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ABSTRACT Reducing the effort required by humans in countering malware is of utmost practical value.
We describe a scalable, semi-supervised framework to dig into massive data sets of Android applications
and identify new malware families. Until 2010, the industrial standard for the detection of malicious
applications has been mainly based on signatures; as each tiny alteration in malware makes them ineffective,
new signatures are frequently created –- a task that requires a considerable amount of time and resources
from skilled experts. The framework we propose is able to automatically cluster applications in families
and suggest formal rules for identifying them with 100% recall and quite high precision. The families are
used either to safely extend experts’ knowledge on new samples or to reduce the number of applications
requiring thorough analyses. We demonstrated the effectiveness and the scalability of the approach running
experiments on a database of 1.5 million Android applications. In 2018, the framework has been successfully
deployed on Koodous, a collaborative anti-malware platform.

INDEX TERMS Semi-supervised learning, clustering, android, malware, automatic signature generation.

I. INTRODUCTION
Android’s first malware, FakePlayer, was released in
August 2010 [1] and, since then, the number of new malware
steadily increases [2]. After only seven years, malware pro-
grams are hundreds of times bigger than the old FakePlayer,
hide their presence and activities, and they can even commu-
nicate secretly through complex anonymous networks.

Android offers an open market model, where millions of
applications are downloaded by users every day. While appli-
cations from the official Google Play store undergo a review
process to confirm that they comply with Google policies [3]
other third-party markets do not. Hence, a typical pattern
among malware developers is to repack popular applications
fromGoogle Play by adding malicious features and distribute
them to third-party app-stores, leveraging apps popularity to
accelerate malware propagation.

In the personal-computer ecosystem, malware develop-
ers commonly exploit executable packing and other code
obfuscation techniques to generate a large number of poly-
morphic variants of the same malicious application [4], [5].
As a consequence antivirus (AV) software are struggling to
keep their signature database up-to-date, and AV scanners

suffer from a considerable quantity of false negatives [6].
Moreover, the malicious code is often reused and customized
to fit different needs. For example, a developer may reuse
the rootkit installation code, while replacing the modules that
provide network connectivity to a Command-and-Control
server.

By the end of 2010s, the Android ecosystem is fac-
ing a similar scenario, although the situation is exacer-
bated by the simplicity of malicious repackaging [7]. That
is an alteration of the original application installation pack-
age (i.e., the APK file), where legitimate applications are
reverse engineered, modified to include malicious code,
signed with a new signature, and eventually distributed for
download. Since applications consist of bytecode, changes
are relatively easy to implement and ad-hoc tools assist the
procedure [8], [9].

The growth of Android malware created a major chal-
lenge for AV vendors to efficiently handle new samples and
accurately label them. Due to the practical impossibility of
manually analyzing the thousands of suspicious samples
received every day, a large fraction is left unlabeled, delaying
the signature generation.
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While malware variants can be generated at a high pace,
they are likely to perform similar malicious activities when
executed. One possible solution would be to automatically
cluster such applications in a family and focus the manual
analysis on few archetypal samples, with the underlying
assumption that malware bearing significant similarities are
likely to derive from the same code base [10]. Furthermore,
the label of a new sample of a known family could be auto-
matically derived, and existing signatures or other mitigation
techniques could be more easily extended to cover the new
threats.

Eventually, if a large number of malware belonging to
the same family is identified, it may become possible to
define a generic behavioral signature able to detect future
variants with reduced false positives and false negatives [11].
Therefore, a sharp clustering is crucial to help AV companies
categorizing the large amount of samples, avoiding dupli-
cate work, and allowing analysts to prioritize their limited
resources on novel and representative samples [12], [13].

In this article, we describe a semi-supervised system for
the analysis of massive datasets of malicious applications.
We created a platform able to suggest new families of appli-
cations to human experts; the platform also generates an
intelligible YARA rule [14] to identify family members with
high precision. We explicitly minimize false positives, a busi-
ness hazard and a reputation blow for AV vendors. The
approach alleviates human experts from the burden of man-
ually inspecting thousands of Android applications, while
letting them take critical decisions. The main contributions
of this article can be summarized as:
• We introduce a scalable system for the analysis of mas-
sive Android malware datasets based on careful fea-
ture engineering, and a standard clustering algorithm.
The mechanism is demonstrated to be robust and able
to overcome the well-known limitations of traditional
signature-matching mechanisms.

• We propose an algorithm that, starting from a cluster of
samples, generates its family signature as a YARA rule.
Thanks to exact and heuristic evaluations, such rules
are intelligible and appear reasonable to human experts.
Moreover, the algorithm guarantees zero false positives
in the existing dataset, and limits the possibility of false
positives in the future.

• We report experiments on a dataset of about 1.5 million
Android applications, and results show the scalability
of the approach. We use a set of internal and external
indicators to demonstrate that the proposed system per-
forms an accurate and efficient automatic identification
of groups of similar applications. By exploiting limited
data, the framework is able to propose insightful exten-
sions to the rule detecting suspicious applications.

• Finally, our framework has been deployed and it is used
on Koodous,1 the mobile AV platform from Hispasec,
since the January 2018.

1https://koodous.com/

The rest of the paper is organized as follows: Section II
illustrates problem statement and motivation, and Section III
introduces Koodous; Section IV describes in detail the pro-
posed approach, while experimental results and performance
evaluations are presented in Section V; Section VI surveys
related work about Android malware and automated anal-
ysis procedures; limitations and future works are discussed
in Section VII and VIII; Section IX concludes the paper.

II. PROBLEM STATEMENT AND MOTIVATION
Since the 2000s, academia proposed approaches based on
machine learning aiming at completely replacing humans
in the malware analysis process. In most cases, such pro-
posals fell back into mere classification, that is, supervised
machine learning. The drawbacks included the need of large
amount of accurately labeled, i.e., already analyzed, data,
and the lack of control over the false positives eventually
produced, a major cause of concern for all AV vendors.
As a result, AV companies developed systems mostly based
on the reliable signature-detection mechanism. Even though
signatures suffer from the so-called ‘‘specificity’’ problem,
and new ones need to be frequently generated, they have been
demonstrated effective, scalable, and almost unaffected by
false positives.

The proposed framework is semi-supervised and intro-
duces essential improvements in the identification of sim-
ilar applications and the generation of family signatures.
It combines the scalability of fully automatic techniques for
clustering and the optimization of new family signatures,
while it exploits manual analysis, inherently more flexible
and accurate, in few crucial steps, such as the validation of
newly discovered malware families.

Traditionally, the effort of automatically classifying and
analyzing malware focuses on content-based signatures that
specify binary sequences. Indeed, content-based signatures
are inherently vulnerable to malware obfuscation: even if
all variants of a malicious application share the same func-
tionalities and exhibit the same behavior, they can have tiny
different syntactic representations. As a consequence, a huge
number of signatures needs to be created and distributed by
AV companies.

On the other hand, a rule that automatically identifies
the behavior of a family of samples would be the first step
towards the creation of true family signatures. Such a signa-
ture would match all samples of a family, and would signif-
icantly help to reduce the number of signatures required to
cover it. Moreover, as new samples could bemapped to a fam-
ily behavior already known, the time and effort required to
analyze and reverse engineer new samples would be reduced.

Differently from the previous approaches, the proposed
system generates effective, precise and descriptive rules using
the properties directly extracted from both static and dynamic
analyses. While aiming at reducing false positives and false
negatives, it also exploits an heuristic measure to emulate how
expert analysts write existing signatures.
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III. KOODOUS
Koodous is a collaborative platform for researching on
Android malware that combines online analysis tools with
social interactions between the analysts. Started in 2014,
in 4 years it collected one of the largest repositories of
Android applications: its databases contain more than 30 mil-
lions of applications, among which 7 millions have already
been identified as malicious. Fig. 1 illustrates the trend of
application submission and detection from October 2014,
until March 2017.

