m),

respectively, being related by

v(m)(t, ξ) = R0i
(m)(t, ξ) + ΔR(ξ)i(m−1)(t, ξ), (8)

with m ≥ 0 and i(−1)(t) = 0. Provided that the perturbation

in (6) is “small enough”, the quantities v(m) and i(m) (quickly)

converge to the actual values of the voltage and the current.

A rigorous convergence analysis is out of the scope of this

paper.

Nonetheless, for the sake of illustration, consider the iter-

ative solution for the case of a resistor with a nominal value

R0 = 5 Ω that is perturbed by ΔR = 2 Ω and is paralleled by

an independent DC voltage source E = 10 V. In this trivial

case, the current at step m is i(m) = (E − ΔRi(m−1))/R0,

whereas the correct asymptotic value is i = E/(R0 +ΔR) =
1.429 A. As can be seen from Table I, the convergence of the

iterations is relatively fast despite a 40% perturbation of the

resistance value.

TABLE I
ITERATIVE CALCULATION OF THE CURRENT THROUGH A PERTURBED

RESISTANCE SUBJECT TO A CONSTANT VOLTAGE.

step m ΔRi(m−1) i(m) relative error

0 0 2 A 40%

1 4 V 1.2 A 16%

2 2.4 V 1.52 A 6.4%

3 3.04 V 1.392 A 2.6%

4 2.784 V 1.443 A 1.0%

5 2.886 V 1.423 A 0.4%

6 2.845 V 1.431 A 0.1%

7 2.862 V 1.428 A <0.1%

.

.

.
.
.
.

.

.

.

exact value 1.429 A

It should be noted that ΔR(ξ) = R1 · ϕ1(ξ) and it has

zero mean. Expanding the voltage and the current at each

perturbation step in terms of (2), the Galerkin projection of

(8) yields⎡
⎢⎣ v

(m)
0 (t)

v
(m)
1 (t)

v
(m)
2 (t)

⎤
⎥⎦ =

⎡
⎣ R0 0 0

0 R0 0
0 0 R0

⎤
⎦
⎡
⎢⎣ i

(m)
0 (t)

i
(m)
1 (t)

i
(m)
2 (t)

⎤
⎥⎦

+

⎡
⎣ 0 R1 0

R1 0
√
2R1

0
√
2R1 0

⎤
⎦
⎡
⎢⎣ i

(m−1)
0 (t)

i
(m−1)
1 (t)

i
(m−1)
2 (t)

⎤
⎥⎦ ,

(9)

which describes the relation between the perturbations of the

voltage and current PC coefficients. Equation (9) is similar to

(4), but with two notable differences:

• the PC coefficients at a given iteration step are decoupled

(cfr. the first term in the r.h.s. of (9));

• the coupling terms are explicitly known in terms of the

solution of the previous iteration step (second term in the

r.h.s. of (9)).

Therefore, the coupling between the PC coefficients is no

longer simultaneous and, at each step, the PC coefficients can

be computed separately by considering the equation

v
(m)
k (t) = R0i

(m)
k (t) + v

(m)
eq,k(t), (10)

with k = 0, 1, 2, where the second term in the r.h.s. plays the

role of a known equivalent voltage source with value⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v
(m)
eq,0(t) = R1i

(m−1)
1 (t)

v
(m)
eq,1(t) = R1i

(m−1)
0 (t) +

√
2R1i

(m−1)
2 (t)

v
(m)
eq,2(t) =

√
2R1i

(m−1)
1 (t).

(11)

The equivalent circuit interpretation of (10) is illustrated in

Fig. 2(a). Also in this case, it is possible to avoid series voltage

sources by rewriting (10) as

i
(m)
k (t) =

1

R0
v
(m)
k (t) + i

(m)
eq,k(t) (12)

with i
(m)
eq,k = −v

(m)
eq,k(t)/R0. The above equation has the dual

circuit equivalent illustrated in Fig. 2(b).

R0
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i
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k
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Fig. 2. Current-driven (a) and voltage-driven (b) circuit model of the
perturbative SGM problem for a stochastic resistor.

The new model simply amounts to a deterministic resistor

with nominal resistance, equipped with an independent source.

Similar models are derived for other stochastic resistors,

replacing them in the original circuit, whereas deterministic

components remain unaltered. The original independent stim-

uli appear only in the circuit for k = 0, and they are set to

zero otherwise (cfr. [3]).

The network is first solved once with null equivalent sources

to obtain the deterministic response (step m = 0, k = 0).

There is no need to solve further for k > 0, as both the

independent stimuli and the equivalent sources are null at

this stage, resulting in a null response. Next, the equivalent

sources for each resistor are calculated using (11), and the

circuit is simulated for each k by including the corresponding

sources (step m = 1). The process is iterated by updating the

equivalent sources with (11) until the PC coefficients of the

variables of interest cease to vary within a given threshold,

or a predefined number of steps is reached. It is important to

remark that the solution virtually retains the same accuracy

as the standard SGM, provided that a sufficient number of

iterations is considered.



