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Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for 

precision agriculture 

Abstract 

An effective management of precision viticulture processes relies on robust crop monitoring procedures 
and, in the near future, to autonomous machine for automatic site-specific crop managing. In this context, 
the exact detection of vineyards from 3D point-cloud maps, generated from unmanned aerial vehicles 
(UAV) multispectral imagery, will play a crucial role, e.g. both for achieve enhanced remotely sensed data 
and to manage path and operation of unmanned vehicles. 
In this paper, an innovative unsupervised algorithm for vineyard detection and vine-rows features 
evaluation, based on 3D point-cloud maps processing, is presented. The main results are the automatic 
detection of the vineyards and the local evaluation of vine rows orientation and of inter-rows spacing. 
The overall point-cloud processing algorithm can be divided into three mains steps: (1) precise local terrain 
surface and height evaluation of each point of the cloud, (2) point-cloud scouting and scoring procedure on 
the basis of a new vineyard likelihood measure, and, finally, (3) detection of vineyard areas and local 
features evaluation. 
The algorithm was found to be efficient and robust: reliable results were obtained even in the presence of 
dense inter-row grassing, many missing plants and steep terrain slopes. Performances of the algorithm 
were evaluated on vineyard maps at different phenological phase and growth stages. The effectiveness of 
the developed algorithm does not rely on the presence of rectilinear vine rows, being also able to detect 
vineyards with curvilinear vine row layouts. 
 
Keywords: Precision viticulture; Remote sensing; UAV; 3D point-cloud modelling; Images processing 

1. Introduction 

Precision Agriculture (PA) is a modern farming concept, based on new technologies, tools and computer 
devices, aimed at improving and optimising agricultural production processes by monitoring crops and 
calibrating inputs and operations. The benefits come from quality and quantity increment of agricultural 
outputs and from reduction of the environmental impact, such as the waste of fertilisers, pesticides, fresh 
water and energy (Gimenez et al., 2015; Reina et al., 2017). 
This approach is particularly significant in viticulture, where the adoption of modern techniques is required 
to guarantee high quality standards of wine production (Mania et al., 2015; Asproudi et al., 2016). 
Moreover, vinicultural areas are usually characterised by a disparate and irregular spatial distribution, steep 
terrains and large areas, resulting in difficult and expensive maintenance and inspection tasks for wine 
growers (Costa et al., 2016). In this context, modern PA techniques can help vine growers to define and 
monitor zones of different grape quality and productivity within the same vinicultural area (Hall et al., 2011; 
Torres-Sánchez et al., 2014), to adopt different farming practices according to grape variety (Arnó et al., 
2011; Urretavizcaya et al., 2014), to prevent soil erosion (Rodrigo Comino et al., 2017) and to conserve 
organic soil matter.  
 An effective management of precision viticulture processes requires reliable crop monitoring procedure. 
Remote sensing represents a powerful technology for this task, providing huge amount of data, without 
any physical contact, from which valuable information can be derived, such as plant vigour level, 
radiometric indices, water stresses, grapevine size, missing plants (Khanal et al., 2017; Quebrajo et al., 
2018). A proper management and organisation of data, based on Global Positioning Systems (GPS) and 
Geographical Information Systems (GIS), is required to make them effective in crop monitoring (Blauth and 
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Ducati, 2010), automatic guidance (Lipiński et al., 2016; García-Santillán et al., 2017) and for modern mobile 
devices (Stojanovic et al., 2017), also in GIS database system (Haase et al., 2016).  
In agricultural remote sensing, multispectral satellite imagery has been widely studied and employed for 
crop monitoring and management (Arango et al., 2016). Recently, the deployment of unmanned aerial 
vehicles (UAVs) and modern light sensors (including hyperspectral, thermal and photogrammetric 
cameras), has led to relevant novelty in remote sensing technology (Zhang and Kovacs, 2012), providing 
cost-effective data for vineyard mapping with very high spatial resolution (< 10 cm·pixel-1) (Zarco-Tejada et 
al., 2013; MacDonald et al., 2016). 
New dense data provided by UAV imagery has required the development of proper image processing and 
analysis techniques that, based on different mathematical approach (e.g. Gabor filtering, Fourier transform, 
etc.), have allowed to extract a set of vineyard information from aerial images. Investigated vineyard 
features are, e.g., vegetation indexes, pure vines pixel identification, wine row detection, inter-row width 
(Da Costa et al., 2007; Rabatel et al., 2008; Delenne et al., 2010; Comba et al., 2015).  
Additional information regarding crops can be provided by recent three-dimensional (3D) point-cloud 
modelling. Point-cloud is a large dataset of points, referred to as a 3D coordinate system, representing 
spots of the external surface of visible objects, where light is reflected. Data for 3D crop modelling can be 
directly provided by laser scanner (such as light detection and ranging systems - LiDAR) (Mack et al., 2017) 
or derived from multispectral and thermal imagery (Herrero-Huerta et al., 2015) by photogrammetry and 
computer vision algorithms, such as Structure from Motion (SfM).  Studies on data fusion from LiDAR and 
multispectral images can be found, aimed at improving the quality of the obtained models (Sankey et al., 
2017).  
The goodness of point-clouds modelling is strictly related to the registration process: although several 
commercial software are available, work is still ongoing to develop new methods for efficient keypoints 
detection in 3D point-cloud reconstruction (Shah et al., 2017). In addition to points spatial information, 3D 
models reconstructed from airborne imagery usually have also additional spectral information. 
The importance of this new type of 3D models in monitoring and assessment tasks for biosciences is 
highlighted by valuable published researches: reliable algorithms to exploit 3D data in agricultural (Chang et 
al., 2017; Malambo et al., 2018), livestock (Mortensen et al., 2016; Guo et al., 2017) and food applications 
(Sture et al., 2016; Su et al., 2017) can be found.  
In this work, an innovative unsupervised method for vineyards detection and features extraction from 3D 
point-cloud maps is presented. The proposed method allows to automatically generate map of land regions 
covered by vineyard and, in addition, provides information regarding local vine rows orientation and of 
inter-rows spacing, spatially organised in maps. In particular, the proposed method enhances the 
performances of existing algorithms based on two dimensional (2D) images (Da Costa et al., 2007; Rabatel 
et al., 2008; Delenne et al., 2010; Comba et al., 2015; Primicerio et al., 2015; Primicerio et al., 2017) in 
detecting vineyards. Indeed, not requiring rectilinear vine rows, the proposed method can be profitably 
applied to complex scenarios (e.g. several parcels with complex shapes, curvilinear vine rows, sloped areas, 
presence of other vegetation). 
This paper is structured as follows: Section 2 reports information on the performed UAV acquisition 
campaign aimed at aerial images collection and subsequent point-cloud maps generation, together with 
georeferencing procedure details. Section 3 describes the developed unsupervised algorithm, organised 
into three main processing steps. The results obtained by processing four point-cloud maps are discussed in 
Section 4, while Section 5 reports conclusions and future developments. 
Animations of several figures of the paper are available as supplementary materials (MX.mp4 video files) in 
the article electronic version, published online. These might be used by the interested reader in order to 
have a dynamic representation of the various processing phases. 
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2. Three-dimensional point-cloud maps 

