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Abstract

This paper extends the use of one-dimensional elements with node-dependent kinematics (NDK) to the dynamic

analysis of beam structures with piezo-patches. NDK allows the kinematic assumptions to be defined individually on

each finite element (FE) node, leading to FE models with variable nodal kinematics. Derived from Carrera Unified

Formulation (CUF), NDK facilitates the mathematical refinement to an arbitrary order at any desirable region on the

nodal level while keeping the compactness of the formulation. As an ideal approach to simulate structures with special

local features, NDK has been employed to model piezo-patches in static cases. In the present work, the application

of ND beam elements in dynamic problems is demonstrated. NDK is applied to increase the numerical accuracy

in the areas where the piezo-patches lie in through sufficiently refined models, while lower order assumptions are

used elsewhere. The dissimilar constitutive relations of neighboring components are appropriately considered with

layer-wise (LW) models. Both open and short circuit conditions are considered. The results are compared against

those from literature. The numerical study shows that the adoption of NDK allows accurate results to be obtained at

reduced computational costs.
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Introduction

Piezoelectric components have draw significant attention

as vibration control devices. Effective modeling techniques

should address the different constitutive relations in

different regions, the electromechanical coupling effect,

and the segmented distribution of piezo-patches.

By considering the electric potential as a primary

variable in the formulation, the electromechanical coupling

can be captured, and both sensor and actuator cases can

be modeled. A great variety of FE modeling techniques

have been put forward for the modeling of piezoelectric

devices, including 1D, 2D and 3D elements by category. 3D

brick elements for piezoelectric modeling were presented

by Allik and Hughes (1970), and Batra and Liang (1997).

Since solid elements are computational costly when used

to model thin piezoelectric layers, various 2D and 1D

models were proposed as alternative choices. Early models

include those based on the Classical Lamination Theory

(CLT) as presented by Lee (1990) and Wang and Rogers

(1991), or First-Order Shear Deformation Theory (FSDT)

such as Huang and Wu (1996), Jonnalagadda et al. (1994),

and Batra (1995). For these classical models, the stress

and electric displacement variation through the thickness
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cannot be well captured. Improvement can be achieved

by adopting Higher-Order Theory (HOT) (Mitchell and

Reddy 1995). By extending a zig-zag theory for laminated

plates to the electromechanical case (Kapuria 2001, 2004),

the interlaminar continuity can be better considered.

Alternatively, the electric displacement components and

the transverse shear stresses can be better approximated

through layer-wisely defined approximation functions in

the thickness domain, as discussed by Heyliger et al.

(1994). In a similar approach, refined layer-wise (LW)

beam elements were also developed by Robbins and

Reddy (1991). In fact, LW models can help to facilitate

materials with different constitutive in neighboring layers.

To reduce the computational costs, Kim et al. (1997)

developed transition elements to connect 2D elements for

pure structural modeling to 3D elements used to model

the piezoelectric devices. For more detailed reviews on

the modeling techniques of structures with piezoelectric

components, the reader is referred to Benjeddou (2000),

Mackerle (2003), and Kapuria et al. (2010). Specially,

Benjeddou (2000) and Chevallier et al. (2008) pointed out

that a drawback of some piezoelectric FE formulations is

the lack of equipotential (EP) constraint for open-circuit

static sensing and vibration problems. Whereas, the EP

constraint is important for the modeling and understanding

of the behaviors of the smart structures (Benjeddou 2000;

Trindade and Benjeddou 2009).

Carrera (2002) proposed Unified Formulation (CUF) as

a powerful method to build refined 1D and 2D models,

in either LW (Carrera and Petrolo 2012) or Equivalent

Single Layer (ESL) (Carrera et al. 2010) framework. In

CUF, through the fundamental nuclei (FNs), the governing

equations can be derived in a compact manner, as explicated

by Carrera et al. (2014) and Carrera et al. (2016). A

variety of CUF-based refined models have been applied to

the modeling of smart structures as presented by Carrera

et al. (2011) and Cinefra et al. (2015). In addition,

Miglioretti et al. (2014) and Zappino et al. (2016a)

discussed refined electromechanical beam FE models with

variable kinematics. Such type of refined beam elements

can provide 3D modeling accuracy at significantly reduced

computational costs.