FIGURE 1. Monthly trend of application submission and detection in
Koodous from October 2014 until March 2017.

Koodous provides both analysis service and end-point pro-
tection: upon submission, each application is analyzed both
statically and dynamically, and the final report is accessi-
ble through a web interface specifically designed to help
analysts detect new malware threats. Analysis tools include
a custom version of Androguard [15], CuckooDroid2 and
DroidBox [16].

Instead of relying on a closed group of expert malware
analysts, Koodous takes advantage of an open community
to identify malicious applications. Furthermore, in order to
guarantee high quality results, manual detections are subject
to reputation-based checking. Moreover, protection is guar-
anteed through an Android application, which backs to the
cloud platform to detect most recent threats.3

Koodous uses YARA to describe patterns for detect-
ing malware application: since the creation of high-quality
YARA rules requires a considerable effort, the platform also
offer the possibility to identify malware through a simpler
voting mechanism –- an operation referred to as ‘‘triage.’’
As of July 1, 2018, more than 2.5 millions applications are
detected by triage.4

2https://github.com/idanr1986/cuckoo-droid
3https://play.google.com/store/apps/details?id=com.koodous.android
4For the up-to-date figure, visit https://koodous.com/apks?

search=rating:%3C-1%20%26%20detected:1.

IV. PROPOSED FRAMEWORK
Our framework operates through three main steps, detailed
in sections IV-A, IV-B and IV-C.

1) Similarities among Android samples are discovered
through an iterative clustering process, offering a new
point of view and valuable information to malware
analysts.

2) Families of suspicious applications are identified tak-
ing advantage of the knowledge already available in
Koodous, and extensions to the current detection rules
are proposed.

3) Signatures are generated to identify the malware fami-
lies with an acceptable generalization capability, yet a
reduced risk of false positives in the future.

A. ITERATIVE CLUSTERING
Clustering provides a mechanism to automatically categorize
applications into groups that reflect their similarity, both in
source code and runtime behavior. We exploit HDBSCAN,
a density-based algorithm, as it fits most of our requirements.

Density-based clustering algorithms locate high-density
regions in the feature space; DBSCAN (density-based spa-
tial clustering of applications with noise) is probably the
best known among them [17]. Density-based algorithms can
effectively discover clusters of arbitrary shape and filter out
outliers, eventually increasing cluster homogeneity. Addi-
tionally, the number of expected clusters to be found in the
data is not required: our aim is to discover groups of similar
applications without any prior knowledge about their com-
position, otherwise the number of clusters is hard to guess a
priori.

In 2013, Campello et al. [18] proposed HDBSCAN, a new
density-based algorithm that converts the original DBSCAN
into a hierarchical clustering algorithm. As a matter of fact,
HDBSCAN find clusters of varying densities, and is more
robust to parameter selection. Moreover, it supports the
GLOSH (global-local outlier score from hierarchies) outlier
detection algorithm: during the fitting phase, each data point
is associated to a score that represents its likelihood of being
an outlier; at the end of the process, outliers are selected via
upper quantiles [19].

In low-dimensional spaces, HDBSCAN has an average
complexity of approximately O(n log n), while its space
requirement isO(n), making it applicable to moderately large
datasets [20].

As the number of samples in malware datasets is in the
tens of millions, we exploit an iterative process where the
original dataset D is divided into m chunks di of fixed size N
(m =

⌈
|D|
N

⌉
).

D =
m−1⋃
i=0

di (1)

The parameterN balances the quality of the results with the
time required for the analysis, and can be set experimentally
according to the available resources.
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HDBSCAN is applied to each chunk of data di finding,
at each step, a set of clusters ci and a set of outliers oi. Finally,
all the outliers O =

⋃m−1
i=0 oi, are clustered together in order

to find even those small groups of applicationswhose samples
are spread through several chunks of data. In the end, the total
number of required iterations is equal to m+ 1.

Since HDBSCAN could be executed in parallel on the first
m chunks, the benefit of the iterative approach is the huge
reduction in the time required for the analysis. On the other
hand, few applications could be misclassified as outliers and
the same group of similar applications could be found mul-
tiple times, although, as shown in section IV-B, those corner
cases do not limit the framework efficacy.

1) FEATURES SELECTION
An accurate features selection is a crucial step in every
machine learning approach. As suggested in [11], we exploit
aggregate information: from the analysis result of each appli-
cation, we extract a subset of ‘‘statistical’’ properties, meant
as quantitative measure of a malware behavior. Indeed,
we experimentally found that exploiting statistical similar-
ities among applications, rather than ‘‘structural’’ proper-
ties which exactly describe the malicious behavior, does not
effectively alter the results, while at the same time, signifi-
cantly reduces the amount of data to process.

Starting from a set of n analysis reports ri provided by
Koodous, each report ri is translated into a feature vector
vi = (f0, . . . , f34) containing the 35 statistical properties.
Table 1 summarizes the features extracted from the results

of the static and dynamic analysis.
In more detail, the static analysis performed by Andro-

guard extracts the features from the Manifest file (i.e., num-
ber of activities, permissions, receivers, filters), and the
source code analysis. The former allows to unveil similari-
ties among applications based on the software architecture
used to develop the application, while the latter models each
application extracting portions of code related to suspicious
API call (e.g., number of calls to SMS API, or IMEI, or other
network related methods). On the other hand, the dynamic
analysis extracts features that model the application interac-
tion with the surrounding operating system both at file system
and network level extracted by DroidBox (e.g., files written,
usage of cryptographic methods, SMS sent), and the network
information extracted by CuckooDroid (e.g., number of DNS
resolved, HTTP requests). These are the standard type of
information extracted in the field of malware analysis.

Because the range of each feature is quite different, the
dataset is firstly normalized so that the features have mean
equal to zero and variance equal to one. Since the choice
of the distance to use during cluster analysis is tied to the
type and the dimension of selected features, we experimen-
tally found that the combination with the Euclidean distance
delivered the best performances.

B. EXTENDING MALWARE DETECTION
Starting from millions of samples, the iterative cluster-
ing (Section IV-A) identifies a smaller number of families

TABLE 1. List of the 35 statistical properties extracted from the analysis
result of each APK file. Features are grouped according to the type of
analysis. Static features are extracted using Androguard both parsing the
Manifest file and looking for interesting API calls in the decompiled
source code. Dynamic features are extracted using DroidBox and
CuckooDroid from the dynamic analysis of the application.

composed of strongly related applications. In some cases,
by combining this result with the information already avail-
able in Koodous, these families may be automatically labeled,
as they extend either known threats or legitimate software.
In the other cases, experts are required to manually evaluate
the family, but they need to analyze only few representative
samples of the group and not all applications, therefore drasti-
cally reducing the time required by the analysis. This process
exploits the ‘‘clustering assumption’’ of the semi-supervised
learning algorithms, which states that two points which are
in the same cluster (i.e., which are linked by a high density
path) are likely to share same label. In such a way, the partial
information of few labels extracted from each cluster can be
used to increase the knowledge of all the applications within
the same group.

The set of all applications in KoodousKmay be partitioned
into three subsets K = {S ∪ T ∪ U} corresponding to the
applications detected by signatures (S), detected by triage
only (T), and undetected (U); applications detected both by
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signatures and in the triage phase belong to the S set. Such
a partition does not reflect a peculiarity of Koodous, as the
usage of a staging area T where samples are pointed out
waiting further analysis is common in AV laboratories.

FIGURE 2. The figure illustrates the subdivision of the applications in
database and the seven type of families (i.e., clusters) that can be
automatically inferred by the proposed approach. The database is divided
in three macro areas according to the type of detection: applications
detected by signatures, by triage only, and undetected. Each point in the
figure represents an application, and based on the detection status of the
applications within each cluster, the proposed approach identifies seven
possible cases.