The effectiveness of the proposed unsupervised method for vineyard detection was evaluated by 
processing a set of four 3D point-cloud maps of a region located in Serralunga d’Alba (Piedmont, Northwest 
of Italy). The monitored area covers a surface of about 2.5 hectares, including three entire vineyard parcels 
and several partial ones, whose latitude and longitude positions in the World Geodetic System 1984 
(WGS84) range between [44.62334°	44.62539°] and [7.99855°	8.00250°] respectively (Fig. 1). The region 
is characterised by a sloped land conformation, with an elevation ranging from 330 to 420 meters above 
sea level and a predominantly southwest orientation.  
Each point-cloud map was generated with the Agisoft PhotoScan® software (Agisoft©, 2017), by processing 
a set of more than 1000 aerial images acquired with an airborne Parrot Sequoia® multispectral camera 
(Parrot© SA, 2017). Camera calibration procedure was performed before images alignment task and, in 
addition, a radiometric calibration was applied to the image blocks by using reference images of a 
Micasense calibrated reflectance panel acquired before and after each UAV flight. With a flight time of 15 
minutes, the UAV path was planned to maintain its flight height at close to 35 meters with respect to the 
terrain by properly defining waypoint sets for each mission blocks on the base of the cropland GIS map. The 
planned UAV path is a set of rectilinear segments approximating the land height contour lines. To move 
from one to the next, short perpendicular movements were performed. The flight path was controlled by 
the drone guidance platform, and finally the log was checked after each flight. With this specification, the 
aerial images average ground sample distance (GSD) resulted in about 5	cm ∙ pixel78, which allowed for a 
3D point-cloud mean density of about 1450 units per m9 of map surface.  
A set of 12 ground markers was placed on selected vine trellis poles within the monitored area, well 
distinguishable in the UAV aerial images. The accurate markers position (10 cm accuracy), determined with 
a differential GPS, was used as Ground Control Points (GCP) during image blocks alignments to 
georeference the point-clouds in a geodetic coordinates frame. 
The UAV flights were performed on four dates over the 2017 crop season to record different vines 
vegetative stages, which were: (1) one week before the flowering (May 15th), (2) 30 days after flowering 
(June 29th, presence of about 1 cm diameter green grapes), (3) 50% of the veraison (August 1st) and (4) 6 
days before the harvesting (September 23rd). In particular, it should be noted that the meteorological 
course of the 2017 season showed anomalies related to the average temperature and rainfall trends of the 
region. Temperature values above the seasonal average in March led to an anticipation of the vine bud 
break by about 15 days. A sudden decrease in temperatures in the second half of April caused severe frost 
damage on plants in some vineyards and a more general slowing of the vine vegetative growing. The 
phases of flowering and of fruit set, partially influenced by this phenomenon, occurred with an advance of 
10-15 days. The total rainfall of the season was much lower than the averages of recent years (480 mm in 
2017 compared to an average of the last 12 years of about 800 mm), particularly during August and 
September, months in which the grape ripening is refined and completed. The reduced water availability 
for plants contributed in part to accelerating ripening and to determining an advance of about 10 days of 
veraison and of commercial harvest. 

