POLITECNICO DI TORINO
Repository ISTITUZIONALE

Countering Android Malware: a Scalable Semi-Supervised Approach for Family-Signature Generation

Original

Countering Android Malware: a Scalable Semi-Supervised Approach for Family-Signature Generation / Atzeni, Andrea,;
Diaz, Fernando; Marcelli, Andrea; Sanchez, Antonio; Squillero, Giovanni; Tonda, Alberto. - In: IEEE ACCESS. - ISSN
2169-3536. - ELETTRONICO. - (2018), pp. 59540-59556. [10.1109/ACCESS.2018.2874502]

Availability:
This version is available at: 11583/2714860 since: 2018-12-05T10:03:54Z

Publisher:
IEEE

Published
DOI:10.1109/ACCESS.2018.2874502

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

09 April 2024

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 31, 2018, accepted September 21, 2018, date of publication October 8, 2018, date of current version October 31, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2874502

Countering Android Malware: A Scalable
Semi-Supervised Approach for

Family-Signature Generation

ANDREA ATZENI', FERNANDO DIiAZ2, ANDREA MARCELLI"’", ANTONIO SANCHEZ?,
GIOVANNI SQUILLERO ", (Senior Member, IEEE), AND ALBERTO TONDA?

! Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, 10129 Turin, Italy

2Hispasec Sistemas S.L., 29001 Milaga, Spain
3INRA, UMR 782 GMPA, 78850 Thiverval-Grignon, France

Corresponding author: Andrea Marcelli (andrea.marcelli @polito.it)

The work (Ph.D. program at Politecnico di Torino) of A. Marcelli was supported by the fellowship through the TIM (Telecom Italia Group).

ABSTRACT Reducing the effort required by humans in countering malware is of utmost practical value.
We describe a scalable, semi-supervised framework to dig into massive data sets of Android applications
and identify new malware families. Until 2010, the industrial standard for the detection of malicious
applications has been mainly based on signatures; as each tiny alteration in malware makes them ineffective,
new signatures are frequently created — a task that requires a considerable amount of time and resources
from skilled experts. The framework we propose is able to automatically cluster applications in families
and suggest formal rules for identifying them with 100% recall and quite high precision. The families are
used either to safely extend experts’ knowledge on new samples or to reduce the number of applications
requiring thorough analyses. We demonstrated the effectiveness and the scalability of the approach running
experiments on a database of 1.5 million Android applications. In 2018, the framework has been successfully

deployed on Koodous, a collaborative anti-malware platform.

INDEX TERMS Semi-supervised learning, clustering, android, malware, automatic signature generation.

I. INTRODUCTION

Android’s first malware, FakePlayer, was released in
August 2010 [1] and, since then, the number of new malware
steadily increases [2]. After only seven years, malware pro-
grams are hundreds of times bigger than the old FakePlayer,
hide their presence and activities, and they can even commu-
nicate secretly through complex anonymous networks.

Android offers an open market model, where millions of
applications are downloaded by users every day. While appli-
cations from the official Google Play store undergo a review
process to confirm that they comply with Google policies [3]
other third-party markets do not. Hence, a typical pattern
among malware developers is to repack popular applications
from Google Play by adding malicious features and distribute
them to third-party app-stores, leveraging apps popularity to
accelerate malware propagation.

In the personal-computer ecosystem, malware develop-
ers commonly exploit executable packing and other code
obfuscation techniques to generate a large number of poly-
morphic variants of the same malicious application [4], [5].
As a consequence antivirus (AV) software are struggling to
keep their signature database up-to-date, and AV scanners

suffer from a considerable quantity of false negatives [6].
Moreover, the malicious code is often reused and customized
to fit different needs. For example, a developer may reuse
the rootkit installation code, while replacing the modules that
provide network connectivity to a Command-and-Control
server.

By the end of 2010s, the Android ecosystem is fac-
ing a similar scenario, although the situation is exacer-
bated by the simplicity of malicious repackaging [7]. That
is an alteration of the original application installation pack-
age (i.e., the APK file), where legitimate applications are
reverse engineered, modified to include malicious code,
signed with a new signature, and eventually distributed for
download. Since applications consist of bytecode, changes
are relatively easy to implement and ad-hoc tools assist the
procedure [8], [9].

The growth of Android malware created a major chal-
lenge for AV vendors to efficiently handle new samples and
accurately label them. Due to the practical impossibility of
manually analyzing the thousands of suspicious samples
received every day, a large fraction is left unlabeled, delaying
the signature generation.

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

59540

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1441-5798
https://orcid.org/0000-0001-5784-6435

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

IEEE Access

While malware variants can be generated at a high pace,
they are likely to perform similar malicious activities when
executed. One possible solution would be to automatically
cluster such applications in a family and focus the manual
analysis on few archetypal samples, with the underlying
assumption that malware bearing significant similarities are
likely to derive from the same code base [10]. Furthermore,
the label of a new sample of a known family could be auto-
matically derived, and existing signatures or other mitigation
techniques could be more easily extended to cover the new
threats.

Eventually, if a large number of malware belonging to
the same family is identified, it may become possible to
define a generic behavioral signature able to detect future
variants with reduced false positives and false negatives [11].
Therefore, a sharp clustering is crucial to help AV companies
categorizing the large amount of samples, avoiding dupli-
cate work, and allowing analysts to prioritize their limited
resources on novel and representative samples [12], [13].

In this article, we describe a semi-supervised system for
the analysis of massive datasets of malicious applications.
We created a platform able to suggest new families of appli-
cations to human experts; the platform also generates an
intelligible YARA rule [14] to identify family members with
high precision. We explicitly minimize false positives, a busi-
ness hazard and a reputation blow for AV vendors. The
approach alleviates human experts from the burden of man-
ually inspecting thousands of Android applications, while
letting them take critical decisions. The main contributions
of this article can be summarized as:

« We introduce a scalable system for the analysis of mas-
sive Android malware datasets based on careful fea-
ture engineering, and a standard clustering algorithm.
The mechanism is demonstrated to be robust and able
to overcome the well-known limitations of traditional
signature-matching mechanisms.

« We propose an algorithm that, starting from a cluster of
samples, generates its family signature as a YARA rule.
Thanks to exact and heuristic evaluations, such rules
are intelligible and appear reasonable to human experts.
Moreover, the algorithm guarantees zero false positives
in the existing dataset, and limits the possibility of false
positives in the future.

o We report experiments on a dataset of about 1.5 million
Android applications, and results show the scalability
of the approach. We use a set of internal and external
indicators to demonstrate that the proposed system per-
forms an accurate and efficient automatic identification
of groups of similar applications. By exploiting limited
data, the framework is able to propose insightful exten-
sions to the rule detecting suspicious applications.

« Finally, our framework has been deployed and it is used
on Koodous,! the mobile AV platform from Hispasec,
since the January 2018.

1 https://koodous.com/

VOLUME 6, 2018

The rest of the paper is organized as follows: Section II
illustrates problem statement and motivation, and Section III
introduces Koodous; Section IV describes in detail the pro-
posed approach, while experimental results and performance
evaluations are presented in Section V; Section VI surveys
related work about Android malware and automated anal-
ysis procedures; limitations and future works are discussed
in Section VII and VIII; Section IX concludes the paper.

Il. PROBLEM STATEMENT AND MOTIVATION

Since the 2000s, academia proposed approaches based on
machine learning aiming at completely replacing humans
in the malware analysis process. In most cases, such pro-
posals fell back into mere classification, that is, supervised
machine learning. The drawbacks included the need of large
amount of accurately labeled, i.e., already analyzed, data,
and the lack of control over the false positives eventually
produced, a major cause of concern for all AV vendors.
As a result, AV companies developed systems mostly based
on the reliable signature-detection mechanism. Even though
signatures suffer from the so-called “specificity” problem,
and new ones need to be frequently generated, they have been
demonstrated effective, scalable, and almost unaffected by
false positives.

The proposed framework is semi-supervised and intro-
duces essential improvements in the identification of sim-
ilar applications and the generation of family signatures.
It combines the scalability of fully automatic techniques for
clustering and the optimization of new family signatures,
while it exploits manual analysis, inherently more flexible
and accurate, in few crucial steps, such as the validation of
newly discovered malware families.