It is possible to classify a family according to the different
subsets its applications belong to (Fig. 2). The resulting seven
different types of family correspond to the powerset P(K),
excluding the empty set: { {S}, {T}, {U}, {S,T}, {S,U},
{T,U}, {S,T,U} }

• Type 1 {∀s ∈ F (1)
| s ∈ S}. The family is composed of

applications that have been already detected by YARA
signatures. No further action is required, although the
generated family rule may still be effective to generalize
the detection.

• Type 2 {∀s ∈ F (2)
| s ∈ S ∪ T }. The family includes

applications already identified as malicious either by
YARA, or during the triage process. The correctness
of the detection is either guaranteed by the existing
signatures, or by the triage process (i.e., the community
votes); thus a new YARA rule matching all the applica-
tions in the family can be automatically generated and
added to the detection system without further manual
check.

• Type 3 {∀s ∈ F (3)
| s ∈ T }. The family is com-

posed of applications that have been detected through
the triage process only. The correctness of the detection
is guaranteed by the triage process, and as in the previous
case, a new YARA rule can be automatically gener-
ated and added to the detection system without manual
intervention.

• Type 4 {∀s ∈ F (4)
| s ∈ S ∪ U}. The family com-

bines applications detected by existing signatures with
undetected ones. In order to avoid false positives, the
correctness of the family must be manually validated
before generating a family signature.

• Type 5 {∀s ∈ F (5)
| s ∈ S ∪ T ∪ U}. The family

combines applications detected both by signatures and
by triage only, with undetected ones. As in the previous
case, in order to guarantee complete correctness the
family must be manually validated before generating a
signature.

• Type 6 {∀s ∈ F (6)
| s ∈ T ∪ U}. The family combines

applications either detected by the triage process only
with undetected ones. As in the two previous cases, the
family must be manually validated before generating a
family signature.

• Type 7 {∀s ∈ F (7)
| s ∈ U}. The family is composed of

undetected applications, hence no classification can be
automatically inferred. However, as all the applications
within the cluster show strong similarities, the analysis
of few representative samples shall be sufficient to clas-
sify the whole cluster as malware or goodware.

Such an approach offers apparent benefits: the need for
human intervention is often limited to the simple validation
of the discovered family, while the need for full analysis is
reduced to few representative samples. The identification of
families with only partially detected applications, either by
signature or during the triage process, allows to discover false
negative and new 0-day malware.

In Koodous, the triage process makes it possible to quickly
identify threats without the burden of creating signatures,
although it has the drawback of potentially leaving others
similar applications undetected. Our frameworks may auto-
matically convert all the knowledge about single, unrelated
threats into more reliable signature, potentially able to dis-
cover newer variants as well.

Finally, among Type 7 families, the system is able to
identify groups of legitimate software, for example finding
applications written by the same developer or using the same
framework. This result was proved to be of practical impor-
tance to limit and correct false positive detections.

C. FAMILY SIGNATURES GENERATION
In the last step of our framework, a signature is generated
for each family that has been identified as malicious.5 We
developed an automatic procedure that starts from a set of
applications, and eventually produces a YARA rule describ-
ing them. The program has no requirements on the origin of
the set: it could be the result of automatic clustering ormanual
selection, although the more the applications in the set are
related, the better the result.

Authoring an effective signature requires a considerable
effort and experience. Good signatures are compact, and
they have the ability to generalize, that is, to identify all
known variants of the malware and even possible new ones.
Moreover, they do not yield false-positive results by detecting
non-family members, and finally, they appear intelligible to
human experts and are almost self-explanatory.

5Our system could generate family signatures of legitimate applications
as well, but they would be of no use for Koodous
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More formally, a signature S is the disjunction of n clauses
S =

∨n
i=0 ci. A clause ci is a finite conjunction of mi literals

ci =
∧mi

k=0 lki . In the present context, a literal lki is a single
feature specified in the report resulting from the analysis of
the application.

Traditionally, a YARA rule is defined on unique strings
found in malware but not present in legitimate programs;
quite differently, we generate precise, descriptive rules using
the structural properties extracted by the static and dynamic
analyses. Our program identifies an optimal set of clauses
for matching all target applications while yielding no false
positive in the current database; moreover, thanks to some
heuristics, the rule has a good ability to generalize, a low
risk of detecting false positives in the future, and it appears
reasonable to the eye of the human experts.
An example of an automatically generated YARA rule for

the Syringe malware family is shown below.6. It may be
noted that the statistical features exploited during clustering
(Section IV-A) are not used in the in the rule, as they would
result in over-complicated rules hardly understandable by
humans.

rule YaYaSyringe {
condition:
androguard.filter(‘‘action.BATTERYCHECK’’)
and androguard.number_of_services == 3
and androguard.permission(‘‘SYSTEM_ALERT_WINDOW’’)
and androguard.url(‘‘http://s.adslinkup.com/v2’’)
...
}

The process is performed in three steps: a reasonable signa-
ture composed of a small number of clauses is generated; the
signature is checked against the full database of applications,
and false positives are identified; the generation procedure is
run again, but explicitly taking into consideration the false
positives discovered in the second step.

Fig. 3 exemplifies the idea of the process of generation
of a signature for two malware ma and mb, and two legiti-
mate applications ga and gb. In the first phase, the algorithm
defines a signature Y = r , where r is a single clause
composed by the common features between the twomalware:
r = ma ∩ mb. Indeed, a rule Y detects an application m only
if Y is a subset of m: Y ⊆ m.
During the second phase, the rule Y is checked against

the complete database, where it generates two false positives
matching two legitimate applications ga and gb. The clause r
is therefore too generic to be used as a signature.
As it is not possible to find features common to malware

that do not matches legitimate applications (ma∩mb)\ga = ∅
and (ma ∩ mb) \ gb = ∅, the third step generates a signature
with the disjunction of two clauses Y ∗ = (r ∧ ra) ∨ (r ∧ rb).
The pseudocode of the algorithm is reported in

Algorithm 1: at first it determines a suitable set of clauses
(function Clauses), then picks a subset of them of variable
size to build an optimal family signature (function Clot).

6The complete version of the rules is available on Koodous at
https://koodous.com/rulesets/3243

FIGURE 3. Schema of the process of generation of a YARA rule. In the first
phase a signature Y = r is defined for malware ma and mb. In the second
phase Y is checked against a dataset of goodware (ga and gb). Finally,
in the third phase, a new signatures Y ∗ = (r ∧ ra) ∨ (r ∧ rb) is created to
avoid false positive detection of ga and gb.

Algorithm 1 Automatic YARA Rule Generation
1: procedure generateSignature(R)
2: C← Clauses(R,∅)
3: Y← Clot(R,C)
4: G← GetFalsePositives(Y)
5: C∗← Clauses(R,G)
6: Y∗← Clot(R,C∗)
7: DumpAsYARARule(Y∗)

Lines 2 and 3 correspond to the first phase of Fig. 3; line 4,
to the second; lines 5 and 6, to the third.

Algorithms 2 and 3 add more details about the procedure:
the function Clauses extracts the clauses that can be used to
build the signature, and is based on a heuristic algorithm.
First, each malware application ri in the target set R is
transformed into a single clause yi able to detect it using all
available literals. Such clauses are not directly usable, but are
the starting point of the interactive procedure for building the
set of optimal clauses H: in each step, the least generic yi is
selected and compared against all clauses in H calculating the
common features zi; the least generic of these zi is eventually
considered for inclusion in H.