A point-cloud map is here formally defined as a set :8
{<=>?@}  of points represented by array BC =

[φC, 	λC, 	HC]I, with i = 1,… , card O:8
{<=>?@}P, where φC, λC and HC are the WGS84 latitude, longitude and 

elevation coordinates of point pC respectively. In order to represent the models from WGS84 coordinates to 

a local metric Cartesian reference system (LRF), the position of point BC ∈ :8
{<=>?@} was firstly expressed 
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into a geocentric Cartesian coordinates frame (Earth-Centered Earth-Fixed - ECEF) by using operator 
R(∙)	(Cai et al., 2011), obtaining the set 

:1
{ECEF} = XBi

{ECEF} = [Yi, Zi, [i]T = R OBi
{WGS84}P , ∀	Bi

{WGS84} ∈ :1
{WGS84}a. (1) 

Each point BC
{bcbd} ∈ :8

{bcbd} was then referred to a local reference frame as 

Bi
{LRF} = −hECEFLRF 	iLRF

{ECEF} + hECEFLRF 	Bi
{ECEF} (2) 

where hbcbdkld  is the rotation matrix from ECEF to LRF and ikld
{bcbd} is the LRF origin, expressed in ECEF 

coordinates. The ikld
{bcbd} position was chosen in the south-western and lowest point of the observed land 

region, which is, according to the WGS84 coordinates, 	ikld
{<=>?@} = [φm, λm, em]I, with φm =

min OXφC: [φC, λC, HC]I ∈ :8
{<=>?@}aP, λm = min OXλC: [φC, λC, HC]I ∈ :8

{<=>?@}aP and Hm =

min OXHC: [φC, λC, HC]I ∈ :8
{<=>?@}aP. With this definition, ikld

{bcbd} could not belong to point-cloud map 

:8
{bcbd}. Rotation matrix hbcbdkld  was defined to obtain the Y{kld} and Z{kld} local axes tangent in ikld

{<=>?@}  

to the WGS84 parallel and meridian, respectively. With the axis Y{kld} oriented to the east and Z{kld} to 
the north, axis [{kld} turns out to be in an opposite direction with respect to the hearth centre. 

Concerning the point-cloud map used in the algorithm discussion, the local reference frame origin ikld
{<=>?@}  

turns out to be located in [44.62368°, 7.99868°, 293.8	m]I, and the numerical values of matrix hbcbdkld  and 

array ikld
{bcbd} are 

hECEFLRF = p
−0.1391 0.9903 0
−0.6956 −0.0978 0.7117
0.7048 0.0991 0.7025

q (3) 

and 

iLRF
{ECEF} = (−4.5030,−0.6328,−4.4579)T ∙ 106m (4) 

3. Point-cloud processing algorithm 

The proposed algorithm can automatically detect areas occupied by vineyard parcels within a given point-
cloud map, evaluating the local vine rows orientation and inter-row spacing. The overall point-cloud 
processing algorithm can be divided into three main processing steps: (1) accurate local terrain surface and 
height evaluation of each point of the cloud, (2) point-cloud scouting and scoring procedure on the basis of 
a new vineyard likelihood measure, and, finally, (3) detection of vineyard areas and local features 
evaluation. Each algorithm step is here presented and discussed with the aid of graphics obtained by 
processing the point-cloud map generated from data acquired on June 29th 2017. 

3.1 Points local height evaluation 

For easiness of reading, whenever not explicitly expressed in the superscript, the considered reference 

frame is hereinafter assumed to be the local LRF, with :8 = :8
{kld}. Considering a point-cloud :8 =

{	BC = [YC, ZC, [C]I ∈ ℝs; 	i = 1,… , card(:8)	}, where YC,	ZC and [C are the spatial coordinates of each point 
of the cloud map (Fig. 2 and M1.mp4 file), the output of the first step of the algorithm is a new set  