Traditionally, the effort of automatically classifying and
analyzing malware focuses on content-based signatures that
specify binary sequences. Indeed, content-based signatures
are inherently vulnerable to malware obfuscation: even if
all variants of a malicious application share the same func-
tionalities and exhibit the same behavior, they can have tiny
different syntactic representations. As a consequence, a huge
number of signatures needs to be created and distributed by
AV companies.

On the other hand, a rule that automatically identifies
the behavior of a family of samples would be the first step
towards the creation of true family signatures. Such a signa-
ture would match all samples of a family, and would signif-
icantly help to reduce the number of signatures required to
cover it. Moreover, as new samples could be mapped to a fam-
ily behavior already known, the time and effort required to
analyze and reverse engineer new samples would be reduced.

Differently from the previous approaches, the proposed
system generates effective, precise and descriptive rules using
the properties directly extracted from both static and dynamic
analyses. While aiming at reducing false positives and false
negatives, it also exploits an heuristic measure to emulate how
expert analysts write existing signatures.

59541

IEEE Access

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

Ill. KOODOUS

Koodous is a collaborative platform for researching on
Android malware that combines online analysis tools with
social interactions between the analysts. Started in 2014,
in 4 years it collected one of the largest repositories of
Android applications: its databases contain more than 30 mil-
lions of applications, among which 7 millions have already
been identified as malicious. Fig. 1 illustrates the trend of
application submission and detection from October 2014,
until March 2017.

BN Total apps
1000000 Detected apps
=l
LTl
= 800000
]
o
w
2 (00000
a
s
I 400000
E
=
=
200000 “ | ‘ |
(ENMELTEIRER TS LS

Manth ar?:l yn;ar of submission

FIGURE 1. Monthly trend of application submission and detection in
Koodous from October 2014 until March 2017.

Koodous provides both analysis service and end-point pro-
tection: upon submission, each application is analyzed both
statically and dynamically, and the final report is accessi-
ble through a web interface specifically designed to help
analysts detect new malware threats. Analysis tools include
a custom version of Androguard [15], CuckooDroid? and
DroidBox [16].

Instead of relying on a closed group of expert malware
analysts, Koodous takes advantage of an open community
to identify malicious applications. Furthermore, in order to
guarantee high quality results, manual detections are subject
to reputation-based checking. Moreover, protection is guar-
anteed through an Android application, which backs to the
cloud platform to detect most recent threats.>

Koodous uses YARA to describe patterns for detect-
ing malware application: since the creation of high-quality
YARA rules requires a considerable effort, the platform also
offer the possibility to identify malware through a simpler
voting mechanism — an operation referred to as “triage.”
As of July 1, 2018, more than 2.5 millions applications are
detected by triage.*

2https:// github.com/idanr1986/cuckoo-droid
3 https://play.google.com/store/apps/details?id=com.koodous.android

For the up-to-date figure, visit https://koodous.com/apks?
search=rating:%3C-1%20%26%20detected: 1.

59542

IV. PROPOSED FRAMEWORK
Our framework operates through three main steps, detailed
in sections IV-A, IV-B and I'V-C.

1) Similarities among Android samples are discovered
through an iterative clustering process, offering a new
point of view and valuable information to malware
analysts.

2) Families of suspicious applications are identified tak-
ing advantage of the knowledge already available in
Koodous, and extensions to the current detection rules
are proposed.

3) Signatures are generated to identify the malware fami-
lies with an acceptable generalization capability, yet a
reduced risk of false positives in the future.

A. ITERATIVE CLUSTERING

Clustering provides a mechanism to automatically categorize
applications into groups that reflect their similarity, both in
source code and runtime behavior. We exploit HDBSCAN,
a density-based algorithm, as it fits most of our requirements.

Density-based clustering algorithms locate high-density
regions in the feature space; DBSCAN (density-based spa-
tial clustering of applications with noise) is probably the
best known among them [17]. Density-based algorithms can
effectively discover clusters of arbitrary shape and filter out
outliers, eventually increasing cluster homogeneity. Addi-
tionally, the number of expected clusters to be found in the
data is not required: our aim is to discover groups of similar
applications without any prior knowledge about their com-
position, otherwise the number of clusters is hard to guess a
priori.

In 2013, Campello et al. [18] proposed HDBSCAN, a new
density-based algorithm that converts the original DBSCAN
into a hierarchical clustering algorithm. As a matter of fact,
HDBSCAN find clusters of varying densities, and is more
robust to parameter selection. Moreover, it supports the
GLOSH (global-local outlier score from hierarchies) outlier
detection algorithm: during the fitting phase, each data point
is associated to a score that represents its likelihood of being
an outlier; at the end of the process, outliers are selected via
upper quantiles [19].

In low-dimensional spaces, HDBSCAN has an average
complexity of approximately O(nlogn), while its space
requirement is O(n), making it applicable to moderately large
datasets [20].

As the number of samples in malware datasets is in the
tens of millions, we exploit an iferative process where the

original dataset D is divided into m chunks d; of fixed size N

=T

m—1
p=|Jd (1)
i=0

The parameter N balances the quality of the results with the
time required for the analysis, and can be set experimentally
according to the available resources.

VOLUME 6, 2018

https://koodous.com/apks?search=rating:%3C-1%20%26%20detected:1
https://koodous.com/apks?search=rating:%3C-1%20%26%20detected:1

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

IEEE Access

HDBSCAN is applied to each chunk of data d; finding,
at each step, a set of clusters c; and a set of outliers o;. Finally,
all the outliers O = U;”:_Ol 0;, are clustered together in order
to find even those small groups of applications whose samples
are spread through several chunks of data. In the end, the total
number of required iterations is equal to m + 1.

Since HDBSCAN could be executed in parallel on the first
m chunks, the benefit of the iterative approach is the huge
reduction in the time required for the analysis. On the other
hand, few applications could be misclassified as outliers and
the same group of similar applications could be found mul-
tiple times, although, as shown in section IV-B, those corner
cases do not limit the framework efficacy.

1) FEATURES SELECTION

An accurate features selection is a crucial step in every
machine learning approach. As suggested in [11], we exploit
aggregate information: from the analysis result of each appli-
cation, we extract a subset of “‘statistical” properties, meant
as quantitative measure of a malware behavior. Indeed,
we experimentally found that exploiting statistical similar-
ities among applications, rather than ‘“‘structural” proper-
ties which exactly describe the malicious behavior, does not
effectively alter the results, while at the same time, signifi-
cantly reduces the amount of data to process.

Starting from a set of n analysis reports r; provided by
Koodous, each report r; is translated into a feature vector
vi = (fo, . - . , f34) containing the 35 statistical properties.

Table 1 summarizes the features extracted from the results
of the static and dynamic analysis.

In more detail, the static analysis performed by Andro-
guard extracts the features from the Manifest file (i.e., num-
ber of activities, permissions, receivers, filters), and the
source code analysis. The former allows to unveil similari-
ties among applications based on the software architecture
used to develop the application, while the latter models each
application extracting portions of code related to suspicious
API call (e.g., number of calls to SMS API, or IMEI, or other
network related methods). On the other hand, the dynamic
analysis extracts features that model the application interac-
tion with the surrounding operating system both at file system
and network level extracted by DroidBox (e.g., files written,
usage of cryptographic methods, SMS sent), and the network
information extracted by CuckooDroid (e.g., number of DNS
resolved, HTTP requests). These are the standard type of
information extracted in the field of malware analysis.

Because the range of each feature is quite different, the
dataset is firstly normalized so that the features have mean
equal to zero and variance equal to one. Since the choice
of the distance to use during cluster analysis is tied to the
type and the dimension of selected features, we experimen-
tally found that the combination with the Euclidean distance
delivered the best performances.

B. EXTENDING MALWARE DETECTION
Starting from millions of samples, the iterative cluster-
ing (Section IV-A) identifies a smaller number of families

VOLUME 6, 2018

TABLE 1. List of the 35 statistical properties extracted from the analysis
result of each APK file. Features are grouped according to the type of
analysis. Static features are extracted using Androguard both parsing the
Manifest file and looking for interesting API calls in the decompiled
source code. Dynamic features are extracted using DroidBox and
CuckooDroid from the dynamic analysis of the application.