CUF also provides the convenience of defining nodal

kinematics by relating the mathematical assumption to the

chosen FE nodes, leading to a technique known as node-

dependent kinematics (NDK). Suggested by Carrera and

Zappino (2017), NDK has been applied successfully in the

simulation of laminated structures with local effects by

Carrera et al. (2018), Zappino et al. (2017), and Carrera

et al. (2017a). NDK supports the kinematic refinement at

any desirable nodes without using any additional coupling

or special transition elements. This technique has been

employed to simulate structures with segmented piezo-

patches by Carrera et al. (2017b), in which the FE

models with variable nodal LW/ESL capabilities were

demonstrated to be numerically efficient. As an extension

to the authors’ previous work (Carrera et al. 2017c) where

the static response was investigated, in the present article,

the modal property extraction is discussed. Refined beam

elements with NDK are applied at the natural frequency

analysis of slender structures with piezo-patches. The

refined structural models used in the present work have

been assessed in the past (Carrera et al. 2012; Zappino

et al. 2016b) and their accuracy is not discussed here, but

refined models with constant kinematic have been used as

reference for the NDK models. The present work aims to

show how the use of NDK elements for the modeling of

piezo-patched devices may lead to a strong reduction of

the computational costs ensuring the same accuracy. This

results can be achieved using refined beam models only in

those areas where they are required while classical models

are used elsewhere.

Node-dependent kinematic beam elements

This section presents a refined one-dimensional finite

element model with node-dependent kinematics. In such

a model, the kinematic assumptions can be different from

node to node in the beam element. For instance, in a 2-node

beam element (B2), the Timoshenko theory could be used

for node 1, and the Euler-Bernoulli beam theory could be

employed on node 2. This approach was firstly introduced

by Carrera and Zappino (2017) and are here applied to the

dynamic analysis of beam structures with piezo-patches. In

Prepared using sagej.cls
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Figure 1. Reference system of the beam model.

the following sections, a brief overview of the refined one-

dimensional models is given, and the NDK elements are

introduced.

Preliminaries

Figure 1 shows a reference system used to describe a

beam model, in which the axial direction is aligned along

the y axis. Considering the coupling between electric and

mechanical fields, by treating the electric potential φ as a

primary variable, a generalized displacement vector q can

be used:

q = {ux, uy, uz, φ}
T (1)

and the electric field vector E can be derived from the

electric potential φ through:

E = {Ex, Ey, Ez}
T = {∂x, ∂y, ∂z}

Tφ (2)

The generalized strain vector, ε̄, can be written as:

ε̄ = {εxx, εyy, εzz, εxz, εyz, εxy, Ex, Ey, Ez}
T = Dq

(3)

where the differential operator matrix D is:
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(4)

The electromechanical constitutive equations (e-form)

can be expressed as follows:

σ = C̃ε− ẽTE

De = ẽε+ χ̃TE
(5)

in which De is the electric displacement vector

{Dx, Dy, Dz}
T , and σ is the mechanical stress vector,

C̃ the matrix of mechanical material coefficients. The

dielectric permittivity matrix χ̃ and the piezoelectric

stiffness coefficient matrix ẽ are determined by the poling

direction and a rotation angle. For more details about the

rotation of piezoelectric material coefficient matrices the

reader is referred to Kpeky et al. (2017); Benjeddou et al.

(1997); Kapuria and Hagedorn (2007).

The generalized stress vector σ̄ can be arranged as:

σ̄ = {σxx, σyy, σzz , σxz, σyz , σxy, Dx, Dy, Dz}
T (6)

In a compact form, σ̄ can be obtained through the

following constitutive relation:

σ̄ =

[

C̃ −ẽT

ẽ χ̃

]

ε̄ = H̃ε̄ (7)

where H̃ presets the constitutive relations of the

piezoelectric components after rotation.