Vs =

{
E k = 0
0 k > 0

rL L

RL

rC

C

iin

vout

Fig. 3. Schematic of the boost converter. The dashed current sources denote
the equivalent sources for the stochastic resistors in the perturbative SGM
simulation. The original independent voltage source Vs = E is retained only
when solving for the zero-order PC coefficient, and is set to zero otherwise.

IV. NUMERICAL RESULTS

The proposed modeling approach is applied to the boost

converter depicted in Fig. 3 [12]. The nominal values of the

components are: E = 20 V, rL = 0.1 Ω, L = 5 mΩ,

rC = 0.5 Ω, C = 10 μF, RL = 20 Ω. The switching frequency

is fs = 10 kHz. The load resistance RL and the parasitic resis-

tances rC and rL are considered as three independent Gaussian

random variables with a standard deviation of 10% from

their mean values. The circuit is implemented in Simulink,

and the diode and MOS transistor are modeled as ideal

complementary switches to mimic a continuous conduction

mode operation [15].

In order to generate reference results, a Monte Carlo (MC)

analysis with 10000 samples is performed, meaning that the

original circuit is repeatedly simulated for each sample of the

random resistances. For the proposed method instead, the three

stochastic resistors are modeled as being deterministic in the

circuit equivalent, with values equal to their nominal value,

but adopting the model of Fig. 2(b), they are equipped with a

parallel current source (as indicated by the dashed components

in Fig. 3), which is updated through the iterations.

Fig. 4 shows the transient behavior of the input current iin
(top panel) and the load voltage vout (bottom panel). The gray

lines are a superposition of MC samples, providing a visual

indication of the spread due to the variability of the resistors.

The solid blue line is the average over the MC curves, whereas

the dashed red line is the estimation provided by the first

PC coefficient of the corresponding variables (see Section II).

Fig. 5 further compares the standard deviations obtained

with the two approaches. Overall, an excellent accuracy is

established.

Fig. 6 shows the stochastic behavior of the spectrum of the

input current at the steady state, which is the main responsible

for conducted emissions [13]. The spectrum exhibits peaks

at multiples of the switching frequency. The gray lines are

obtained via a fast Fourier transform (FFT) of the MC samples.

The average spectrum (blue line in the top panel) is compared

against the PC prediction (dashed red line). The curves in the

bottom panel compare the standard deviation obtained with

0
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Fig. 4. Transient input current (top panel) and output voltage (bottom panel).
Gray lines: MC samples; solid blue lines and dashed red lines: averages
obtained from the MC and perturbative SGM simulation, respectively.
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Fig. 5. Standard deviation of the transient input current (top panel) and output
voltage (bottom panel) obtained with MC (solid blue line) and perturbative
SGM (dashed red line).

the two techniques. It should be noted that the PC coefficients

of the spectrum are readily obtained as the FFT of the time-

domain coefficients, due to the linearity of the Fourier operator.

Finally, in order to assess the impact of each random

variable on the variability of the spectrum, Sobol’s sensitivity

indices for each frequency are computed from the PC expan-

sion of the spectrum [14]. The plot in Fig. 7 shows that the

variability is largely dominated by the variation of the load

resistance, whereas the impact of the parasitic resistances is

marginal.
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Fig. 6. Spectrum of the input current. Gray lines: MC samples; solid blue and
dashed red lines: average (top panel) and standard deviation (bottom panel)
from the MC and PC analysis, respectively.

The number of PC expansion coefficients for the considered

application example, with d = 3 random parameters and

expansion order p = 2, is K + 1 = 10. In this case, a fixed

number of M = 5 iterations was considered. Therefore, the

total number of deterministic simulations to be performed is

1 + M(K + 1) = 51, as opposed to the 10000 simulations

of the MC analysis. The simulation times required by MC

and the perturbative SGM are 14540 s and 192 s, respectively,

with the latter achieving a speed-up of about 76×. This is

smaller than the theoretical speed-up of 10000/51 = 196×
due to some overhead in the update of the equivalent sources.

In contrast with the newly proposed approach, the state-of-the-

art SGM implementation [3] would require the development

and simulation of a (K +1)-times larger circuit with coupled

models for the stochastic resistors.
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-40

-20

0

Fig. 7. Sobol’s sensitivity indices (total effect) for the spectrum of the input
current.

V. CONCLUSIONS

A perturbative reformulation of the SGM is discussed in this

paper, which allows solving the SGM problem iteratively in a

decoupled manner. This leads to a computational complexity

that grows linearly with the number of PC coefficients to be

determined.
Moreover, the new problem has a much simpler circuit

implementation with respect to the state-of-the-art SGM mod-

els. For the case of stochastic resistors as considered in this

paper, a nominal (deterministic) resistor is equipped with an

equivalent independent source that is suitably updated through

the iterations.
The method is expected to increasingly outperform the

state-of-the-art implementations of the SGM when the number

of PC expansion terms is increased. Analogous models for

stochastic inductors and capacitors, as well as more extensive

discussion and validations will be presented in a future work.
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