Analysis method Sofware Statistical property

Filters
Activities
Receivers
Services
Permissions

Parsing Manifest file ~ Androguard

Accounts
Advertisement
Browser history
Camera

Crypto functions
Dynamic broadcast receiver
Installed applications
Run binary

MCC

ICCID

IMEI

IMSI

SMS

MMS

Phone call

Phone number
Sensor

Serial number
Socket

SSL

Statically from APK Androguard

Files written
Crypto usage
Files read
Send SMS
Send network
Recv Network

HTTP request

CuckooDroid Hosts
Domains
DNS

DroidBox
Dynamically

composed of strongly related applications. In some cases,
by combining this result with the information already avail-
able in Koodous, these families may be automatically labeled,
as they extend either known threats or legitimate software.
In the other cases, experts are required to manually evaluate
the family, but they need to analyze only few representative
samples of the group and not all applications, therefore drasti-
cally reducing the time required by the analysis. This process
exploits the “clustering assumption” of the semi-supervised
learning algorithms, which states that two points which are
in the same cluster (i.e., which are linked by a high density
path) are likely to share same label. In such a way, the partial
information of few labels extracted from each cluster can be
used to increase the knowledge of all the applications within
the same group.

The set of all applications in Koodous K may be partitioned
into three subsets K = {S U T U U} corresponding to the
applications detected by signatures (S), detected by triage
only (T), and undetected (U); applications detected both by

59543

IEEE Access

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

signatures and in the triage phase belong to the S set. Such
a partition does not reflect a peculiarity of Koodous, as the
usage of a staging area T where samples are pointed out
waiting further analysis is common in AV laboratories.

(" Signatures

Triage only

I 1-'5:“"::: \) h .m:
'-... ’:.‘\- 3 R \:'

Undetected Y XY

FIGURE 2. The figure illustrates the subdivision of the applications in
database and the seven type of families (i.e., clusters) that can be
automatically inferred by the proposed approach. The database is divided
in three macro areas according to the type of detection: applications
detected by signatures, by triage only, and undetected. Each point in the
figure represents an application, and based on the detection status of the
applications within each cluster, the proposed approach identifies seven
possible cases.

It is possible to classify a family according to the different
subsets its applications belong to (Fig. 2). The resulting seven
different types of family correspond to the powerset P(K),
excluding the empty set: { {S}, {T}, {U}, {S, T}, {S, U},
{T, U}, {S, T, U} }

e Typel{Vs € FU |5 e S}. The family is composed of
applications that have been already detected by YARA
signatures. No further action is required, although the
generated family rule may still be effective to generalize
the detection.

e« Type2 (Vs € F@ |s € SUT}. The family includes
applications already identified as malicious either by
YARA, or during the triage process. The correctness
of the detection is either guaranteed by the existing
signatures, or by the triage process (i.e., the community
votes); thus a new YARA rule matching all the applica-
tions in the family can be automatically generated and
added to the detection system without further manual
check.

o Type 3 (Vs € F® | s € T}. The family is com-
posed of applications that have been detected through
the triage process only. The correctness of the detection
is guaranteed by the triage process, and as in the previous
case, a new YARA rule can be automatically gener-
ated and added to the detection system without manual
intervention.

e« Type 4 {Vs € F® | s € S U U}. The family com-
bines applications detected by existing signatures with
undetected ones. In order to avoid false positives, the
correctness of the family must be manually validated
before generating a family signature.

59544

o Type 5 (Vs € FO | s € SUT U U)}. The family
combines applications detected both by signatures and
by triage only, with undetected ones. As in the previous
case, in order to guarantee complete correctness the
family must be manually validated before generating a
signature.

e Type 6 {Vs € F©© | s € T U U}. The family combines
applications either detected by the triage process only
with undetected ones. As in the two previous cases, the
family must be manually validated before generating a
family signature.

o Type7 {Vs € F) | s € U}. The family is composed of
undetected applications, hence no classification can be
automatically inferred. However, as all the applications
within the cluster show strong similarities, the analysis
of few representative samples shall be sufficient to clas-
sify the whole cluster as malware or goodware.

Such an approach offers apparent benefits: the need for
human intervention is often limited to the simple validation
of the discovered family, while the need for full analysis is
reduced to few representative samples. The identification of
families with only partially detected applications, either by
signature or during the triage process, allows to discover false
negative and new 0-day malware.

In Koodous, the triage process makes it possible to quickly
identify threats without the burden of creating signatures,
although it has the drawback of potentially leaving others
similar applications undetected. Our frameworks may auto-
matically convert all the knowledge about single, unrelated
threats into more reliable signature, potentially able to dis-
cover newer variants as well.

Finally, among Type 7 families, the system is able to
identify groups of legitimate software, for example finding
applications written by the same developer or using the same
framework. This result was proved to be of practical impor-
tance to limit and correct false positive detections.

C. FAMILY SIGNATURES GENERATION

In the last step of our framework, a signature is generated
for each family that has been identified as malicious.” We
developed an automatic procedure that starts from a set of
applications, and eventually produces a YARA rule describ-
ing them. The program has no requirements on the origin of
the set: it could be the result of automatic clustering or manual
selection, although the more the applications in the set are
related, the better the result.

Authoring an effective signature requires a considerable
effort and experience. Good signatures are compact, and
they have the ability to generalize, that is, to identify all
known variants of the malware and even possible new ones.
Moreover, they do not yield false-positive results by detecting
non-family members, and finally, they appear intelligible to
human experts and are almost self-explanatory.

50ur system could generate family signatures of legitimate applications
as well, but they would be of no use for Koodous

VOLUME 6, 2018

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

IEEE Access

More formally, a signature S is the disjunction of n clauses
S = \/1_y ci. A clause c; is a finite conjunction of m; literals
ci = /\km;0 Iy, In the present context, a literal [y, is a single
feature specified in the report resulting from the analysis of
the application.

Traditionally, a YARA rule is defined on unique strings
found in malware but not present in legitimate programs;
quite differently, we generate precise, descriptive rules using
the structural properties extracted by the static and dynamic
analyses. Our program identifies an optimal set of clauses
for matching all target applications while yielding no false
positive in the current database; moreover, thanks to some
heuristics, the rule has a good ability to generalize, a low
risk of detecting false positives in the future, and it appears
reasonable to the eye of the human experts.

An example of an automatically generated YARA rule for
the Syringe malware family is shown below.®. It may be
noted that the statistical features exploited during clustering
(Section IV-A) are not used in the in the rule, as they would
result in over-complicated rules hardly understandable by
humans.

rule YaYaSyringe {

condition:
androguard.filter () ‘action.BATTERYCHECK’)

and androguard.number_of_services ==

and androguard.permission (‘'‘*SYSTEM_ALERT_WINDOW’ ')
and androguard.url (‘http://s.adslinkup.com/v2’")

}

The process is performed in three steps: a reasonable signa-
ture composed of a small number of clauses is generated; the
signature is checked against the full database of applications,
and false positives are identified; the generation procedure is
run again, but explicitly taking into consideration the false
positives discovered in the second step.

Fig. 3 exemplifies the idea of the process of generation
of a signature for two malware m, and mj, and two legiti-
mate applications g, and gp. In the first phase, the algorithm
defines a signature ¥ = r, where r is a single clause
composed by the common features between the two malware:
r = my Nmy. Indeed, arule Y detects an application m only
if Y is a subset of m: Y C m.

During the second phase, the rule Y is checked against
the complete database, where it generates two false positives
matching two legitimate applications g, and g,. The clause r
is therefore too generic to be used as a signature.

As it is not possible to find features common to malware
that do not matches legitimate applications (m,Nmp)\ g, = &
and (m, Nmyp) \ g» = O, the third step generates a signature
with the disjunction of two clauses Y* = (r A ry) V (r A 1p).

The pseudocode of the algorithm 1is reported in
Algorithm 1: at first it determines a suitable set of clauses
(function Clauses), then picks a subset of them of variable
size to build an optimal family signature (function Clot).