The rationale is to build Y by adding clauses progressively
less specific (i.e., checking fewer features), but still usable in
signatures. Line 10 computes the set F of application from
G detected by the candidate clause; as G is the set of all
potential false positives, if F is not null the clause is too
generic to be usable. Additionally, the function Quality(·)
performs a heuristic evaluation of the clause: if the quality
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Algorithm 2 Clauses Extraction
1: function Clauses(R,G)
2: Y← {Features(r) ∀r ∈ R}
3: for all r ∈ R do
4: Y← Y ∪ SelectedClauses(r)
5: H← {Features(r) ∀r ∈ R}
6: while |H| > 0 do
7: h← LeastGeneric(H)
8: Z← {CommonFeatures(h, y) ∀y ∈ Y}
9: z← LeastGeneric(Z)
10: F = {r ∈ G | Det(z, r) = True}
11: if F = ∅ and z /∈ Y and Quality(z) > Tq then
12: H← H ∪ {z}
13: Y← Y ∪ {z}
14: H← H \ {h}
15: return Y

Algorithm 3 Clauses Selection
1: procedure Clot(R,C)
2: Y← ∅
3: D← ∅
4: while R 6= C do
5: if ∃r ∈ R \ D : Critical(r) = True then
6: r̄ ← GetCritical(R \ D)
7: Z = {z ∈ C | Det(z, r̄) = True}
8: else
9: Z = {z ∈ C | ∃r ∈ R\D : Det(z, r) = True}

10: Y← Y ∪ {MostUseful(Z)}
11: D← {r ∈ R | @y ∈ Y : Det(y, r) = True}

12: return Y

is below a certain threshold Tq, the rule is so generic that it is
likely to create false positives in a near future — see IV-C.1
for more details. For each application, few not-too-generic,
heuristically selected clauses are also included (i.e., ra and rb
in the example shown in 3).

The function Clot (Algorithm 3) implements a dynamic
greedy algorithm for building the signature as a disjunction of
clauses. It iteratively adds one clause to Y from a set C until
all applications in R are detected by at least on clause in Y.

In an iterative way, Clot first picks out all clauses that
detect at least an application not yet detected by any rule, with
the only exception that, if an application can be detected by
only one clause, that clause is the only one picked. Then the
algorithm selects among this group the clause that is able to
detect more application in the original target set R.

1) RULE QUALITY
A heuristic evaluation is used to reduce the risk of false
positives in the future and to increase the perceived quality
of the rule. We defined a heuristic score S(·) for a rule,
inversely related to its generality. More formally, let associate
each literal l to a score S∗(l) that measures how specific the

literal is. The score of a clause ci is the sum of the scores of
the ni literals composing it: S(ci) =

∑ni
k=0 S

∗(lik ). The sore
of a rule r is the minimum among the scores of its clauses:
S(r) = min∀i S(ci).
The higher the score, the more a rule is specific and less

susceptible to generate false positives. On the other hand, the
lower the score, the more a rule will be able to generalize,
while being more prone to generate false positive in the
future. High quality signatures require an optimal balance
between generality and specificity, and this is one of the main
challenges in automatic signature generation. We use two
threshold Tmin and Tmax, where the lowest is the minimum
score that a rule needs to be valid, and the highest is used in
the optimization process to avoid overly-specific rulesets.

All the clauses in YARA rules created by expert analysts
are valid, that is, the score assigned to literals must guarantee
that ∀r ∈ Rexpert : Tmin ≤ S(r) ≤ Tmax. We consider
invalid the rules containing a clause mentioning only Android
official permissions and intent filters, or containing a clause
composed of a single literal, with the exception of accessing
an URL that have been detected as malicious by VirusTotal
or similar services. Then, we exploit the simplex method as a
mean to automatically define S∗(·) starting from the existing
ruleset.

The simplex method is a linear programming technique,
which refers to the problem of optimizing a linear objective
function ζ ofm variables xi subject to a set of n linear inequal-
ity constraints. In standard form, the problem of finding an
optimal set of weights for m literals can be expressed as:

min ζ = cT × x

s.t − A× x ≥ −b, x ≥ 0

where ci = 1, ∀i = 1 . . .m, since the objective function ζ
minimize the number of literals in each clause, x ∈ Rm is a
vector of m unknown weights, and bi = Tmin, ∀i = 1 . . . n,
as we want each existing literal combination to satisfy the
minimum score of all existing rulesets.

FinallyA is a n×mmatrix that put into relation each clause
with their own literals:

A =


l11 l12 l13 . . . l1m
l21 l22 l23 . . . l2m
. . . . . . . . .

ln1 ln2 ln3 . . . lnm


where lnm = 1 if lnm is a literal of the clause cn, otherwise
lnm = 0. In order to get the list of all the n existing clauses ci,
we firstly reduced all the available YARA ruleset in the
Disjunctive normal form (DNF).

We set almost arbitrarily the values Tmin = 400 and
Tmax = 700 for the two thresholds. Table 2 reports the details
about the rules, clauses, and unique clauses that have been
analyzed, using the YARA rules from both Koodous7 and
the Yara-Rules repository on GitHub.8 Table 3 show the final
result, where each literal is assigned a distinct weight.

7https://koodous.com/rulesets
8https://github.com/Yara-Rules/rules/tree/master/Mobile_Malware
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TABLE 2. Details about the number of rules, clauses, and unique clauses
analyzed to find the optimal score for each literal.

TABLE 3. Weights assigned to each type of literal as a result of the
simplex method optimization. Weights are used by the automatic
procedure to generate new YARA rulesets.

V. CASE STUDY
As a case study we used a dataset of 1.5 million Android
applications collected over the 2016. The dataset is recent and
diverse in the set of attack vectors it represents: in order to
have the same ratio between detected and undetected applica-
tions as in Koodous, we sampled a subset of 1 million apps.9

As result, the dataset under analysis is composed by 65%
undetected applications, 31% detected by signatures, and 4%
detected through triage only.

A. EVALUATING CLUSTERING RESULTS
HDBSCAN has two parameters that mostly influence the
results of the clustering: min cluster size (mss) determines
the smallest size of a cluster, while min samples (ms) how
conservative are the results. A higher value of min samples
restricts clusters to more dense areas, but it also increases
the number of outliers. We use mss = 3 and ms = 1; in
other words, we considered only malware clusters containing

9In order to ensure the quality of the results and avoid artifacts, the
sampling of 1 million applications have been repeated three times: in all the
cases the proposed techniques showed coherent results.

a minimum of three samples as representative of a malware
family.

We used a high-performance, open-source implementa-
tion of HDBSCAN in Python from Leland McInnes [21].
All experiments were performed on a 6-core Intel Xeon (CPU
E5-1650 v2 @ 3.50GHz), with 128 GB of RAM, although
HDBSCAN only used up to four cores and 6 GB of RAM in
each run.

The quality of the clustering results is evaluated as a mea-
sure of the ability of correctly extending malware detection
to undetected applications. However, given the difficulty of
establishing a reliable ground truth in the field of malware
analysis, evaluating the results was challenging. Finally, for
the clustering validation we used all the available informa-
tion: detection results and AVs labels extracted from Virus-
Total reports, and signature labels extracted from existing
YARA rules in Koodous.

Since clustering exploits the relationship between sta-
tistical similarities among applications, in contrast to the
structural properties commonly used in AVs signatures,
no one-to-one correspondence between clusters and AV
labels is expected, however by combining several indexes we
deliver a trustworthy quality measures of clustering perfor-
mances. In order to estimate cluster assignment, we adopt
the Adjusted Rand Index in combination with other external
indexes as proposed by Rosemberg and Hirschberg [22]:
• Adjusted Rand Index (ARI) is defined as the number of
pairs of items that are either both in the same cluster
or both in different clusters in the two partitions, nor-
malized over the total number of pairs of items. The
index lies between 0 and 1: when two partitions agree
perfectly, the Rand index achieves themaximumvalue 1,
and more in general a larger adjusted Rand index means
a higher agreement between two partitions. Moreover,
ARI supports the measure of the agreements even
when the compared partitions have different numbers of
clusters

• Homogeneity (Hom.), which measures whether its clus-
ters contain only data points which are members of a
single class

• Completeness (Comp.), which measures whether all the
data points that are members of a given class are ele-
ments of the same cluster

• V-measure (V-ms.), measured as the weighted harmonic
mean of homogeneity and completeness; this is use-
ful since homogeneity and completeness of a cluster-
ing solution run roughly in opposition: increasing the
homogeneity of a clustering solution often results in
decreasing its completeness.