:2 = {	u = [Y, Z, ℎ]T ∈ ℝ3:	∀	B = [Y, Z, []T ∈ 	 :1} (5) 

with card(:9) = card(:8) and where, given a point B ∈ :8, ℎ is its relative height with respect to the local 
terrain surface.  
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A good estimation of ℎ is strictly influenced by the accuracy of the terrain modelling process, which was 
properly defined to manage point-cloud map also on sloped terrains. To this extent, the proposed recursive 
procedure considers several local subsets of neighbouring points belonging to the original set :8. Reliability 
of the relative height evaluation of point B ∈ :8 was improved by computing value ℎ as the average of a 
sequence of several assessments, each one performed with a local subset wx,y ⊂ :8 located in a different 
position (Fig. 3 and M2.mp4 file). The subset of points wx,y, defined as 

wx,y = {B	 ∈ :1 ∶ 	∃	ℓ ∈ ℒ	|	‖B − ℓ‖2 < Éw}, (6) 

is constituted by points B within a cylindrical volume with radius Éw , centered in (x, y) and with vertical axis 
ℒ = {ℓ ∈ ℝ3 ∶ 	ℓ = Ñℒ ∙ Ö − Üℒ		∀	Ö ∈ ℝ}, (7) 

where Ñℒ = [0, 0, 1]I and Üℒ = [Y, Z, 0]I. An example of subsets wxá,yá, centered in Ñ = (90, 110), is 
highlighted by a red cylindrical volume in Fig. 2 (and M1.mp4 file), while its enlargement is represented in 
Fig. 3 (and M2.mp4 file).  
Considering a radius Éw = 5	m, the terrain surface within wx,y can be profitably modelled by plane 

à0 = {	[Y, Z, []T ∈ 	ℝ3 ∶ 	 Ñ0(Y − Y̅0) + Ü0(Z − Zä0) + ã0([ − [0̅) = 0}	 (8) 

where Y̅m, Zäm and [m̅ are the centroid coordinates of wx,y and coefficients Ñm, Üm and ãm are obtained by 
solving the following optimisation problem 

min
Ñ0,Ü0,ã0

å çÑ0(Yi − Y̅0) + Ü0(Zi − Zä0) + ã0([i − [0̅)é
2

Ñ02 + Ü02 + ã02

card(wx,y)

i=1
 (9) 

Due to the high density of points representing terrain surface in the point-cloud map, plane àm is usually 
well aligned to the local terrain. However, the points of subset wx,y not representing the terrain might 
introduce a bias in the terrain modelling (Fig. 4 and M3.mp4 file). This undesired behaviour can be 
overcome by a recursive procedure, by finding the interpolating plane à(èê8) of the updated subset 

wx,y
(j+1) = íB ∈ 	wx,y

(j) :	ì[ − [T(j)ì < îσ2çwx,y
(j) éñ (10) 

obtained by discarding points B with coordinate	[ greater than îóò Owx,y
(è) P with respect to plane à(è). 

Indeed,  

[T(j) = −ãj−1 OÑjçY − Y̅jé + ÜjçZ − ZäjéP + [j̅ (11) 

is the elevation coordinate of plane à(è) in (x, y), ôY̅è, Zäè, [è̅ö
I

are the centroid coordinates of subset wx,y
(è)  and 

coefficients	Ñè, Üè and ãè are derived from Eq. (9), for subset wx,y
(è) . 

With a function îóò  inversely proportional to the variance of coordinate	[ of all points B ∈ wx,y
(è) , the 

recursive procedure converges and stops when õcard O	wx,y
(èê8)P − card O	wx,y

(è) Põ ≤ îw . 

The final relative height ℎwù,û of point B ∈ wx,y with respect to plane à(ü) can be thus easily computed as 

ℎwx,y = [ + ãn−1çÑn(Y − Y̅n) + Ün(Z − Zän)é − [n̅ (12) 

The evaluation of ℎwù,û  was repeated on a set of subsets wx†,y†, covering the entire point-cloud map :8. For 

this purpose, set ° of the considered points (YC, ZC), organised on a regular grid on the horizontal plane 
with step ¢=, was defined as 
° = íçYi, Zjé ∈ ℝ2	∀	Yi ∈ °x, 	Zi ∈ °yñ (13) 
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where °x = {Y8, Y8 + ¢=, … , Y9} and °y = {Z8, Z8 + ¢=,… , Z9}, with Y8 = minç{YC: [YC, y, [C]I ∈ :8}é, Y9 =
maxç{YC: [YC, y, [C]I ∈ :8}é, 	Z8 = minç{ZC: [YC, y, [C]I ∈ :8}é and Z9 = maxç{ZC: [YC, y, [C]I ∈ :8}é. The 

procedure (Eqs. 6-12) was performed when cardçwx,yé > î§, neglecting subset wx,y = ∅, to limit 
boundaries effects. Threshold î§ was set equal to ρß® ∙ π	Éw9, where ρß®is the mean point-cloud density, 
defined as the number of points per m9 of the xy-plane. Since the height ℎwù,û of a point B ∈ :8 is usually 

evaluated several times, one for each subset wx,y ⊃ B, the final value of ℎ is the average of all the 
performed evaluations. The obtained set of points :9 is represented in Fig. 5 and M4.mp4 file.  