5The complete version of the rules is available on Koodous at
https://koodous.com/rulesets/3243

VOLUME 6, 2018

Phase I:
generate a new Yara rule

Phase II:
check false positives

Malware vararuleY =r Goodware False positives

clause cg = (r Arg)

Phase llI:
generate a new Yara
rule Y* = (ca v cp)

clause cp = (r Arp)

FIGURE 3. Schema of the process of generation of a YARA rule. In the first
phase a signature Y = r is defined for malware mg and mp. In the second
phase Y is checked against a dataset of goodware (gq and gp). Finally,

in the third phase, a new signatures Y* = (r Arq) v (r Arp) is created to
avoid false positive detection of gq and gp,.

Algorithm 1 Automatic YARA Rule Generation
1: procedure generateSignature(R)
2: C <« Clauses(R, @)
3: Y « Clot(R, C)
4: G <« GetFalsePositives(Y)
5
6
7

C* <« Clauses(R, G)
Y* <« Clot(R, C*)
DumpAsYARARule(Y*)

Lines 2 and 3 correspond to the first phase of Fig. 3; line 4,
to the second; lines 5 and 6, to the third.

Algorithms 2 and 3 add more details about the procedure:
the function Clauses extracts the clauses that can be used to
build the signature, and is based on a heuristic algorithm.
First, each malware application r; in the target set R is
transformed into a single clause y; able to detect it using all
available literals. Such clauses are not directly usable, but are
the starting point of the interactive procedure for building the
set of optimal clauses H: in each step, the least generic y; is
selected and compared against all clauses in H calculating the
common features z;; the least generic of these z; is eventually
considered for inclusion in H.

The rationale is to build Y by adding clauses progressively
less specific (i.e., checking fewer features), but still usable in
signatures. Line 10 computes the set F of application from
G detected by the candidate clause; as G is the set of all
potential false positives, if F is not null the clause is too
generic to be usable. Additionally, the function Quality(-)
performs a heuristic evaluation of the clause: if the quality

59545

IEEE Access

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

Algorithm 2 Clauses Extraction
1: function Clauses(R, G)

2: Y <« {Features(r) Vr € R}

3: for all r € R do

4: Y < Y U SelectedClauses(r)

5: H <« {Features(r) Vr € R}

6: while |H| > 0 do

7: h < LeastGeneric(H)

8: 7. < {CommonFeatures(k, y) Vy € Y}
9: z < LeastGeneric(Z)

10: F={r € G| Det(z,r) = True}

11: if F = @ and z ¢ Y and Quality(z) > T, then
12: H <« HU{z}

13: Y <~ YU({z}

14 H <« H\ {h}

15: return Y

Algorithm 3 Clauses Selection
1: procedure Clot(R, C)

2: Y «— o

3: D« o

4: while R # C do

5: if 37 € R\ D : Critical(r) = True then
6: 7 < GetCritical(R \ D)

7: Z = {z € C|Det(z, 7) = True}

8: else

9: Z ={z€ C|3r e R\D: Det(z, r) = True}
10: Y < Y U {MostUseful(Z)}

11 D« {reR|3%yeY:Det(y,r)=True}
12: return Y

is below a certain threshold T, the rule is so generic that it is
likely to create false positives in a near future — see IV-C.1
for more details. For each application, few not-foo-generic,
heuristically selected clauses are also included (i.e., r, and rp
in the example shown in 3).

The function Clot (Algorithm 3) implements a dynamic
greedy algorithm for building the signature as a disjunction of
clauses. It iteratively adds one clause to Y from a set C until
all applications in R are detected by at least on clause in Y.

In an iterative way, Clot first picks out all clauses that
detect at least an application not yet detected by any rule, with
the only exception that, if an application can be detected by
only one clause, that clause is the only one picked. Then the
algorithm selects among this group the clause that is able to
detect more application in the original target set R.

1) RULE QUALITY

A heuristic evaluation is used to reduce the risk of false
positives in the future and to increase the perceived quality
of the rule. We defined a heuristic score S(-) for a rule,
inversely related to its generality. More formally, let associate
each literal [to a score S*(/) that measures how specific the

59546

literal is. The score of a clause c; is the sum of the scores of
the n; literals composing it: S(c;) = Z’: o0 S*(li;). The sore
of a rule r is the minimum among the scores of its clauses:
S(r) = miny; S(¢;).

The higher the score, the more a rule is specific and less
susceptible to generate false positives. On the other hand, the
lower the score, the more a rule will be able to generalize,
while being more prone to generate false positive in the
future. High quality signatures require an optimal balance
between generality and specificity, and this is one of the main
challenges in automatic signature generation. We use two
threshold T, and Tihax, Where the lowest is the minimum
score that a rule needs to be valid, and the highest is used in
the optimization process to avoid overly-specific rulesets.

All the clauses in YARA rules created by expert analysts
are valid, that is, the score assigned to literals must guarantee
that Vi € Rexpert @ Tmin < S(r) < Tmax. We consider
invalid the rules containing a clause mentioning only Android
official permissions and intent filters, or containing a clause
composed of a single literal, with the exception of accessing
an URL that have been detected as malicious by VirusTotal
or similar services. Then, we exploit the simplex method as a
mean to automatically define S*(-) starting from the existing
ruleset.

The simplex method is a linear programming technique,
which refers to the problem of optimizing a linear objective
function ¢ of m variables x; subject to a set of n linear inequal-
ity constraints. In standard form, the problem of finding an
optimal set of weights for m literals can be expressed as:

min;:chx
st —Axx>-b, x>0

where ¢; = 1, Vi = 1...m, since the objective function ¢
minimize the number of literals in each clause, x € R™ is a
vector of m unknown weights, and b; = Tyyip, Vi = 1... 1,
as we want each existing literal combination to satisfy the
minimum score of all existing rulesets.

Finally A is a n x m matrix that put into relation each clause
with their own literals:

il b ool
A= byl b3 ... b
lnl ln2 ln3 o lnm
where [,,,, = 1 if [, is a literal of the clause c,, otherwise
Lum = 0. In order to get the list of all the n existing clauses c;,
we firstly reduced all the available YARA ruleset in the
Disjunctive normal form (DNF).

We set almost arbitrarily the values T,,;,, = 400 and
Tmax = 700 for the two thresholds. Table 2 reports the details
about the rules, clauses, and unique clauses that have been
analyzed, using the YARA rules from both Koodous’ and
the Yara-Rules repository on GitHub.® Table 3 show the final
result, where each literal is assigned a distinct weight.

7https ://koodous.com/rulesets
8https ://github.com/Yara-Rules/rules/tree/master/Mobile_Malware

VOLUME 6, 2018

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

IEEE Access

TABLE 2. Details about the number of rules, clauses, and unique clauses
analyzed to find the optimal score for each literal.

Num. of YARA rules Num. of DNF clauses

Total Unique
Koodous
public rules 348 788 104
prmin U8 697 48

TABLE 3. Weights assigned to each type of literal as a result of the
simplex method optimization. Weights are used by the automatic
procedure to generate new YARA rulesets.

Module Name Literal type S*(4)
App name 100
Package Name 100
Certificate SHA1 150
Certificate Subject 100
Certificate Issuer 100
Main Activity 50
Androguard Activity 150
Service 150
Broadcast Receiver 100
Intent Filter 150
Content Provider 80
Functionality 15
URL 400
Permission Normal 7
Permission Dangerous 80
Permission Not third party 50
Permission System 80
Permission with Typos 150
Permission non standard 50
DNS lookup 400
Cuckoo HTTP request 400

V. CASE STUDY

As a case study we used a dataset of 1.5 million Android
applications collected over the 2016. The dataset is recent and
diverse in the set of attack vectors it represents: in order to
have the same ratio between detected and undetected applica-
tions as in Koodous, we sampled a subset of 1 million apps.’
As result, the dataset under analysis is composed by 65%
undetected applications, 31% detected by signatures, and 4%
detected through triage only.

A. EVALUATING CLUSTERING RESULTS

HDBSCAN has two parameters that mostly influence the
results of the clustering: min cluster size (mss) determines
the smallest size of a cluster, while min samples (ms) how
conservative are the results. A higher value of min samples
restricts clusters to more dense areas, but it also increases
the number of outliers. We use mss = 3 and ms = 1; in
other words, we considered only malware clusters containing

%In order to ensure the quality of the results and avoid artifacts, the
sampling of 1 million applications have been repeated three times: in all the
cases the proposed techniques showed coherent results.

VOLUME 6, 2018

a minimum of three samples as representative of a malware
family.