Table 4 compares homogeneity and completeness index
values between the families (i.e., clusters) inferred dur-
ing clustering process, and the families labels extracted
from Koodous signature names and VirusTotal AV labels.10

10The comparison with VirusTotal AV labels is limited to 100,000 ran-
domly selected applications.
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TABLE 4. Comparison of Homogeneity (Hom.) and Completeness (Comp.)
index values between the families inferred by the clustering process
(using both the iterative clustering with different chunk sizes N , and the
non-iterative version), and the families labels extracted from Koodous
and VirusTotal.

Results are compared using both the iterative clustering, with
different chunk size N , and the non-iterative version.
Since AVs listed in VirusTotal commonly use different

names to identify the same type of threat, we took advantage
of AVclass [23], an automated labeling tool that, given the
labels of multiple antivirus engines, returns the most likely
family names for each sample, focusing on normalization,
removal of generic tokes and alias detection. The implemen-
tation is open-source, available on GitHub [24], and natively
provides VirusTotal integration.

Interestingly, all the cases reported in Table 4 show very
high homogeneity value, which indicates that malware fam-
ilies identified by AVs signatures are further split in finer
partitions during the clustering process. Moreover, precise
clusters increase the effectiveness of the following automati-
cally generaged signatures.

FIGURE 4. Number of total applications, and newly automatically inferred
detections, for each type of malware family (Type 2...6). Results refer to
the iterative clustering approach, using chunk size N = 100k , over a
dataset of 1 million applications.

1) EXTENDING MALWARE DETECTION
Fig. 4 illustrates the result of the automatic detection exten-
sion for the 1 million applications under analysis: each bar in
the plot is related to a family type (refer to Section IV-B for
an accurate description of each type of malware family), illus-
trating both the total number of applications, and the number
of those automatically identified as malicious. Results are
obtained using the iterative clustering approach, with chunk

sizeN = 100k . Note that Type 1 and 7 families are not shown,
as the first consist of application that are already completely
detected by signature, while the latter include families found
within unknown applications, hence no direct information
about their composition can be automatically inferred.

TABLE 5. Number of families automatically inferred by the clustering
algorithm (using both the iterative clustering with different chunk sizes N ,
and the non-iterative version), using dataset of 1 million applications.
Results are gathered for each type of malware family (Type 2...6).

Table 5 is complementary to Fig. 4, as it compares the
number of families, for each family Type, using both the
iterative clustering with different chunk sizes N , and the
non-iterative version.

Among the clusters of Type 2 and 3, the system automat-
ically identifies a total of 21,450 new malicious applications
that will be automatically covered by new signatures, with-
out requiring any human intervention. In more detail, 5,386
applications (Type 2) are found within clusters with other
apps already detected by YARA signatures; while 16,064
applications (Type 3) are assigned to clusters purely made of
applications detected during the triage phase only. As matter
of fact, generating new family signatures for these applica-
tions allows to transform the knowledge of existing threats
into a more reliable and scalable form of detection, without
affecting the precision of the results: all those applications
have been already identified as malicious by the community
of malware experts.

On the other hand, 34,818 applications are assigned to fam-
ilies Type 4, 5 and 6: 20,464 are the newly identified potential
threats, since previously marked as undetected. In this case,
the proposed framework allows an easy identification of hard
to find potential threats, reducing the human intervention
from the manual analysis of thousands of applications to
the validation of a very fewer number of families where
applications reflect a similar behavior, eventually speeding
up the procedure of newmalware discovery. For example, the
system identified a total of 500 families for the Type 4 (refer
to Table 5, second row) reducing of an order of magnitude the
need of manual analysis, as a detail analysis of a malicious
application could take few hours, this approach results in a
huge time saving.

2) EVALUATION OF MALWARE DETECTION EXTENSION
Aiming at evaluating the detection extension performance
in a real-world case, we evaluate how the proposed system
is accurate in relationship to the information of the detec-
tions availavable in VirusTotal. We choose VirusTotal as
a well-known and trustworthy source of information about
existing threats since it collects the detection results from
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tens of independent AV companies. Moreover, recently other
researches used the same metric [25].

TABLE 6. Comparison of the detection results between VirusTotal and
two datasets of 50,000 applications, respectively undetected (und.) and
detected (det.) by Koodous. Columns indicate the number of applications
unknown (unk.), undetected (und.), detected by at least one AV (det.), and
detected by more than three AVs, as reported by VirusTotal.

In order to evaluate the detection extension results,
we firstly assessed how precisely Koodous detects malware
samples, and how effectively covers all the malware vari-
ants. Starting from two randomly sampled subsets of 50,000
applications, respectively originally undetected and detected
in Koodous, we cross-checked their maliciousness using
VirusTotal. Results are illustrated in Table 6. The first line
of the table (Koodous det.) shows that among detected appli-
cations, Koodous has 100% of precision, and very high
recall (99.8%), as almost all Koodous detected applications
are completely identified as malware by traditional AVs too,
while only 100 applications (the 0.2% of the dataset) are
unknown or undetected by VirusTotal. However, the sec-
ond line of the table (Koodous und.) shows a very low
accuracy (27.8%), as a consequence of a major diversity
in the detection ratio among the applications undetected by
Koodous and VirusTotal. Although such a difference could
be partially explained by the different policies that traditional
AVs use in identifying a malicious application, particularly
regarding adware, this result further motivates the need of
an automatic mechanism to increase the number of correct
detections in Koodous.

With the awareness that VT detection results are not
completely reliable, we only considered those clusters for
which the VT information is available for all the applications.
In order to calculate the accuracy of the proposed system,
we adopted the following metrics:
• if the system proposes an extension to a malware family
where all the applications are detected by VT, we con-
sider the extension as correct;

• if the system proposes an extension to a family where all
the applications are undetected by VT, the extensions is
considered as incorrect;

• if the system proposes an extension to a cluster that
mixes applications partially detected and undetected by
VT, the result is considered unknown.

Table 7 illustrates the results. For each clustering experi-
ment, each line of the table reports the number of applications
that have been correctly or wrongly classified, according to
the type of the cluster to which they were assigned. Without
any human intervention, the system scores a minimum accu-
racy that ranges from 86.04% to 91.23%, and it has a worst
case error of the 6.18%. A further manual inspection of the
results revealed that several families completely undetected

TABLE 7. Evaluation of the accuracy of the clustering system to
automatically identify groups of malicious applications, by comparing the
detection of the new applications with VirusTotal. Columns Correct and
Incorrect respectively reports the number of applications correctly or
wrongly classified, while Min and Error illustrate the minimum precision
and the maxim error of the proposed approach. Results are reported
using both the iterative clustering with different chunk sizes N , and the
non-iterative version.

by VT are mostly related to aggressive adware samples,
whose classification is subject to different considerations.
Furthermore, results show that a smaller chunk size increase
the precision the detection, reducing the error, although the
absolute number of applications automatically extended is
smaller. Accordingly, the chunk size can be set in accordance
with the needs of the system.

TABLE 8. Example of a Type 4 malware family. As the first two samples
are already detected in Koodous by the YARA rule Xynyin.Trojan, the
system identifies other applications within the cluster as potentially
malicious too. The comparison with VirusTotal (the number of detection is
reported) and a manual analysis confirm the accuracy of the system.