Classical and refined one-dimensional models

The one-dimensional theory approximate a displacement

field over the cross-section with assumed functions. An

expansion form can be used to describe the behavior of the

beam cross-section. This approach, suggested by Washizu
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Figure 2. A two-nodes beam with Taylor expansions (TE).

(1968), leads the expression of the three-dimensional

displacement field as:

u = uτ (y)Fτ (x, z), τ = 1 . . .M. (8)

where Fτ (x, z) is the function expansion over the cross-

section, and uτ (y) is the unknown vector along the beam

axis, M the number of terms in the function expansion

Fτ (x, z). Various choices for the approximation functions

Fτ (x, z) can lead to a number of kinematic models. In

the present work, Taylor and Lagrange expansions are

considered. The solution to the one-dimensional problem

reported in Equation 8 can be obtained using the finite

element (FE) method, which allows the system of partial

derivative functions to be reduced to an algebraic system.

FEs approximate the axial unknowns uτ (y) by using the

one-dimensional shape functions Ni, which lead to the

following displacement field assumption:

u = Ni(y)Fτ (x, z)uiτ , τ = 1 . . .M ; i = 1 . . .Nn.

(9)

where Ni are the shape functions introduced by the FE

model, and Nn is the number of nodes in the element, uiτ

the nodal unknowns.

The one-dimensional models based on the Taylor Ex-

pansion (TE) approximate the cross-sectional deformation

with 2D polynomials xm zn, where m and n are positive

integers. Figure 2 shows a representation of a B2 element

based on the TE expansions. In this case, the Fτ and Fs

functions are used to expand the solution from the beam

node to the cross-section. Classical models such as Euler-

Bernoulli and Timoshenko can be obtained as particular

cases of the TE models.

Figure 3. A two-nodes beam based employing Lagrange

expansions (LE).

The case of Euler-Bernoulli, the only one that require

a C1 continuity of the axial shape functions, is obtained

through a ”downgrade” of the Timoshenko beam model in

which a penalty is applied to the shear stiffness.

In the case of models based on the Lagrange Expansions

(LE), Lagrange polynomials are applied to build refined

one-dimensional models. The iso-parametric formulation

is exploited to deal with arbitrarily shaped cross-section

geometries. In this paper a quadratic element with nine

nodes, LE9, is adopted. When LE is utilized, the unknowns

are only the translational displacements of the cross-

sectional nodes. Figure 3 illustrates a B2 element adopting

LE. TheFτ andFs functions are used to expand the solution

from the cross-sectional nodes to the cross-section area.

A one-dimensional finite element with

node-dependent kinematics

When the modeling of structural geometry or boundary

conditions is beyond the capabilities of classical beam

models, higher-order models can be used to improve the

solution precision. Whereas, the refinement of kinematics

also increases the computational consumption. In most

cases, refined kinematics is necessary only in some local

region of the whole structure, e.g. where the assumptions of

the classical models are violated, and classical models could

be adequate elsewhere. A new class of node-dependent

kinematic elements is introduced in this work to refine the

kinematics only in the area necessary.

As an example, a three node one-dimensional element

is considered. Refined beam elements with uniform

kinematics assume the same cross-sectional expansions

in all the nodes. By using he node-dependent kinematic

approach, a different kinematic assumption can be
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introduced at each node. The displacement field at the first

node can be written as:

u1 = u1τF
1
τ , τ = 1 . . .M1 (10)

The displacement functions at the second node are:

u2 = u2τF
2
τ , τ = 1 . . .M2 (11)

Meanwhile, the displacements at the third node read:

u3 = u3τF
3
τ , τ = 1 . . .M3 (12)

The cross-sectional expansions, F 1
τ , F 2

τ and F 3
τ , can be

chosen arbitrarily at each node. Figure 4 shows a three-node

element with node-dependent kinematics. At node 1, a first

order TE model has been considered, and a LE model has

been imposed at node 2 while a second order TE model

is allocated to node 3. Eventually, the expression of the

three-dimensional displacement field of the whole element

becomes:

u = u1τN1F
1
τ + u2τN2F

2
τ + u3τN3F

3
τ , τ = 1 . . .M i

(13)

The three different displacement fields are smeared by the

FE shape functions along the beam length that ensure a

smooth transition between the displacement fields of the

three nodes. Using this approach, the continuity of the

displacement is obtained at each point.