We used a high-performance, open-source implementa-
tion of HDBSCAN in Python from Leland Mclnnes [21].
All experiments were performed on a 6-core Intel Xeon (CPU
E5-1650 v2 @ 3.50GHz), with 128 GB of RAM, although
HDBSCAN only used up to four cores and 6 GB of RAM in
each run.

The quality of the clustering results is evaluated as a mea-
sure of the ability of correctly extending malware detection
to undetected applications. However, given the difficulty of
establishing a reliable ground truth in the field of malware
analysis, evaluating the results was challenging. Finally, for
the clustering validation we used all the available informa-
tion: detection results and AVs labels extracted from Virus-
Total reports, and signature labels extracted from existing
YARA rules in Koodous.

Since clustering exploits the relationship between sta-
tistical similarities among applications, in contrast to the
structural properties commonly used in AVs signatures,
no one-to-one correspondence between clusters and AV
labels is expected, however by combining several indexes we
deliver a trustworthy quality measures of clustering perfor-
mances. In order to estimate cluster assignment, we adopt
the Adjusted Rand Index in combination with other external
indexes as proposed by Rosemberg and Hirschberg [22]:

o Adjusted Rand Index (ARI]) is defined as the number of
pairs of items that are either both in the same cluster
or both in different clusters in the two partitions, nor-
malized over the total number of pairs of items. The
index lies between 0 and 1: when two partitions agree
perfectly, the Rand index achieves the maximum value 1,
and more in general a larger adjusted Rand index means
a higher agreement between two partitions. Moreover,
ARI supports the measure of the agreements even
when the compared partitions have different numbers of
clusters

o Homogeneity (Hom.), which measures whether its clus-
ters contain only data points which are members of a
single class

o Completeness (Comp.), which measures whether all the
data points that are members of a given class are ele-
ments of the same cluster

o V-measure (V-ms.), measured as the weighted harmonic
mean of homogeneity and completeness; this is use-
ful since homogeneity and completeness of a cluster-
ing solution run roughly in opposition: increasing the
homogeneity of a clustering solution often results in
decreasing its completeness.

Table 4 compares homogeneity and completeness index
values between the families (i.e., clusters) inferred dur-
ing clustering process, and the families labels extracted
from Koodous signature names and VirusTotal AV labels.!”

10The comparison with VirusTotal AV labels is limited to 100,000 ran-
domly selected applications.

59547

IEEE Access

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

TABLE 4. Comparison of Homogeneity (Hom.) and Completeness (Comp.)
index values between the families inferred by the clustering process
(using both the iterative clustering with different chunk sizes N, and the
non-iterative version), and the families labels extracted from Koodous
and VirusTotal.

Koodous labels VirusTotal labels

N Hom. Comp. Hom. Comp.
50k 0.96 0.36 0.85 0.49
100k 0.96 0.35 0.85 0.49
200k 0.96 0.35 0.85 0.50
non-iterative 0.92 0.36 0.78 0.50

Results are compared using both the iterative clustering, with
different chunk size N, and the non-iterative version.

Since AVs listed in VirusTotal commonly use different
names to identify the same type of threat, we took advantage
of AVclass [23], an automated labeling tool that, given the
labels of multiple antivirus engines, returns the most likely
family names for each sample, focusing on normalization,
removal of generic tokes and alias detection. The implemen-
tation is open-source, available on GitHub [24], and natively
provides VirusTotal integration.

Interestingly, all the cases reported in Table 4 show very
high homogeneity value, which indicates that malware fam-
ilies identified by AVs signatures are further split in finer
partitions during the clustering process. Moreover, precise
clusters increase the effectiveness of the following automati-
cally generaged signatures.

= Al apps 26306

25000 4 Extension

20000 A
15000

10000 +

Number of applications

5000 4

Type 2 Type 3 Type 4 Type 5 Type 6
Type of cluster

FIGURE 4. Number of total applications, and newly automatically inferred
detections, for each type of malware family (Type 2...6). Results refer to
the iterative clustering approach, using chunk size N = 100k, over a
dataset of 1 million applications.

1) EXTENDING MALWARE DETECTION

Fig. 4 illustrates the result of the automatic detection exten-
sion for the 1 million applications under analysis: each bar in
the plot is related to a family type (refer to Section IV-B for
an accurate description of each type of malware family), illus-
trating both the total number of applications, and the number
of those automatically identified as malicious. Results are
obtained using the iterative clustering approach, with chunk

59548

size N = 100k. Note that Type 1 and 7 families are not shown,
as the first consist of application that are already completely
detected by signature, while the latter include families found
within unknown applications, hence no direct information
about their composition can be automatically inferred.

TABLE 5. Number of families automatically inferred by the clustering
algorithm (using both the iterative clustering with different chunk sizes N,
and the non-iterative version), using dataset of 1 million applications.
Results are gathered for each type of malware family (Type 2...6).

N Type2 Type3 Typed4 Type5 Type6
50k 1,890 2,949 1,467 463 2,846
100k 1,477 2,439 1,519 500 3,385
200k 1,193 2,203 1,436 536 3,133

non-iterative 435 1,046 2,126 536 4,629

Table 5 is complementary to Fig. 4, as it compares the
number of families, for each family Type, using both the
iterative clustering with different chunk sizes N, and the
non-iterative version.

Among the clusters of Type 2 and 3, the system automat-
ically identifies a total of 21,450 new malicious applications
that will be automatically covered by new signatures, with-
out requiring any human intervention. In more detail, 5,386
applications (Type 2) are found within clusters with other
apps already detected by YARA signatures; while 16,064
applications (Type 3) are assigned to clusters purely made of
applications detected during the triage phase only. As matter
of fact, generating new family signatures for these applica-
tions allows to transform the knowledge of existing threats
into a more reliable and scalable form of detection, without
affecting the precision of the results: all those applications
have been already identified as malicious by the community
of malware experts.

On the other hand, 34,818 applications are assigned to fam-
ilies Type 4, 5 and 6: 20,464 are the newly identified potential
threats, since previously marked as undetected. In this case,
the proposed framework allows an easy identification of hard
to find potential threats, reducing the human intervention
from the manual analysis of thousands of applications to
the validation of a very fewer number of families where
applications reflect a similar behavior, eventually speeding
up the procedure of new malware discovery. For example, the
system identified a total of 500 families for the Type 4 (refer
to Table 5, second row) reducing of an order of magnitude the
need of manual analysis, as a detail analysis of a malicious
application could take few hours, this approach results in a
huge time saving.

2) EVALUATION OF MALWARE DETECTION EXTENSION

Aiming at evaluating the detection extension performance
in a real-world case, we evaluate how the proposed system
is accurate in relationship to the information of the detec-
tions availavable in VirusTotal. We choose VirusTotal as
a well-known and trustworthy source of information about
existing threats since it collects the detection results from

VOLUME 6, 2018

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

IEEE Access

tens of independent AV companies. Moreover, recently other
researches used the same metric [25].

TABLE 6. Comparison of the detection results between VirusTotal and
two datasets of 50,000 applications, respectively undetected (und.) and
detected (det.) by Koodous. Columns indicate the number of applications
unknown (unk.), undetected (und.), detected by at least one AV (det.), and
detected by more than three AVs, as reported by VirusTotal.

VTunk. VTund. VTdet. VTdet. >3
Koodous det. 18 72 49,910 49,717
Koodous und. 3,449 12,508 34,043 28,166

In order to evaluate the detection extension results,
we firstly assessed how precisely Koodous detects malware
samples, and how effectively covers all the malware vari-
ants. Starting from two randomly sampled subsets of 50,000
applications, respectively originally undetected and detected
in Koodous, we cross-checked their maliciousness using
VirusTotal. Results are illustrated in Table 6. The first line
of the table (Koodous det.) shows that among detected appli-
cations, Koodous has 100% of precision, and very high
recall (99.8%), as almost all Koodous detected applications
are completely identified as malware by traditional AVs too,
while only 100 applications (the 0.2% of the dataset) are
unknown or undetected by VirusTotal. However, the sec-
ond line of the table (Koodous und.) shows a very low
accuracy (27.8%), as a consequence of a major diversity
in the detection ratio among the applications undetected by
Koodous and VirusTotal. Although such a difference could
be partially explained by the different policies that traditional
AVs use in identifying a malicious application, particularly
regarding adware, this result further motivates the need of
an automatic mechanism to increase the number of correct
detections in Koodous.