3) EXAMPLE OF MANUAL ANALYSIS OF A MALWARE FAMILY
Table 8 shows an example of a Type 4 malware family.
As the first two samples are already detected by the signature
Xynyin.Trojan11 in Koodous, the system proposes to extend
the detection to the other applications of the same cluster.
The comparison of the detection results with VirusTotal12

shows that all but one application are already detected, while
a manual analysis of Leagueoftankheroes3D13 confirm its
affinity to the Xynyin malware family.14

One of the major benefit of a semi-supervised system is
to limit the detection of false positives, and the operation is
further simplified since the analysts should only focus on
groups of similar applications, without considering single
samples. As useful side effect, the system could be also used
to improve the precision of the results, by reducing false

11https://koodous.com/rulesets/1225
12Detection results refer to 15 Nov 2016
13MD5: 695d6b9f97a9e992f8e321d36509c080
14On 24 August 2017 VirusTotal updated the detection, identifying the

applications as malicious too.
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positive detections for those families of applications that have
been partially miss-classified by existing signatures.

TABLE 9. Comparison of the clustering results using using both the
iterative version with different chunk sizes N , and the non-iterative one.
Column Time indicates the time (in seconds) required by the clustering
process, while column ‘‘Outliers’’ reports the number of outliers found at
the end of the iterations.

4) THE ITERATIVE ALGORITHM
The adoption of the iterative approach brings a number of
benefits: it proved to be essential in order to analyze millions
of applications, and the resulting number of outliers, as illus-
trated in Table 9, is much lower than what was obtained by
clustering all applications together. The time required by the
clustering phase is proportional to the chunk size and it is up
to one order of magnitude lower than in the non-iterative case.
The adoption of the iterative approach does not affect the

quality of the results, even though using a bigger chunk size
results in a greater number of new detections.

TABLE 10. Indexes comparison of the clustering label inferred by the
iterative approach (with different chunk sizes N) using the assignment
produced by the non-iterative version as a reference.

Table 10 compares the iterative approach using as a ref-
erence clustering assignment the one produced by the non-
iterative version. A relatively low ARI value indicates a
difference in the clustering assignment between the two
approaches, while a very high homogeneity value, compared
to completeness, is a clear sign of a finer cluster partitioning.
In other words, using the iterative approach the quality of
the information is not compromised, although the resulting
clusters are smaller, hence less likely to contain enough appli-
cations that span different detection areas, finally resulting
in a lower extension. A bigger chunk size lowers the differ-
ences between the iterative and the non-iterative assignment,
as shown by an increasing V-score value. Eventually, if a
large enough chunk size is used, the iterative approach pro-
duces almost the same results as the non-iterative one, while
generally finding a higher number of clusters, as illustrated
in Table 5, and a less outliers, Table 9.

Finally, in order to further test the scalability of the pro-
posed method, we successfully applied the algorithm on a
very large dataset of 10 million applications, using a chunk
size N = 500k .

B. AUTOMATIC FAMILY SIGNATURES GENERATION
In order to evaluate the effectiveness of the automatic signa-
ture generator, we compare the detection results of several
YARA rules automatically generated by the proposed algo-
rithm with existing rulesets created by expert analysts.

TABLE 11. Comparison of detection performances of human authored
YARA rules (Original) with automated generated ones (Auto). Last column
reports the improvement (in percentage) for the newly generated rules.
Detections are tested on a dataset of 1.5 million applications.

Table 11 reports the results of the rules detections on
a dataset of 1.5 million applications: in all the cases, the
automated generated rules15 performed better than the one
authored by humans, increasing the detection from the 8.2%
up to 131.2%, without generating any false positives.

Referring to Section IV-C, in all the cases the rule gen-
eration process stopped at the second step, as none of the
new rules produced any false positives in the current dataset
of applications. A further manual analysis of the detected
applications, confirmed that no false positive was generated.

As shown in Table 12, the time required to generate a
rule for few hundreds malware is always less than a minute,
although when the target increases to a few thousands appli-
cations, the time required grows up to several minutes, as the
most expensive part of the process is the check for false
positives against a reference dataset. This is not considered
a limitation, since all the process is automatic, and given the
goodness of the results, it is of invaluable support for the
family signature generation process.

TABLE 12. Number of literals, score and time (in seconds) required to
generate each YARA rule.

Table 12 reports the number of literals (i.e., application
features) and the final score for each generated YARA rule:
referring to Section IV-C, each score is higher than the
minimum threshold Tmin = 400, satisfying the minimum

15Example rulesets could be found at the following address: https://
koodous.com/analysts/YaYaGen/rulesets
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requirement for acceptability in order to avoid false pos-
itive detections, and lower than the maximum threshold
Tmax = 700, as a result of the optimization process to increase
the rule generality and therefor the ability to catch future
malware variants.

As shown in the example of Section IV-C, in order to
increase the effectiveness of a rule, urls are included only
if are known to be malicious, like in case of http://
s.adslinkup.com/v2 for the Syringe malware family.
Moreover, aiming at identifying malware with very high
precision and avoiding false positives, whenever available,
the automatic signature generator includes those attributes
extracted from the application analysis that contains a typing
mistake. For instance, the rule YaYaMetasploit116 includes
a wrong permission ACCESS_COURSE_LOCATION instead
of the correct one ACCESS_COARSE_LOCATION. Given
the difficulty of reproducing such an uncommon mistake,
we consider this feature as a hard indicator of the malicious-
ness of a sample.

VI. RELATED WORK
A. CLUSTERING APPLIED TO MALWARE ANALYSIS
The first attempt to automatically group computer malware
based on their behavior dates back to Lee and Mody [26],
who use a sequence of runtime events (e.g., registry and
file system modifications) to cluster similar programs. As a
similarity measure, they choose a variant of the edit distance,
resulting demanding in term of computational resources,
since it has a computational complexity O(n2) in the
number n of features.

Later, Bailey et al. [27] propose a system for automated
malware classification and analysis as a remedy for the
inconsistent and incomplete labeling that commonly affect
traditional antivirus. By applying single-linkage Hierarchical
agglomerative clustering (HAC) with Normalized Compres-
sion Distance (NCD) and using inconsistency measure as a
cutting criteria, Bailey et al. are able to automatically catego-
rize malware profiles into groups that reflect similar classes
of behaviors in terms of system state changes. While results
are generally affected by the restriction of dynamic analysis,
for the first time they introduce the idea of ‘‘detection through
clustering,’’ exploited in our proposed framework.

In their work, Apel et al. [5] study which combination
of metrics (i.e., Edit Distance, Approximated Edit Distance
with Blockwise Hashing, NCD andManhattan Distance) and
n-gram features are mostly appropriate for determining rela-
tions between malware samples. They define three differ-
ent criteria to support their evaluation (i.e., appropriateness,
computable efficiency and local sensitiveness), using single-
linkage HAC as clustering algorithm. Experimental results
show that Manhattan Distance along with 3-grams deliver the
best results, while NCD and Edit Distance generally perform
poorly.

16https://koodous.com/my_rulesets/3466

Neither Lee and Mody [26], nor Bailey et al. [27] have
any specific solution to large-scale clustering. On the other
hand, Bayer et al. [13], Rieck et al. [28], and Jang et al. [12]
directly address the problem of managing large datasets,
developing methods to scale the clustering process.

Bayer et al. [13] propose a scalable malware clustering
approach using a combination of approximate and hierar-
chical clustering with Local Sensitive Hashing (LSH) [29]
to significantly reduce the number of distance computa-
tions. By extending Anubis [30], they are able to extract
detailed behavioral-reports based on taint tracking results
and network captures from malware execution. In particular,
the taint engine allows them to map low-level operations
(e.g., system calls) to operating system objects (e.g., registry
keys and files). By deploying LSH, Bayer et al. are capable of
clustering 75,000 samples in less than 3 hours. By contrast,
Rieck et al. [28], [31] proposes an incremental approach,
where they alternate a prototype-based clustering algorithm
with a classification step, eventually reducing the runtime
complexity by performing clustering only on representative
samples.