3.2 Vineyard likelihood measure 

Detection of point-cloud regions representing vineyards was achieved by introducing a likelihood scoring 
procedure, based on the analysis of the specific spatial distribution of model points. This process, 
analogously to the one described in § 3.1, requires the selection of a local point-cloud subset. A new 
cylindrical subset ℬx,y ⊂ :9 with the vertical axis located in (Y, Z) and radius Éℬ was defined according to 
Eqs. 6 and 7. Examples of two subsets ℬx¨,y¨ and ℬx≠,y≠  of :9, centered in Ü = (200, 130) and ã =
(230, 140) respectively, are highlighted with a cylinder in Fig. 5 (and M4.mp4 file), while their 
enlargements are represented in Figs. 6a and 6b. 
The identification of vineyard areas within ℬx,y was performed by looking at the set of all the relative 
distances between the points contained in ℬx,y. Indeed, point-cloud maps of vineyard areas have a peculiar 
regularity in the points spatial distribution. For this task, a new subset ℬx,yÆ (ϑ) ⊂ ℬx,y was introduced, 
defined as 
ℬx,y′ (ϑ) = íu ∈ ℬx,y:	∃	± ∈ ≤(ϑ)	|	‖u − ±‖2 < îℬñ  (14) 

where  

≤(ϑ) 	= X± = ô±x, ±y, ±zö
T ∈ ℝ3 ∶ 	 tan(ϑ)±x − ±y + (Zi − tan(ϑ) Yi) = 0a (15) 

is a vertical plane passing through (YC, ZC), which forms a counter-clockwise	ϑ angle with the x-axis. In the 
two examples of Figs. 6a and 6b, the points contained in subsets ℬx¨,y¨Æ (ϑ) and ℬx≠,y≠Æ (ϑ), with ϑ = µ

9 , are 

marked with red color, while their projections on plane ≤ Oµ9	P are shown in Figs. 6c and 6d. Periodicity in 

the set of all the between-points distances  

∂Oℬx,y′ (ϑ)P = X∑ = ∏ui − uj∏2, ∀ui, uj ∈ ℬx,y
′ (ϑ), 1 ≤ π, ∫ ≤ card Oℬx,y′ (ϑ)P , π ≠ ∫a (16) 

was investigated by computing the normalised frequencies distribution histogram 

º(∂(∙), Ö) = card{∑ ∈ ∂(∙) ∶ 	 |∑ − Ö| < Ω			} ∙ cardç∂(∙)é−1 (17) 

where Ö ∈ æ8 = {0, ∆Ö, 2∆Ö,… , ∑¿¡x}, æ8 is the set of all the histogram bins, ∆Ö is the bin width and ∑¿¡x 
is the upper limit of the considered distances ∑. For the sample subsets ℬx¨,y¨ and ℬx≠,y≠, the normalised 

frequencies distribution histograms º(∂(∙), Ö) of ∂¬ℬx¨,y¨Æ Oµ9P√ and of ∂ ¬ℬx≠,y≠Æ Oµ9P√, computed with 

∑¿¡x = 10 and Ω = 0.1	m, are shown in Figs. 6e and 6f respectively. A periodic trend can be noted in Fig. 
6e. 
Periodicity in distribution º(∂(∙), Ö) was identified by means of the autocorrelation operator  

hHH(≈) = å º(∂(∙), Ö) ∙ º(∂(∙), Ö − ≈)
card	æ2

≈=1
 (18) 
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with æ9 = {−∑¿¡x, −∑¿¡x + ∆Ö,… ,0, ∆Ö, … , ∑¿¡x}. The occurrence of a significant spatial regularity of 
points u ∈ ℬx,yÆ , and thus the presence of a marked periodicity in º(∂(∙), Ö), was proven by the existence 
of ∆«» > 3 local maxima of h……(≈), respectively located in ≈»C, with π = 1,… , ∆«» . In addition, the period 
 x,y(ϑ) of º(∂(∙), Ö), being related to the distances between two local maxima, can be evaluated as 

 x,y(ϑ) =
∑ |«»i+17«»i|
∆≈»−1
i=1

ÃÕŒ78
  (19) 

The autocorrelations h……(≈) of both º O∂ ¬ℬx¨,y¨Æ Oµ9P√ , ÖP and º O∂ ¬ℬx≠,y≠Æ Oµ9P√ , ÖP are represented in 