With the awareness that VT detection results are not
completely reliable, we only considered those clusters for
which the VT information is available for all the applications.
In order to calculate the accuracy of the proposed system,
we adopted the following metrics:

« if the system proposes an extension to a malware family
where all the applications are detected by VT, we con-
sider the extension as correct;

« if the system proposes an extension to a family where all
the applications are undetected by VT, the extensions is
considered as incorrect;

« if the system proposes an extension to a cluster that
mixes applications partially detected and undetected by
VT, the result is considered unknown.

Table 7 illustrates the results. For each clustering experi-
ment, each line of the table reports the number of applications
that have been correctly or wrongly classified, according to
the type of the cluster to which they were assigned. Without
any human intervention, the system scores a minimum accu-
racy that ranges from 86.04% to 91.23%, and it has a worst
case error of the 6.18%. A further manual inspection of the
results revealed that several families completely undetected

VOLUME 6, 2018

TABLE 7. Evaluation of the accuracy of the clustering system to
automatically identify groups of malicious applications, by comparing the
detection of the new applications with VirusTotal. Columns Correct and
Incorrect respectively reports the number of applications correctly or
wrongly classified, while Min and Error illustrate the minimum precision
and the maxim error of the proposed approach. Results are reported
using both the iterative clustering with different chunk sizes N, and the
non-iterative version.

N Correct Incorrect Min % Error %
50k 7,493 254 91.23 291
100k 12,502 877 86.04 6.03
200k 13,628 917 89.54 6.18
non-iterative 14,619 1,109 87.93 6.67

by VT are mostly related to aggressive adware samples,
whose classification is subject to different considerations.
Furthermore, results show that a smaller chunk size increase
the precision the detection, reducing the error, although the
absolute number of applications automatically extended is
smaller. Accordingly, the chunk size can be set in accordance
with the needs of the system.

TABLE 8. Example of a Type 4 malware family. As the first two samples
are already detected in Koodous by the YARA rule Xynyin.Trojan, the
system identifies other applications within the cluster as potentially
malicious too. The comparison with VirusTotal (the number of detection is
reported) and a manual analysis confirm the accuracy of the system.

Detected

MD5 Koodous VT
998faf5e7a0d45f6ad60903bc5d60817 Yes 12
5a8dd85a5707£520563069bf536£9d5f Yes 19
695d6b9£97a9e992£8e321d36509c080 No 0
304754e9£8£95228af0e7118d62e999f No 12
805d8770d6314f5adad266ddaba6llel No 10
23863ddba2l1lb9%6aea3e8b2ccl20bb2b2 No 12

3) EXAMPLE OF MANUAL ANALYSIS OF A MALWARE FAMILY
Table 8 shows an example of a Type 4 malware family.
As the first two samples are already detected by the signature
Xynyin.Trojan'" in Koodous, the system proposes to extend
the detection to the other applications of the same cluster.
The comparison of the detection results with VirusTotal'?
shows that all but one application are already detected, while
a manual analysis of Leagueoftankheroes3D'3 confirm its
affinity to the Xynyin malware family.'*

One of the major benefit of a semi-supervised system is
to limit the detection of false positives, and the operation is
further simplified since the analysts should only focus on
groups of similar applications, without considering single
samples. As useful side effect, the system could be also used
to improve the precision of the results, by reducing false

1 https://koodous.com/rulesets/1225
12Detection results refer to 15 Nov 2016
13MD5: 695d6b9£9729€992£8e321d36509c080

140n 24 August 2017 VirusTotal updated the detection, identifying the
applications as malicious too.

59549

IEEE Access

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

positive detections for those families of applications that have
been partially miss-classified by existing signatures.

TABLE 9. Comparison of the clustering results using using both the
iterative version with different chunk sizes N, and the non-iterative one.
Column Time indicates the time (in seconds) required by the clustering
process, while column “Outliers” reports the number of outliers found at
the end of the iterations.

N Time (s) Outliers
50k 5,746 64,553
100k 6,408 65,685
200k 10,573 67,081
non-iterative 16,592 119,919

4) THE ITERATIVE ALGORITHM
The adoption of the iterative approach brings a number of
benefits: it proved to be essential in order to analyze millions
of applications, and the resulting number of outliers, as illus-
trated in Table 9, is much lower than what was obtained by
clustering all applications together. The time required by the
clustering phase is proportional to the chunk size and it is up
to one order of magnitude lower than in the non-iterative case.
The adoption of the iterative approach does not affect the
quality of the results, even though using a bigger chunk size
results in a greater number of new detections.

TABLE 10. Indexes comparison of the clustering label inferred by the
iterative approach (with different chunk sizes N) using the assignment
produced by the non-iterative version as a reference.

N ARI Homogeneity = Completeness V-Score
50k 0.26 0.92 0.78 0.85
100k 0.27 0.93 0.81 0.86
200k 0.29 0.94 0.84 0.89

Table 10 compares the iterative approach using as a ref-
erence clustering assignment the one produced by the non-
iterative version. A relatively low ARI value indicates a
difference in the clustering assignment between the two
approaches, while a very high homogeneity value, compared
to completeness, is a clear sign of a finer cluster partitioning.
In other words, using the iterative approach the quality of
the information is not compromised, although the resulting
clusters are smaller, hence less likely to contain enough appli-
cations that span different detection areas, finally resulting
in a lower extension. A bigger chunk size lowers the differ-
ences between the iterative and the non-iterative assignment,
as shown by an increasing V-score value. Eventually, if a
large enough chunk size is used, the iterative approach pro-
duces almost the same results as the non-iterative one, while
generally finding a higher number of clusters, as illustrated
in Table 5, and a less outliers, Table 9.

Finally, in order to further test the scalability of the pro-
posed method, we successfully applied the algorithm on a
very large dataset of 10 million applications, using a chunk
size N = 500k.

59550

B. AUTOMATIC FAMILY SIGNATURES GENERATION

In order to evaluate the effectiveness of the automatic signa-
ture generator, we compare the detection results of several
YARA rules automatically generated by the proposed algo-
rithm with existing rulesets created by expert analysts.

TABLE 11. Comparison of detection performances of human authored
YARA rules (Original) with automated generated ones (Auto). Last column
reports the improvement (in percentage) for the newly generated rules.
Detections are tested on a dataset of 1.5 million applications.

Rule name _ Detections

Original Auto Improvement
SmsSender 539 1,004 +86.3%
Syringe 220 315 +43.2%
HummingBad2 136 257 +89.0%
Marcher2 559 652 +16.6%
SMSReg 159 172 +8.2%
VolcmanDropper 186 430 +131.2%
FakeGoogleChrome 516 822 +59.3%

Table 11 reports the results of the rules detections on
a dataset of 1.5 million applications: in all the cases, the
automated generated rules'> performed better than the one
authored by humans, increasing the detection from the 8.2%
up to 131.2%, without generating any false positives.

Referring to Section IV-C, in all the cases the rule gen-
eration process stopped at the second step, as none of the
new rules produced any false positives in the current dataset
of applications. A further manual analysis of the detected
applications, confirmed that no false positive was generated.

As shown in Table 12, the time required to generate a
rule for few hundreds malware is always less than a minute,
although when the target increases to a few thousands appli-
cations, the time required grows up to several minutes, as the
most expensive part of the process is the check for false
positives against a reference dataset. This is not considered
a limitation, since all the process is automatic, and given the
goodness of the results, it is of invaluable support for the
family signature generation process.

TABLE 12. Number of literals, score and time (in seconds) required to
generate each YARA rule.

Rule name Literals Score Time (s)
SmsSender 15 412 43
Syringe 19 574 48
HummingBad2 12 599 52
Marcher2 20 686 49
SMSReg 34 537 42
VolcmanDropper 10 439 13
FakeGoogleChrome 15 407 43

Table 12 reports the number of literals (i.e., application
features) and the final score for each generated YARA rule:
referring to Section IV-C, each score is higher than the
minimum threshold 7},;, = 400, satisfying the minimum

15Example rulesets could be found at the following address: https://
koodous.com/analysts/YaYaGen/rulesets

VOLUME 6, 2018

https://koodous.com/analysts/YaYaGen/rulesets
https://koodous.com/analysts/YaYaGen/rulesets

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

IEEE Access

requirement for acceptability in order to avoid false pos-
itive detections, and lower than the maximum threshold
Tmax = 700, as aresult of the optimization process to increase
the rule generality and therefor the ability to catch future
malware variants.