This approach can be easily included in the CUF

formulation and extended to any order beam models. The

displacement field of the one-dimensional element with

node-dependent kinematic can be written including two

main novelties:

Fτ (x, z) −→ F i
τ (x, z) (14)

M −→ M i (15)

The first equation, Eq. 14, states that the function expansion

is not a property of the element, but of the nodes, that is, the

index i is included in the notation. Eq. 15 remarks that the

number of terms in the expansion, M , can be different at

each node, and the notation M i is used to underline this

aspect. The generic displacement field can be written as:

u = uiτNi(y)F
i
τ (x, z), τ = 1 . . .M i; i = 1 . . .Nn.

(16)

Governing equations of NDK beam FE models

The governing equations can be derived by applying the

principle of virtual displacement (PVD). Consider the

energy of the system:

δLint =

∫

V

δε̄T σ̄dV = δLext − δLine (17)

where V is the volume of the integration domain, and

δLint is the internal energy, δLext and δLine the external

work and the inertial energy, respectively. For free vibration

problems, δLext = 0.

By considering the geometrical relations, Equation 3,

constitutive equations, Equation 7, as well as the FE

discretization, Equation 28, one can obtain:

δLint = δqjs

∫

V

NjF
j
sD

T H̃DF i
τNidV qiτ (18)

In a compact form, the above expression can be written

as:

δLint = δqT
jskijτsqiτ (19)

where kijτs represents the electromechanical fundamen-

tal nuclei (FNs), which is a core unit of the generalized

stiffness matrix:

kijτs =

∫

V

NjF
j
sD

T H̃DF i
τNidV (20)

Actually, kijτs can be further written as:

kijτs =

[

kuu kuφ

kφu kφφ

]

ijτs

(21)

in which the mechanical stiffness FN kuu
ijτs is a 3× 3

matrix, while the electromechanical coupling FNs k
uφ
ijτs and

k
φu
ijτs are 3× 1 and 1× 3, respectively. The dimension of

the pure electric part k
φφ
ijτs is 1× 1.

Meanwhile, the inertial work is:

Prepared using sagej.cls
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Figure 4. A three-node one-dimensional element with node-dependent kinematics.

δLine =

∫

V

ρδqT q̈dV (22)

where q are the general displacement unknowns, q̈ =

{üx, üy, üz, 0}
T are the accelerations, and ρ the material

density. By substituting the FE discretization expression,

Equation 28, into Equation 22, the following equation can

be attained:

δLine = δqT
js

∫

V

ρNiF
j
sNjF

i
τIdV q̈iτ = δqT

jsmijτsq̈iτ

(23)

where I is a 3× 3 identity matrix, and mijτs is the FN

for the mass matrix which contains four sub-matrices as

follows:

mijτs =

[

muu
0

0 0

]

ijτs

(24)

Thus, for a system without damping, the governing

equations can be obtained as:

MÜ +KU = F (25)

where M and K are the global mass and stiffness

matrices assembled as shown in Carrera et al. (2014)

starting from the fundamental nuclei. U is the vector of

the nodal displacements. If the harmonic solutions are

introduced, natural frequencies can be obtained by solving

the following eigenvalue problem:

(M −
1

ω2
K)U = 0 (26)

Otherwise, the frequency response due to a harmonic

load can be evaluated solving the following equation within

the range of interest of ω:

−Mω2 +K = Fω (27)

Node-dependent kinematic elements for smart

structures with piezo-patches

The analysis of beam structures with piezo-patches require

models able to deal complex responses. Figure 5 shows

an example of a beam with two piezo-patches. To obtain

accurate solutions a computational model has to describe

in detail the interface between the structure and the patch.