Jang et al. [12] develop BitShred as remedy to the problem
of clustering large data sets with high-dimensional feature
sets. They propose to use feature hashing to reduce the dimen-
sionality of high-scale feature sets, while reducing the com-
putational cost of the calculation of the Jaccard index using
an approximated version that exploits bit-vector arithmetic.
However, since BitShred simply relies on a static analysis
approach, results are susceptible to binary level obfuscation.

In 2010, Perdisci et al. [11] propose a network-based ver-
sion of a behavioral malware clustering system, relying on
a three-step clustering refinement process, starting from the
analysis of malicious HTTP traces. The first phase consists
in a coarse-grained clustering where malware samples are
grouped together according to simple statistical similarities;
subsequently, a fine-grained clustering further splits samples
considering structural properties of HTTP queries. In the
final step, fine-grained clusters whose centroids are close
to each other are merged together. The system is tested
on HTTP traces generated from 25,000 applications using
single-linkage HAC and the Davies-Bouldin (DB) validity
index [32] as cutting criteria. While the underlying idea of
a multi-step clustering refinement process is quite interest-
ing, this practically results in the biggest limitation to the
scalability of their work. Moreover, Perdisci et al. limit
behavioral analysis to HTTP-based malware only, which in
practice can be easily bypassed by using an encrypted proto-
col (e.g., HTTPS).

In 2013 Hu et. al [10] present MutantX-S, focusing on
malware comparison and triage on a large scale. Their system
falls into the static-analysis category, since it relies on features
extracted from the malware instructions. MutantX-S can effi-
ciently cluster a large number of samples into families based
on program static features, by extracting N-gram features
directly from the x86 opcode sequences and exploiting a fea-
ture hashing technique to reduce features dimensionality, thus

VOLUME 6, 2018 59551

http://s.adslinkup.com/v2
http://s.adslinkup.com/v2


A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

significantly lowering thememory requirement and computa-
tion costs. MutantX-S adopts the same prototype-based algo-
rithm of [31] because of its efficiency and explicit expression
of malware features.

In the Android context, ClusTheDroid [33] is the first
research to combine behavioral analysis and clustering to
specifically target Android malware. The goal is both to
develop a tool, and to evaluate clustering alternatives. Finally
they focused on single and complete linkage HAC, using a
feature set composed of 38 numerical quantities extracted
from the CopperDroid [34] report, and weighted according
to a three-level interpretation of malware behaviors.

Differently frommost of the previous works [5], [11], [13],
[27], [33] that rely on the HAC algorithm (which is both com-
putationally and storage expensive, respectively O(n2 log n)
andO(n2) [35]), we use HDBSCAN, that with N data points
has an average complexity approximately O(N logN ) [20],
and a space requirement O(n), making it applicable to large
datasets. Furthermore, differently from [31], we devise an
iterative clustering approach where HDBSCAN is iteratively
applied over the entire dataset, without the needed of alternate
any classification step, finally discovering precise families of
applications with a shared behavior.

B. EVALUATING CLUSTERING RESULTS
The clustering problem is inherently ill-posed, in the sense
that there is no single criterion that measures how well a clus-
tering of the data corresponds to the real world [36]. Cluster
validity analysis often involves the use of subjective criteria
of optimality specific to a particular application. Therefore,
no commonly accepted standard of validating the output of a
clustering procedure exists [37]. In real-world applications,
it is often completely infeasible to manually investigate the
results of a clustering, making necessary the definition of
automatic measures [33]. Helpful metrics to determine the
quality of a clustering process are commonly classified in
internal and external indexes. The former evaluates both clus-
ter cohesion and separation, which determine how distinct or
well-separated a cluster is from others. On the other hand, the
latter uses a reference set as a means of quality control for the
setup of the clustering algorithm [33].

In the field of malware analysis, clustering validation is
further complicated by the intrinsic difficulty of establishing
a reliable ground truth. Firstly, malware analysis is challeng-
ing and it gets more difficult when anti-analysis, triggering
sequences and dynamic code loading techniques are in place.
Secondly, not even a manual categorization would provide
a reliable partition, since most of the malware could not
be unequivocally assigned in categories; not to mention the
unrealistically high amount of time it would require.

As a reference set is not available, one possibility is to
take advantage of labels assigned to each malware sample
by several antivirus scanner. The availability of services that
specifically provide these results (e.g., Metadefender17 or

17https://metadefender.opswat.com

VirusTotal18) eases the procedure. However, there is an intrin-
sic complexity in defining a unique labeling schema, since
most of the malware result in being marked as belonging to
one malicious category only. As a matter of fact, Bailey et.
al. [27] showed that antivirus labeling fails in satisfying three
fundamental criteria: consistency among different products,
completeness in malware tagging, and conciseness in label
semantics. One possible explanation is that signatures used
in the malware-matching algorithms mostly evaluate static
properties of the binary, in contrast to behavioral properties:
the result is that families found using static features might
be quite different from ones established using behavioral fea-
tures.Moreover, different AV products apply different criteria
and granularity to rule generation, resulting in inconsistent
results. Despite the complexity and intrinsic challenges of the
procedure, given the importance of automatically building a
malware reference dataset to evaluate clustering results, the
problem was directly tackled in different researches, such as
VAMO [38] and AVclass [23].

In the literature of malware clustering, several techniques
are proposed. Bayer et al. [13] and Jang et al. [12] use pre-
cision and recall to compare the results of their system-level
behavioral clustering to a reference dataset, defining amanual
mapping between labels assigned by different AVs. However,
as the dataset size increase this method becomes hardly sus-
tainable and quite costly. Similarly, ClusTheDroid [33] used
a reference set developed through manual analysis [39].

On the other hand, Apel et al. [5] choose to take into
consideration the amount of ‘‘shared behaviour’’ that can be
found among different analysis traces within the same cluster
of applications. In practice, each system call is modeled as
a single character, and the evaluation is computed in linear
time finding all substrings in a generalized suffix tree, using
the algorithm described in [40]. The main limitation of this
technique is related to the choice of the reference dataset,
since Apel et al. use an artificial dataset starting from three
real-world malware traces, then divided into blocks of system
calls and randomly permutated.

Differently, Perdisci et al. [11] tackle the problem by mea-
suring the cohesion and separation of each cluster, in terms
of agreement between labels assigned by cluster and multiple
AV scanners. However, since AV labels have been shown to
be inconsistent [41], the measures of cluster cohesion and
separation only give an indication of the validity of the clus-
tering results.

C. SIGNATURE-BASED DETECTION
Early AV products used the hash value of an application to
detect malicious software. However, every modification in
the source code, as tiny as one byte, results in a detection
evasion. Today’s signatures are pattern-matching rules com-
monly defined on static or dynamic properties of applications
under analysis and, even though they are assisted by heuristic

18https://virustotal.com/
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and AI-based solutions, still represent the most reliable
(i.e., with the lowest false positives) antivirus technology.

1) AUTOMATIC SIGNATURE GENERATION
A number of prior works propose systems to automatically
generate different types of network signatures to identify
malicious traffic.

Honeycomb [42], Autograph [43], and EarlyBird [44] pro-
pose the generation of signatures comprising a single contigu-
ous string (i.e., token). Later on, PAYL [45], Nemean [46],
Hamsa [47] and Botzilla [48] introduce more complex meth-
ods based on the token subsequence signatures.

Other researches like ProVex [49], AutoRE [50],
ShieldGen [51], and [52] also tackle the problem of automat-
ically generating network signatures, although their applica-
bility is specific to the network traffic detection.

In 2005, Newsome et. al. introduces Polygraph [53], a sys-
tem which exploits the Token-Subsequence algorithm to
automatically obtain IDS signatures to match polymorphic
worms. Polygraph is tested against three real-world exploits
and is able to successfully generate HTTP and DNS signa-
tures with a low false positive rate.