As shown in the example of Section IV-C, in order to
increase the effectiveness of a rule, urls are included only
if are known to be malicious, like in case of http://
s.adslinkup.com/v2 for the Syringe malware family.
Moreover, aiming at identifying malware with very high
precision and avoiding false positives, whenever available,
the automatic signature generator includes those attributes
extracted from the application analysis that contains a typing
mistake. For instance, the rule YaYaMetasploit]16 includes
a wrong permission ACCESS_COURSE_LOCATION instead
of the correct one ACCESS_COARSE_LOCATION. Given
the difficulty of reproducing such an uncommon mistake,
we consider this feature as a hard indicator of the malicious-
ness of a sample.

VI. RELATED WORK

A. CLUSTERING APPLIED TO MALWARE ANALYSIS

The first attempt to automatically group computer malware
based on their behavior dates back to Lee and Mody [26],
who use a sequence of runtime events (e.g., registry and
file system modifications) to cluster similar programs. As a
similarity measure, they choose a variant of the edit distance,
resulting demanding in term of computational resources,
since it has a computational complexity O(n?) in the
number n of features.

Later, Bailey et al. [27] propose a system for automated
malware classification and analysis as a remedy for the
inconsistent and incomplete labeling that commonly affect
traditional antivirus. By applying single-linkage Hierarchical
agglomerative clustering (HAC) with Normalized Compres-
sion Distance (NCD) and using inconsistency measure as a
cutting criteria, Bailey et al. are able to automatically catego-
rize malware profiles into groups that reflect similar classes
of behaviors in terms of system state changes. While results
are generally affected by the restriction of dynamic analysis,
for the first time they introduce the idea of ‘““detection through
clustering,” exploited in our proposed framework.

In their work, Apel et al. [5] study which combination
of metrics (i.e., Edit Distance, Approximated Edit Distance
with Blockwise Hashing, NCD and Manhattan Distance) and
n-gram features are mostly appropriate for determining rela-
tions between malware samples. They define three differ-
ent criteria to support their evaluation (i.e., appropriateness,
computable efficiency and local sensitiveness), using single-
linkage HAC as clustering algorithm. Experimental results
show that Manhattan Distance along with 3-grams deliver the
best results, while NCD and Edit Distance generally perform
poorly.

161'1ttps://koodous.com/my_rulesets/3466

VOLUME 6, 2018

Neither Lee and Mody [26], nor Bailey er al. [27] have
any specific solution to large-scale clustering. On the other
hand, Bayer et al. [13], Rieck et al. [28], and Jang et al. [12]
directly address the problem of managing large datasets,
developing methods to scale the clustering process.

Bayer et al. [13] propose a scalable malware clustering
approach using a combination of approximate and hierar-
chical clustering with Local Sensitive Hashing (LSH) [29]
to significantly reduce the number of distance computa-
tions. By extending Anubis [30], they are able to extract
detailed behavioral-reports based on taint tracking results
and network captures from malware execution. In particular,
the taint engine allows them to map low-level operations
(e.g., system calls) to operating system objects (e.g., registry
keys and files). By deploying LSH, Bayer et al. are capable of
clustering 75,000 samples in less than 3 hours. By contrast,
Rieck et al. [28], [31] proposes an incremental approach,
where they alternate a prototype-based clustering algorithm
with a classification step, eventually reducing the runtime
complexity by performing clustering only on representative
samples.

Jang et al. [12] develop BitShred as remedy to the problem
of clustering large data sets with high-dimensional feature
sets. They propose to use feature hashing to reduce the dimen-
sionality of high-scale feature sets, while reducing the com-
putational cost of the calculation of the Jaccard index using
an approximated version that exploits bit-vector arithmetic.
However, since BitShred simply relies on a static analysis
approach, results are susceptible to binary level obfuscation.

In 2010, Perdisci et al. [11] propose a network-based ver-
sion of a behavioral malware clustering system, relying on
a three-step clustering refinement process, starting from the
analysis of malicious HTTP traces. The first phase consists
in a coarse-grained clustering where malware samples are
grouped together according to simple statistical similarities;
subsequently, a fine-grained clustering further splits samples
considering structural properties of HTTP queries. In the
final step, fine-grained clusters whose centroids are close
to each other are merged together. The system is tested
on HTTP traces generated from 25,000 applications using
single-linkage HAC and the Davies-Bouldin (DB) validity
index [32] as cutting criteria. While the underlying idea of
a multi-step clustering refinement process is quite interest-
ing, this practically results in the biggest limitation to the
scalability of their work. Moreover, Perdisci et al. limit
behavioral analysis to HTTP-based malware only, which in
practice can be easily bypassed by using an encrypted proto-
col (e.g., HTTPS).

In 2013 Hu et. al [10] present MutantX-S, focusing on
malware comparison and triage on a large scale. Their system
falls into the static-analysis category, since it relies on features
extracted from the malware instructions. MutantX-S can effi-
ciently cluster a large number of samples into families based
on program static features, by extracting N-gram features
directly from the x86 opcode sequences and exploiting a fea-
ture hashing technique to reduce features dimensionality, thus

59551

http://s.adslinkup.com/v2
http://s.adslinkup.com/v2

IEEE Access

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

significantly lowering the memory requirement and computa-
tion costs. MutantX-S adopts the same prototype-based algo-
rithm of [31] because of its efficiency and explicit expression
of malware features.

In the Android context, ClusTheDroid [33] is the first
research to combine behavioral analysis and clustering to
specifically target Android malware. The goal is both to
develop a tool, and to evaluate clustering alternatives. Finally
they focused on single and complete linkage HAC, using a
feature set composed of 38 numerical quantities extracted
from the CopperDroid [34] report, and weighted according
to a three-level interpretation of malware behaviors.

Differently from most of the previous works [5], [11], [13],
[27], [33] that rely on the HAC algorithm (which is both com-
putationally and storage expensive, respectively O(n? log n)
and O(n?) [35]), we use HDBSCAN, that with N data points
has an average complexity approximately O(N log N) [20],
and a space requirement O(n), making it applicable to large
datasets. Furthermore, differently from [31], we devise an
iterative clustering approach where HDBSCAN is iteratively
applied over the entire dataset, without the needed of alternate
any classification step, finally discovering precise families of
applications with a shared behavior.

B. EVALUATING CLUSTERING RESULTS

The clustering problem is inherently ill-posed, in the sense
that there is no single criterion that measures how well a clus-
tering of the data corresponds to the real world [36]. Cluster
validity analysis often involves the use of subjective criteria
of optimality specific to a particular application. Therefore,
no commonly accepted standard of validating the output of a
clustering procedure exists [37]. In real-world applications,
it is often completely infeasible to manually investigate the
results of a clustering, making necessary the definition of
automatic measures [33]. Helpful metrics to determine the
quality of a clustering process are commonly classified in
internal and external indexes. The former evaluates both clus-
ter cohesion and separation, which determine how distinct or
well-separated a cluster is from others. On the other hand, the
latter uses a reference set as a means of quality control for the
setup of the clustering algorithm [33].

In the field of malware analysis, clustering validation is
further complicated by the intrinsic difficulty of establishing
a reliable ground truth. Firstly, malware analysis is challeng-
ing and it gets more difficult when anti-analysis, triggering
sequences and dynamic code loading techniques are in place.
Secondly, not even a manual categorization would provide
a reliable partition, since most of the malware could not
be unequivocally assigned in categories; not to mention the
unrealistically high amount of time it would require.