Piezo-materials usually show different mechanical and

piezo-mechanical properties in different directions, that is

models must be able to include the effects due to the

orthotropic materials. Finally, complex displacements field

must be described, that is, a three-dimensional solution is

required.

All these difficulties in the analysis of piezoelectric

beams are well known in literature as shown by the reviews

presented by (Kapuria et al. 2010) and (Benjeddou 2000).
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Figure 5. Example of a structure with piezo-patches.

In many cases accurate results can be only obtained using

three-dimensional models that have no assumptions on the

kinematic model but require a huge computational cost.

When structures with piezo-patches have to be investi-

gated refined models are only required in the are where the

patches are applied. The use of a refined model over the

whole structural domain requires more computational costs

than those necessary. The best solution would be to use

refined models only in the region in which they are required

and classical models elsewhere. The problem of mixing or

joining different structural models is a well-known topic in

literature. One example is the work proposed by Kim et al.

(1997) where a hybrid two-/three-dimensional element has

been used. In this case a classic plate element is connected

to a three-dimensional element used in the area where

a piezo-patch is applied. Another example is the model

proposed by Biscani et al. (2012) that uses the Arlequin

method to couple higher and lower order plate models, in

this way refined models are used only in the piezo-patch

area.

The present paper presents a new modeling approach that

makes it possible to use a different kinematic approximation

at each node of a finite element.

Figure 6 shows an example of a beam with piezo-patches

modeled using the node-dependent kinematic approach.

The piezo-patches can be included in the model considering

a beam with a variable cross-section, as introduced by

Carrera et al. (2013). Figure 6 shows how two section

with different shape can be connected in case the shared

node uses a LE model. The elements in which is present

the piezo-patch can be studied using a Layer-wise, e.g.

an LE model, able to capture the details of the interface

between the layers. A lower order beam model can be

used elsewhere. The transition from a lower to a higher

kinematic approximation is done using the node dependent

kinematic elements able to have different kinematics at

different nodes.

Numerical results

Two beam structures with piezo-patches have been

considered in this section. The first example has been used

to assess the present model and the results have been

compared with those from the work by Chevallier et al.

(2008). The free vibrations of both short and close circuit

configurations have been investigated and the electro-

mechanical coupling coefficient, EMCC, has been used to

compare the results with those from literature. The second

example considers the piezo-patched beam investigated in

the works by Benjeddou et al. (1997) and Carrera et al.

(2017c). In this case the free vibration and the frequency

response of the beam, using the piezo-patches as sensors,

have been considered.

Assessment of the piezo-mechanical model

with node-dependent kinematic

The present one-dimensional model with node-dependent

kinematics has been assessed in this section. The

benchmark proposed by Chevallier et al. (2008) has been

considered. Figure 7 shows the geometry, the boundary

conditions and the FE discretization. The beam is built in

Prepared using sagej.cls
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Figure 6. An example of a beam with piezo-patches modeled using the node-dependent kinematic approach.

aluminum which has the Young’s modulus E = 69 GPa

and Poisson’s ratio ν = 0.3. The aluminum density has

been considered equal to 2700 Kg/m3. The piezoelectric

material has been considered to be the PIC255 material,

the properties can be found in Chevallier et al. (2008). Two

different sets ofboundary conditions have been considered

for the piezo-patches. In the first case the emphShort

circuit configuration has been considered, that is, a null

potential has been imposed at the top and at the bottom of

the piezoelectric patches. The Open circuit configuration

has been considered in the second case when a null

potential has been imposed only at the interface between

the patches and the beam while an equipotential surface

has been imposed at the external surface of the patches.

This condition reproduces the presence of an electrode.