Figs. 6g and 6h, together with the detected local maxima. The presence of a unique local maxima of 
h……(≈) proves the absence of periodicity in the function. 
However, an exhaustive and reliable analysis of subset ℬx,y requires an investigation of the possible 
regularity in points distribution along multiple directions ϑC, with ϑC ∈ Θ = {ϑ¿Cü, ϑ¿Cü + Δ—	, … , ϑ¿¡x}	and 
ϑ¿¡x − ϑ¿Cü ≥ π radiant. Indeed, considering a subset ℬx,y representing a vineyard area, a plane ≤(ϑ) 
aligned with vine row direction ϑ« leads to a subset ℬx,yÆ (ϑ) which intercepts one vine row at the most. In 
this case, periodicity and period  x,y(ϑ«) cannot be determined. On the contrary, if ℬx,yÆ (ϑ) intersects two 

or more vine rows, periodicity in ∂Oℬx,yÆ (ϑ)P and period  x,y(ϑ) can be found (Fig. 6f). Please note that 

 x,y(ϑ) has a minimum in ϑ”« ≅ ϑ« ± µ
9 , when subset ℬx,yÆ (ϑ”«) is selected by considering a plane ≤(ϑ”«) 

perpendicular to the local vine row direction. Set ÷x,y can thus be defined as ÷x,y = í x,y(ϑ)	∀		ϑ ∈ Θñ. A 

graphical representation of ÷x¨,y¨  is shown in Fig. 7, where  x¨,y¨(ϑ) was computed with ϑ¿Cü = − ◊
ÿ π, 

ϑ¿¡x = ◊
ÿ π and Δ— = µ

8?. Considering a subset ℬx,y not representing a vineyard area, no periodicity was 

usually found in ∂Oℬx,yÆ (ϑ)P, with the exception of casual occurrences, easily detectible by introducing a 

scoring procedure of subset ℬx,y. 
The classification of subset ℬx,y representing vineyards was performed by introducing index Ÿ(Y, Z), 
defined as 
 Ÿ(Y, Z) = cardí x,y(ϑ) 	 ∈ ÷x,y ∶  x,y(ϑ) < ∑maxñ 	 ∙ card(Θ)−1. (20) 

Subsets ℬx,y not representing vineyards usually have values Ÿ(Y, Z) which are lower than those selected 
from vineyard areas, therefore Ÿ(Y, Z) can be considered as a robust local vineyard likelihood score. 

3.3 Vineyard detection and features evaluation 

The scouting procedure described in § 3.2 was performed on subsets ℬx†,y†, with (YC, ZC) ∈ °, covering the 
entire point-cloud map :9. In this phase, grid step ¢= was considered equal to 0.5 meters, which is a trade-
off between high spatial resolution of results and limited computing time. 
The results for the whole scoring procedure ⁄(:9), where  
⁄(:2) = {Ÿ(Y, Z)	∀	(Y, Z) ∈ °} (21) 

has a bimodal distribution, which allows for the application of a simple thresholding procedure on 
values	Ÿ(Y, Z) to reliably classify a subset ℬx,y as representing vineyards or not. The optimal threshold 
value was found to be î¿ = 0.3. Considering score set ⁄(:9) as an organized matrix of values	Ÿ(Y, Z), a 
graphical representation of ⁄(:9) is shown in Fig. 8, which was obtained by processing the June 2017 
point-cloud map. By applying a simple sequence of morphological operations on binary map ⁄(:9) > î¿ to 
remove noise, the map of the detected vineyard can finally be obtained (Fig. 9). 
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Additional information regarding local features of detected vineyards is also provided by the developed 
algorithm. Indeed, by analysing the trend of the entire set of  x,y(ϑ) 	∈ ÷x,y, the local vine row direction 
ϑ«(Y, Z) and inter-row spacing ∑(Y, Z)	can be evaluated. This task is performed by interpolating set ÷x,y 

with a second order polynomial function R¤(ϑ)	to find direction ϑ”«  so that R¤(ϑ”«) = minçR¤(ϑ)é. Please 
note that, usually, ϑ”« ∉ Θ. The knowledge of direction ϑ”«, which is perpendicular to local vine row 
direction ϑ«, allows the local inter-row spacing in (Y, Z) to be evaluated, by considering ℬx,yÆ (ϑ”«	). Indeed, 
the period  x,y(ϑ)	of º(∂(∙), Ö), when direction	ϑ is perpendicular to vine row direction ϑ«, is a good 
estimator of the inter-row spacing ∑(Y, Z) in ℬx,y (	∑«(Y, Z) ≅  x,y(ϑ”«)	). Graphical representations of 
ϑ«(Y, Z) and ∑«(Y, Z)	values, with (Y, Z) ∈ ° and properly organised in maps, are shown in Figs. 10a and 
10b. 