Perdisci et al. [11] also tackles the problem of automati-
cally generate network signatures for cluster centroids, with
the aim of deploying them into an IDS at the edge of a network
in order to detect malicious HTTP traffic. Since malware
samples may contact legitimate websites for malicious pur-
poses, instead of pre-filtering HTTP traffic against legitimate
websites, authors apply a pruning process by testing the
signature set against a large dataset of legitimate traffic, while
discarding signatures that generate false positives, although
such an approach is as effective as it is the legitimate traffic
available.

In the Android context, Faruki et al. [54] propose
AndroSimilar, a statistical signature-based solution that gen-
erates variable-length signatures for the application under test
and identifies malware on the basis of a similarity percentage
with a dataset of known malicious samples.

Another approach is presented in DroidAnalytics [55],
a signature-based analytic system, which extracts and ana-
lyzes applications at opcode level. Firstly, a three-level sig-
nature (i.e., methods, classes, application) is generated by
combining the API call traces, then the malware is associated
to a family according to its malicious content.

While [54] shows robustness against control-flow obfusca-
tion, junk method insertion and string encryption, [55] could
fail in the detection of repackaged malware. On the the other
hand, both solutions are affected by a high false-positive rate
due to the wrong choice of signature patterns available in both
malicious and benign applications.

Since the release of YARA [56], a patten-matching
language designed to help to identify and classify malware
samples, a few automatic tools have been proposed to gener-
ate malware signatures which balance the required generality
to catch future samples with the need of avoiding false posi-
tives detections.

In 2013, Chris Clark develops YaraGenerator,19 a python
program which automatically generates YARA rules by sam-
pling a small subset of common strings between malware,
while blacklisting goodware ones. Although the tool is
designed to work with any type of malicious file, in order
to increase the efficacy of the results, specific dataset
of goodware strings are available for several file formats
(e.g., Windows executable, PDF, email and office document).

Similarly, yarGen20 is a python tool developed by Florian
Roth to automatically generate YARA rules by combining
the topmost malware strings, while removing those that also
appear in goodware files. By using fuzzy regular expressions,
each malware string is assigned a score proportionally to
the inverse of its frequency, and the ‘‘Gibberish Detector’’
allows to select real language over character chains without
any meaning. The tool also exploits a naive-bayes-classifier
to classify candidate strings, avoiding compression or encryp-
tion garbage in favor of more generic strings. Finally, each
rule is created by combining the 20 strings with the highest
score. The result of the generation process may be a single
rule, specific to one sample, or a super rule, catchingmalware
variants and groups.

While both YaraGenerator and yarGen have been devel-
oped aiming at supporting the rule creation, rather then
completely replacing the role of expert analysts, as a major
drawback, their efficacy strongly relies on the completeness
of the dataset of goodware strings.

Differently from previous works, which mostly rely on
the search of an optimal sequence of opcodes or strings,
the proposed algorithm generates signatures from a set of
attributes extracted from the application analysis, finding an
optimal combination to minimize false negatives and guaran-
tee zero false positives in the current set of applications. None
of the previous researches can be directly applied to solve
such a problem. Moreover, the proposed approach exploits
an heuristic measure to find the right balance between rule
generality and specificity, using the same criteria that expert
analysts adopted while authoring existing rulesets.

VII. LIMITATIONS
A major limiting factor of the described semi-supervised
approach is represented by the ability to extract meaningful
information from the applications under analysis. Indeed, the
accuracy of the analysis directly affects the clustering results
and the automatic rule generation process. The Android plat-
form lacks of mature reverse engineering tools compared to
the ones used for x86 malware [57]. Since each malware
is different, automatically finding the malicious code by
means of static analysis is difficult, because it is mixed with
benign code; moreover dynamic code loading and reflections
make the analysis even harder. Unfortunately, most malware
include trigger-based anti-analysis techniques that delay or
hide their malicious activities at the first application run

19https://github.com/Xen0ph0n/YaraGenerator
20https://github.com/Neo23x0/yarGen
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or in an emulated environment. For instance, the family of
applications known as DroidKungFu21 uses a time bomb
of 240 minutes to schedule the execution of its malicious
code, indeed a simple dynamic analysis fails to observe inter-
esting behaviors. However, in this research we do not address
problems related to application analysis, as we focus on the
detection of new samples and the automatic generation of new
signatures.

Evasion attacks, such as noise-injection attacks [58] and
other similar approaches [59]–[62] may affect the correctness
results of the clustering and the signature generation. Those
attacks rely on the ability of injecting, in the analysis plat-
form, applications specially crafted to mislead the clustering
process and the generation of a good detection model.

In the described system, an attacker could exploit such
attacks by injecting specially crafted applications with the
final goal of generating a false positive or a false negative
detection. However, in both cases we assume that the detec-
tion information of already known threats (identified through
signatures or by triage) cannot be maliciously tampered, thus
new injected families will result in a Type 4, 5, 6 or 7, hence
will be subject to manual validation.

If the attacker wants to deliberately generate a false
positive, several malicious applications whose statistical
properties are similar to a target goodware can be injected.
Since a false positive detection mainly generates a disruption
to a third party service, causing a reputation fail for the AV
solution, the magnitude of the echo is proportional to the
diffusion of the target goodware. As a matter of fact, the
analyst will be alerted by such a family.

On the other hand, if the goal is to generate a false negative,
the attacker could inject several goodware with the same
statistical properties of a target unknown malicious app. Such
a family could be misclassified as a completely goodware
even after the validation process, as the manual analysis focus
only on few samples. However, such a situation applies only
as far as the malware is a zero-day, and no specif knowledge
about that threat is available. The identification of zero-day
malware is a challenging and an open-research problem in the
security community.

Finally, the proposed system strongly relies on the infor-
mation provided by the platform to automatically extend
the detection to new applications and identify new potential
malware families. It is a prerequisite that this information
is not tampered by any malicious actor. Although Koodous
provides protection mechanism for both YARA rules (rules
before becoming active undergo a review process) and the
triage process (community members are subject to a reputa-
tion check), it is not intent of this research to tackle those
issues, leaving their study to future works.

VIII. FUTURE WORKS
The work presented in this paper can be improved and
extended in a number of ways. At the time of writing, we are

21Sample MD5: 7f5fd7b139e23bed1de5e134dda3b1ca

focusing our efforts on the correct management of new sam-
ples collected every day. Since the current version of the sys-
tem does not allow to incrementally add new applications to
the existing model, when enough samples are collected, those
are treated as a new iteration of the clustering process. As an
alternative to the iterative approach, incremental clustering
algorithms have been proposed [63]–[65], although still non
directly applicable to HDBSCAN. Their study and adoption
will be addressed in future works.

IX. CONCLUSION
In this paper, we introduced a set of semi-supervised tech-
niques with the ultimate goal of assisting human experts in
the generation of malware family signatures. As a result,
we developed a scalable framework able to dig into massive
datasets of Android applications with the main purpose of
identifying new malware samples, while reducing false posi-
tive detections.

Our study shows that combining the scalability of the
automatic techniques with the inherent flexibility of the
manual analysis, achieves the best performances. Eventually,
the proposed approach introduces two essential automation
improvements in a well known and testedAVs standard detec-
tion mechanism based on signatures. An iterative clustering
algorithm allows for easy identification of hard to find poten-
tial threats, reducing the human intervention from the manual
analysis of thousands of applications to the validation of a
much smaller number of clusters where applications reflect a
similar class of behavior. Subsequently an automated proce-
dure, which exploits a heuristic optimization strategy, gener-
ates a set of YARA rules to cover newly identified malware
with an acceptable generalization capability yet minimizing
false positives.

Experimental results on a dataset of 1.5 million distinct
Android applications confirm the effectiveness of the pro-
posed system, both in the identification of new malware
samples and in the generation of new family signatures in the
form of YARA rules.

Finally, the proposed approach has been deployed in Jan-
uary 2018 and, since then, it is in use on Koodous, the mobile
antivirus platform developed by Hispasec.
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