Two models have been considered. The first is a one-

dimensional model in which all the nodes use a Lagrange

based expansion, LE model. The second model uses the

Lagrange expansion only in the area of the patches while

a Taylor expansion of the third and first order has been

Short circuit

LE model LE-TE model Chevallier et al. (2008)

DOFs 9170 7950 29001M

1 493.28 0.04% 494.29 0.25% 493.07

2 2803.1 0.19% 2804.7 0.24% 2797.9

3 3112.0 2.23% 3157.6 3.73% 3044.1

4 3247.2 −0.06% 3257.9 0.27% 3249.0

Table 1. First four natural frequencies for the Short circuit

case. The percentage difference with respect to the reference

has been reported in apex. The M notation means that the

value of the DOFs is evaluated for the pure mechanical

problem.

used elsewhere, this model has been named LE-TE model.

The results have been compared with those proposed in

the work by Chevallier et al. (2008) obtained using a solid

model with 1700 elements and 9667 nodes. Assuming 3

degrees of freedom at each node (valid for the mechanical

problem) a total amount of 29001 degrees of freedom has

been considered for this model. Tables 1 and 2 report the

first four natural frequencies evaluated for the short and

open circuit configuration respectively. In both cases it is

clear that the LE model is able to predict the dynamic

Prepared using sagej.cls
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Figure 7. Geometry, boundary conditions and FE discretization of the beam with piezo-patches.

Open circuit

LE model LE-TE model Chevallier et al. (2008)

DOFs 9170 7950 29001M

1 496.61 0.20% 496.72 0.22% 495.61

2 2803.1 0.19% 2804.7 0.24% 2797.9

3 3112.0 2.23% 3157.6 3.73% 3044.1

4 3311.2 −0.17% 3326.2 0.28% 3317.0

Table 2. First four natural frequencies for the Open circuit

case. The percentage difference with respect to the reference

has been reported in apex. The M notation means that the

value of the DOFs is evaluated for the pure mechanical

problem.

behavior of the structure with an accuracy comparable

with the reference model using one third of the degrees of

freedom. The introduction of the node-dependent kinematic

model allows the computational cost to be further reduced

using a layer-wise model only where the piezo-patches

are applied. Figures 8a-d show the first four modal shapes

evaluated using the LE model. Modes 1 and 4 are transversal

bending modes, the displacement field field suggests that

the patches will be prone to compression or traction, that is

an electric field can appear during the deformation. Mode

2 is a lateral bending mode while mode 3 is a torsional

mode. The presence of the equipotential surface, coupled

with the displacement field, does not allow any voltage

to appear. This behavior can be studied introducing the

electro mechanical coupling coefficient, K, that provide

an estimation of the mechanical energy converted into

electric potential energy. This coefficient can be evaluated,

in according with Chevallier et al. (2008), as follow:

K2 ≈
ω2
OC − ω2

SC

ω2
SC

(28)

where ωOC and ωSC are the frequency evaluated

considering the open and short circuit respectively. Table

3 shows the electro mechanical coupling coefficients

evaluated for each frequency using the models presented

in this work. The results confirm that frequencies 3 and 4

have a K2 higher than zero, that is, part of the mechanical

energy is transformed into electric potential energy during

the vibration. Modes 2 and 3 have a K2 null, that is these

modes do not produce any electric potential energy. The

results obtained with the present models are in according

with those from literature. In conclusion the present models

can be considered reliable and accurate, the use of the node-

dependent kinematics elements lead to a reduction in the

computational costs. The advantages of the node-dependent

kinematic models may be more evident when the piezo-

patches involve only a limited part of the whole structure

as in the case shown in the next section.

Dynamic analysis of a beam with

piezo-patches

A prismatic beam with two piezo-patches has been

considered in this section. The geometry of the model has

been inspired by the work proposed by Benjeddou et al.