4. Results and discussion 

The developed algorithm was implemented in Matlab® environment (Mathworks ®, 2018) and tested on 
four point-cloud maps, representing a land region extended on a steep terrain surface, covered with 
several vineyard plots (Nebbiolo and Moscato vine varieties), service paths, other vegetation and grass. The 
area (Serralunga d’Alba, Piedmont) was mapped on four different dates during 2017 to represent vineyards 
at different phenological phases. Since vine rows usually follow a curvilinear path aligned with land height 
contour lines, vineyard plots in the maps have irregular shapes due to the peculiar land slope.  
As a validation of the presented vineyard detection algorithm, the plots boundaries within the considered 
test cropland were manually detected, defined by polygons in an open source geographic information 
system (QGIS, 2018) and exported as shapefile. After being imported in Matlab environment (Mathworks ®, 
2018), the reference dataset was converted in a matrix with raster resolution compatible with the output of 
the automatic algorithm (in this work, 0.5 meters).  
The accuracy of the vineyard detection process was thus evaluated according to five different indexes as: 
(1) Good detection, which considers the overlapping areas of automatically and manually detected 
vineyards; Over-detection (2) and Under-detection (3), considering vineyard areas automatically obtained 
by the proposed method which are larger or smaller than the manually detected one, respectively; Extra 
detection (4) and Missed detection (5) to assess the occurrence of regions completely wrongly classified by 
the algorithm as vineyard or not. All the defined indexes, summarised in Table 1, were defined as the 
percentage of the specific surface areas automatically obtained by the proposed method and the overall 
manually detected vineyard surface. 
Maps of the detected vineyard areas, both automatic and manual, together with the spatial location of 
classification inaccuracies, are shown in Fig. 9, where regions properly classified as vineyards and over, 
under, extra and miss-detected areas are represented with different colours. The values of algorithm 
performance indexes on each single point-cloud map processing, together with the overall mean results, 
are detailed in Table 2. The results, with parameter values	¢=  defined in section § 3.2, have a spatial 
resolution of 0.5 meters. Since the point-cloud processing algorithm is affected by the border effect, where 
point-cloud subsets ℬx,y are partially out of the cloud, a region with a width equal to parameter Éℬ along 
the border was not considered in the results discussion. 
The good detection index was found to be always greater than 90.0%, with an overall average value on the 
four point-cloud maps of 94.02%. The percentage of undesired misclassifications is very limited, with mean 
indexes of extra detection and missed detection equal to 0.64% and 0.01% respectively. Extra detection 
mainly occurs along point-cloud borders where 3D map reconstruction quality is lower. Missed-detection 
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can be considered null in all the processed point-cloud maps. It can be noted that over detection errors 
occur in case of small service paths parallel to the vine rows, with a width comparable to vineyard inter-row 
spacing. This undesired effect is absent if the path width differs by more than ±10% with respect to local 
inter-row spacing. The over detection index was found to be always lower than 4% with and average value 
over the four maps equal to 3.08%. The under-detection index is mainly due to the presence of a new 
parcel, with vines planted in the 2017 spring season, highlighted by a red line in Fig. 9b. Indeed, the under-
detection index has high values, 7.52% and 7.67%, in the June and August point-cloud maps (Figs. 9a and 
9b), when transplanted vine plants vigour was extremely low, while the misclassification decreases 
drastically (4.33%) in the September point-cloud processing. The algorithm thus proves to be very robust to 
plant vigour level, obtaining effective results with crops which have been implanted since less than one 
year. 
The results on the additional information of the detected vineyards, regarding local inter-row spacing and 
vine row direction, are presented and discussed for the point-cloud map of July 29th 2017. From the 
graphical representations of vine row directions (Fig. 10a), it can be noted how small parcels, which have 
predominantly rectilinear vine rows, are characterised by uniform vine rows direction. On the contrary, 
larger ones, following the hilly land conformation, show a wider set of values	ϑ«(Y, Z), which translate in a 
non-uniform coloured region in Fig. 10a. Vine row spacing ∑«(Y, Z)	in the whole detected vineyard within 
the monitored land region (Fig. 10b) results to be constant, with a value close to 2.6 meters (vineyard 
tractor size). 

5. Conclusions 

In this paper, an unsupervised algorithm that automatically detects vineyards within 3D point-cloud maps is 
presented. The algorithm is able to process a point-cloud map without any intervention or feedback from 
the user and requires a very limited number of parameters for its calibration. The effectiveness of the 
developed algorithm has been shown on the four point-cloud maps of a heterogeneous land region, with 
several irregularly shaped vine plots and other vegetation, acquired at different phenological phases. In 
addition, information on local vine row orientations and local inter-row distances, organized in proper 
georeferenced maps, are also provided by the algorithm.  
The algorithm was found to be robust, providing reliable results in the case of vineyards with high plant 
failure rates, several vines growth, dense inter-row grassing and steep terrain slope, showing a low failure 
rate. A relevant additional strength of the developed methodology is the ability to process and detect 
vineyards not only with rectilinear vine rows, but also with curvilinear distributions, making the algorithm 
adaptable to a wide range of applications. 
The possibility of automatically detecting vineyards within a point-cloud map may open the way to a new 
generation of unsupervised point-cloud processing algorithms aimed at evaluating crop status (such as 
vigour, leaf area index or fruit ripening) with detailed temporal and spatial resolutions, even at single plant 
level.  Moreover, the information provided by the algorithm could also be used as input for the 
autonomous guidance of small vehicles, e.g. allowing automatic path planning along inter-row space.  
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Table 1. Results evaluation criteria of vineyard detection.  