(1997) and Carrera et al. (2017c) where the static response

of the same beam has been investigated. The beam has a
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K2 K
LE model LE-TE model Chevallier et al. (2008) LE model LE-TE model Chevallier et al. (2008)

1 1.35 0.99 1.03 11.6 9.93 10.2

2 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00

4 3.98 4.24 4.27 19.9 20.6 20.7

Table 3. Electro mechanical coupling coefficients evaluated using the LE model and the LE-TE model.

(a) Mode 1, 493.28 Hz.

(b) Mode 2, 2803.1 Hz.

(c) Mode 3, 3112.0 Hz.

(d) Mode 4, 3247.2 Hz.

Figure 8. First four modes evaluated using the LE model for

the short circuit case.

compact square cross-section and two piezo-patches have

been placed close to the clamped end. The geometry of

the model has been shown in Figure 9. The piezoelectric

patches are made of PZT-5H, whose material coefficients

Figure 9. Geometry, boundary conditions and FE

discretization of the beam with short piezo-patches.

have been listed in Table 4, and the substrate structures

employ aluminum which has the Young’s modulus E =

70.3GPa and Poisson’s ratio ν = 0.345.

Two models have been considered. The first uses the

same kinematic, based on the Lagrange expansion, along

the whole beam, LE model. The second uses a LE kinematic

only where the patches are placed while a second order

Taylor model is used elsewhere. This model is referred

as LE-TE2 model. The FE discretization has been shown

in Figure 9. The accuracy of these models for the static

analysis has been assessed by Carrera et al. (2017c), in this

work the capabilities of the resent approach in the analysis

of local stress fields due to material discontinuities have

been investigated.

At first a free vibration analysis has been performed.

Table 5 reports the first ten natural frequencies evaluated
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Table 4. Material properties of PZT-5H

C11,C22,C33 C12 C13,C23 C44,C55,C66 e15,e24 e31,e32 e33 χ11,χ22 χ33

[GPa] [GPa] [GPa] [GPa] [C/m2] [C/m2] [C/m2] [F/m] [F/m]

126 79.5 84.1 23.0 17.0 -6.5 23.3 1.503×10−8 1.30×10−8

LE model LE-TE2 model

DOFs 5765 3317 -42.46%
1 1363.1 1362.1 -0.07%
2 1637.2 1639.5 0.14%
3 7214.3 7495.1 3.89%
4 7460.0 7586.1 1.69%
5 8744.9 8808.4 0.73%
6 12941.5 12936.1 -0.04%
7 18080.8 18239.2 0.88%
8 20658.1 20885.4 1.10%
9 21308.1 22464.5 5.43%
10 30697.3 31146.8 1.46%

Table 5. First ten Frequencies of the piezo-patched beam.

using the constant and the node-dependent kinematics

models respectively. The LE-model is considered as a

reference. The results show that the use of a node-dependent

kinematic model can lead to accurate results. In this case the

9th frequency show an error of 5.4% and the 3rd an error of

3.9% while all the other frequencies show errors lower than

2%. At the same time the use of the LE-TE2 model ensures

a reduction of the computational cost of the 42%.

Figures 10a-f show the first six modal shapes evaluated

by means of the LE-TE2 model. In this case flexural,

torsional and axial modes can be observed.

The accuracy of the refined kinematic models can be

appreciated looking at the stress fields related to the natural

modes. Figure 11 shows the axial stress evaluated in the

piezo patch. The results show that LE such as TE2/LE

models can predict a stress distribution comparable with the

3D solution (HEXA 27 elements, 31428 DOFs). The TE2

model fail in the prediction of the boundary conditions in

fact, due to the force equilibrium, at y=0.005 and y=0.015

the axial stress should go to zero. Figure 11 reports the

dimensional through-the-thickness distribution of the axial

stress and the voltage due to the first natural mode. It can

be seen that the axial stress evaluated using Lagrange based

models can predict the 3D solution. The voltage distribution

has a step-wise behavior that can not be predicted using a

TE2 model because the null voltage in the metallic beam

acts as a constrain also in the piezo-patches leading to a

wrong result. The use of a LE models allow to predict the

correct distribution of the potential.