Case Meaning 

1. Good detection correct detection of the vineyard region, matching manual evaluation 

2. Over-detection boundaries of automatically detected vineyard greater than real one 

3. Under-detection boundaries of automatically detected vineyard smaller than real one 

4. Extra detection non-vineyard region wrongly classified as vineyard 

5. Missed detection parcels totally not detected 

 

Table 2. Results of vineyard detection (expressed as percentage of vineyard areas with respect to the overall manually 
detected vineyard surface) applied to four point-cloud maps. Overall mean performances of the developed point-
cloud processing settlement are reported in the fifth column. 

 Point-cloud  
May 15th 2017 

Point-cloud  
June 29th 2017 

Point-cloud  
August 1st 2017 

Point-cloud  
September 23rd 2017 

Mean 

1. Good detection 95.62% 92.47% 92.33% 95.67% 94.02% 
2. Over-detection 3.24% 2.93% 2.34% 3.79% 3.08% 

3. Under-detection 4.38% 7.52% 7.67% 4.33% 5.98% 
4. Extra detection 0.31% 0.97% 0.25% 1.04% 0.64% 

5. Missed detection 0.02% 0.01% 0.01% 0.01% 0.01% 
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Fig. 1. False colour map (Near infrared, red, green bands) of the considered vineyard region, 
located in Diano d’Alba (Piedmont, Northwest of Italy). 
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Fig. 2. Point-cloud map :1 (June 29th 2017). The cylinder, centered in Ñ = (90, 110), out-bounding 
subset wxa,ya is red highlighted. 
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Fig. 3. Enlargement of subset wxa,ya, highlighted in Fig. 1, constituted of points within the 

cylindrical volume (red), having radius Éw = 5	m and vertical axis ℒ (blue dashed line) passing 
through Ñ = (90, 110). 
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Fig. 4. Subset wxa,ya (green and red points) and the interpolating plane àm (blue surface) are shown 

in perspective (a) and section (b) views. Green points form subset wxa,ya
(1) ⊂ wxa,ya , discarding red 

ones. Subset wxa,ya
(n)  (green points) and final plane T(ü) (blue surface), modelling the local terrain 

surface, are shown in perspective (c) and section (d) views. 
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Fig. 5. Point-cloud map :2. To enhance readability, relative height ℎ of point u ∈ 	:2 with respect 
to the terrain is represented by using a colour map. The two sample subsets ℬxb,yb and ℬxc,yc, 
centered in Ü = (200, 130) and ã = (230, 140), are marked with red cylinders. 
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Fig. 6. Enlargements of subsets ℬxb,yb(a) and ℬxc,yc(b), centered in Ü = (200, 130) and ã = (230, 140) 
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respectively. Points belonging to subset ℬxb,yb
′ (ϑ) (c) and ℬxc,yc

′ (ϑ) (d), with ϑ = π/2, and the 

between-points distances normalised frequencies distribution histogram º O∂ ¬ℬxb,yb
′ Oµ9P√ , ÖP (e) 

and º O∂ ¬ℬxc,yc
′ Oµ9P√ , ÖP (f). Finally, autocorrelation hHH(≈) (blue solid line) of º O∂ ¬ℬxb,yb

′ Oµ9P√ , ÖP 

(g) and º O∂ ¬ℬxc,yc
′ Oµ9P√ , ÖP (h), and detected local maxima (red star markers). 

 

 

 

Fig. 7. Set of period values  xb,yb(ϑ) ∈ ÷xb,yb (blue dots), with ϑ ∈ Θ = X−◊
ÿ π,−

µ
9 , −

?
8? π,… ,

◊
ÿ πa, and 

the second order polynomial interpolating functions R¤(ϑ)	(green solid line). The score Ÿ(Yb, Zb) of 
local subset ℬxb,yb is 0.65, while Ÿ(Yc, Zc) is equal to zero. Local vine row orientation ϑ≈(Yb, Zb) is 
derived from the interpolating function minimum ϑ⊥≈, in	1.1π radiant (red point). Evaluating 
 x,y(ϑ⊥≈), the local inter row spacing ∑≈(Yb, Zb) = 2.65	m	can be found (red point). 
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Fig. 8. Vineyard likelihood score map ⁄(:2). 
 

 

Fig. 9. Graphical representation of algorithm performances, on the base of indexes defined in 
Table 1, obtained processing point-cloud of May 15th 2017 (a), June 29th 2017 (b), August 1st 2017 (c) 
and September 23rd 2017 (d) flights. Red marked parcel (b) was planted in spring 2017. 
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Fig. 10. Maps of local vine row direction ϑ≈(Y, Z) (a) and local inter row spacing ∑≈(Y, Z) (b) 
obtained processing the point-cloud map of June 29th 2017. 
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