In order to verify which of them is able to convert

mechanical energy into electrical potential energy a

frequency response analysis has been performed. A

harmonic force F of components [1,1,1] has been applied

at the top right corner of the tip cross-section in order

to excite all the modes of the structure. Figure 13 shows

the frequency response of the structure. The dashed line

shows the frequency response, evaluated using the LE-TE2

model, of the structure in term of displacement magnitude

amplification at the tip. The points represent the same

frequency response evaluated using the LE model. From

these results it is clear that the node-dependent kinematics

model is able to reproduce perfectly the dynamic behavior

of the model with a constant, refined, kinematic. The solid

line shows the voltage amplification evaluated in one of the

piezo-patches. The results show that the voltage is strongly

amplified in correspondence of some resonances, e.g. the

first and the third peaks that are related to the first and the

third modes. Others mechanical resonances, e.g. the second,

does not affect the electric response. This means that the

actual patches configuration cannot be used to detect some

modes if the patches are used as sensor. On the other side,

not all the modes are able to create a voltage in the patches,

that is, it is not possible to extract electric potential energy

from these modes for energy harvesting applications.

In the bottom left part of Figure 13 are reported the

comparisons between the two models in terms of degrees

of freedom and solution time. It is clear that the use of the

node-dependent kinematics approach can led to a strong

reduction in the computational time. The computational

efficiency becomes very important when the same problem
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(a) Mode 1, 1362.1 Hz. (b) Mode 2, 1639.5 Hz. (c) Mode 3, 7495.1 Hz.

(d) Mode 4, 7586.1 Hz. (e) Mode 5, 8808.4 Hz. (f) Mode 6, 12936.1 Hz.

Figure 10. First six modes evaluated using the LE-TE2 model.

Figure 11. Axial stress distribution in the piezo-patch. The

values have been normalized using the maximum stress

evaluated using the 3D model.

has to be solved many times as in the case of the frequency

response analysis.

Conclusions

The present work exhibits the use of FE models with node-

dependent kinematics (NDK) to the dynamic analysis of

beams with piezo-patches. Derived from Carrera Unified

Formulation (CUF), the governing equations of the present

NDK FE modes can be derived in a compact and generic

manner. Through NDK, an adaptive kinematic refinement

can be carried out on the nodal level in the desired

structural region. This approach can be applied in the

construction of FE models with variable LW/ESL nodal

capabilities. Through NDK, refined kinematics models

can only be used in the patched area while low order

models can be used elsewhere. This approach allows the

computational costs to be reduced without a reduction in

the results accuracy. Based on the numerical investigation,

the following conclusions can be drawn:

• The NDK based on CUF proves to be a practical

approach to define the local kinematic refinement at

arbitrary desired nodes in an FE model without using

ad hoc coupling.

• The use of refined kinematic one-dimensional models

in the piezo-patches areas makes it possible to obtain

a quasi 3D solution and to impose complex boundary

conditions;

• By means of the LW models employed in the local

region contains the piezo-patches, the different con-

stitutive relations in the piezoelectric and structural

components can be properly addressed;

• The utilization of lower order ESL kinematics in the

outlying zone allows the computational cost to be

reduced;

• Taking advantage of the convenience in defining local

refinement of NDK, the segmented distribution of

the piezo-patches can be appropriately captured with

one-dimensional elements.
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(a) Axial stress distribution. (b) Voltage distribution.

Figure 12. Through-the-thickness distribution of the axial stress and the voltage. The values have been normalized using the

maximum stress evaluated using the 3D model.
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Figure 13. Frequency response of the beam structure with piezo-patches.

As demonstrated by the outcomes of this research, the

use of NDK models represent an optimum compromise

between accuracy and computational consumption. The

efficiency of these models can be exploited to speed-

up the solution time especially when iterative solution

are required. The present models can be applied to the

design of vibration control devices and energy harvesting

applications.
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