As a reference set is not available, one possibility is to
take advantage of labels assigned to each malware sample
by several antivirus scanner. The availability of services that
specifically provide these results (e.g., Metadefender!” or

17https://metade:fender.opswat.com

59552

VirusTotallS) eases the procedure. However, there is an intrin-
sic complexity in defining a unique labeling schema, since
most of the malware result in being marked as belonging to
one malicious category only. As a matter of fact, Bailey et.
al. [27] showed that antivirus labeling fails in satisfying three
fundamental criteria: consistency among different products,
completeness in malware tagging, and conciseness in label
semantics. One possible explanation is that signatures used
in the malware-matching algorithms mostly evaluate static
properties of the binary, in contrast to behavioral properties:
the result is that families found using static features might
be quite different from ones established using behavioral fea-
tures. Moreover, different AV products apply different criteria
and granularity to rule generation, resulting in inconsistent
results. Despite the complexity and intrinsic challenges of the
procedure, given the importance of automatically building a
malware reference dataset to evaluate clustering results, the
problem was directly tackled in different researches, such as
VAMO [38] and AVclass [23].

In the literature of malware clustering, several techniques
are proposed. Bayer ef al. [13] and Jang et al. [12] use pre-
cision and recall to compare the results of their system-level
behavioral clustering to a reference dataset, defining a manual
mapping between labels assigned by different AVs. However,
as the dataset size increase this method becomes hardly sus-
tainable and quite costly. Similarly, ClusTheDroid [33] used
a reference set developed through manual analysis [39].

On the other hand, Apel et al. [5] choose to take into
consideration the amount of “‘shared behaviour” that can be
found among different analysis traces within the same cluster
of applications. In practice, each system call is modeled as
a single character, and the evaluation is computed in linear
time finding all substrings in a generalized suffix tree, using
the algorithm described in [40]. The main limitation of this
technique is related to the choice of the reference dataset,
since Apel ef al. use an artificial dataset starting from three
real-world malware traces, then divided into blocks of system
calls and randomly permutated.

Differently, Perdisci et al. [11] tackle the problem by mea-
suring the cohesion and separation of each cluster, in terms
of agreement between labels assigned by cluster and multiple
AV scanners. However, since AV labels have been shown to
be inconsistent [41], the measures of cluster cohesion and
separation only give an indication of the validity of the clus-
tering results.

C. SIGNATURE-BASED DETECTION

Early AV products used the hash value of an application to
detect malicious software. However, every modification in
the source code, as tiny as one byte, results in a detection
evasion. Today’s signatures are pattern-matching rules com-
monly defined on static or dynamic properties of applications
under analysis and, even though they are assisted by heuristic

18https://virl.lstotal.com/

VOLUME 6, 2018

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

IEEE Access

and Al-based solutions, still represent the most reliable
(i.e., with the lowest false positives) antivirus technology.

1) AUTOMATIC SIGNATURE GENERATION

A number of prior works propose systems to automatically
generate different types of network signatures to identify
malicious traffic.

Honeycomb [42], Autograph [43], and EarlyBird [44] pro-
pose the generation of signatures comprising a single contigu-
ous string (i.e., token). Later on, PAYL [45], Nemean [46],
Hamsa [47] and Botzilla [48] introduce more complex meth-
ods based on the token subsequence signatures.

Other researches like ProVex [49], AutoRE [50],
ShieldGen [51], and [52] also tackle the problem of automat-
ically generating network signatures, although their applica-
bility is specific to the network traffic detection.

In 2005, Newsome et. al. introduces Polygraph [53], a sys-
tem which exploits the Token-Subsequence algorithm to
automatically obtain IDS signatures to match polymorphic
worms. Polygraph is tested against three real-world exploits
and is able to successfully generate HTTP and DNS signa-
tures with a low false positive rate.

Perdisci et al. [11] also tackles the problem of automati-
cally generate network signatures for cluster centroids, with
the aim of deploying them into an IDS at the edge of a network
in order to detect malicious HTTP traffic. Since malware
samples may contact legitimate websites for malicious pur-
poses, instead of pre-filtering HTTP traffic against legitimate
websites, authors apply a pruning process by testing the
signature set against a large dataset of legitimate traffic, while
discarding signatures that generate false positives, although
such an approach is as effective as it is the legitimate traffic
available.

In the Android context, Faruki et al. [54] propose
AndroSimilar, a statistical signature-based solution that gen-
erates variable-length signatures for the application under test
and identifies malware on the basis of a similarity percentage
with a dataset of known malicious samples.

Another approach is presented in DroidAnalytics [55],
a signature-based analytic system, which extracts and ana-
lyzes applications at opcode level. Firstly, a three-level sig-
nature (i.e., methods, classes, application) is generated by
combining the API call traces, then the malware is associated
to a family according to its malicious content.

While [54] shows robustness against control-flow obfusca-
tion, junk method insertion and string encryption, [55] could
fail in the detection of repackaged malware. On the the other
hand, both solutions are affected by a high false-positive rate
due to the wrong choice of signature patterns available in both
malicious and benign applications.

Since the release of YARA [56], a patten-matching
language designed to help to identify and classify malware
samples, a few automatic tools have been proposed to gener-
ate malware signatures which balance the required generality
to catch future samples with the need of avoiding false posi-
tives detections.

VOLUME 6, 2018

In 2013, Chris Clark develops YaraGenerator,'® a python
program which automatically generates YARA rules by sam-
pling a small subset of common strings between malware,
while blacklisting goodware ones. Although the tool is
designed to work with any type of malicious file, in order
to increase the efficacy of the results, specific dataset
of goodware strings are available for several file formats
(e.g., Windows executable, PDF, email and office document).

Similarly, yarGen®® is a python tool developed by Florian
Roth to automatically generate YARA rules by combining
the topmost malware strings, while removing those that also
appear in goodware files. By using fuzzy regular expressions,
each malware string is assigned a score proportionally to
the inverse of its frequency, and the “Gibberish Detector”
allows to select real language over character chains without
any meaning. The tool also exploits a naive-bayes-classifier
to classify candidate strings, avoiding compression or encryp-
tion garbage in favor of more generic strings. Finally, each
rule is created by combining the 20 strings with the highest
score. The result of the generation process may be a single
rule, specific to one sample, or a super rule, catching malware
variants and groups.

While both YaraGenerator and yarGen have been devel-
oped aiming at supporting the rule creation, rather then
completely replacing the role of expert analysts, as a major
drawback, their efficacy strongly relies on the completeness
of the dataset of goodware strings.

Differently from previous works, which mostly rely on
the search of an optimal sequence of opcodes or strings,
the proposed algorithm generates signatures from a set of
attributes extracted from the application analysis, finding an
optimal combination to minimize false negatives and guaran-
tee zero false positives in the current set of applications. None
of the previous researches can be directly applied to solve
such a problem. Moreover, the proposed approach exploits
an heuristic measure to find the right balance between rule
generality and specificity, using the same criteria that expert
analysts adopted while authoring existing rulesets.

VII. LIMITATIONS

A major limiting factor of the described semi-supervised
approach is represented by the ability to extract meaningful
information from the applications under analysis. Indeed, the
accuracy of the analysis directly affects the clustering results
and the automatic rule generation process. The Android plat-
form lacks of mature reverse engineering tools compared to
the ones used for x86 malware [57]. Since each malware
is different, automatically finding the malicious code by
means of static analysis is difficult, because it is mixed with
benign code; moreover dynamic code loading and reflections
make the analysis even harder. Unfortunately, most malware
include trigger-based anti-analysis techniques that delay or
hide their malicious activities at the first application run

19https://github.com/XenOphOn/YaraGenerator
2Ohttps:// github.com/Neo23x0/yarGen

59553

IEEE Access

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

or in an emulated environment. For instance, the family of
applications known as DroidKungFu®' uses a time bomb
of 240 minutes to schedule the execution of its malicious
code, indeed a simple dynamic analysis fails to observe inter-
esting behaviors. However, in this research we do not address
problems related to application analysis, as we focus on the
detection of new samples and the automatic generation of new
signatures.

Evasion attacks, such as noise-injection attacks [58] and
other similar approaches [59]-[62] may affect the correctness
results of the clustering and the signature generation. Those
attacks rely on the ability of injecting, in the analysis plat-
form, applications specially crafted to mislead the clustering
process and the generation of a good detection model.

In the described system, an attacker could exploit such
attacks by injecting specially crafted applications with the
final goal of generating a false positive or a false negative
detection. However, in both cases we assume that the detec-
tion information of already known threats (identified through
signatures or by triage) cannot be maliciously tampered, thus
new injected families will result in a Type 4, 5, 6 or 7, hence
will be subject to manual validation.

If the attacker wants to deliberately generate a false
positive, several malicious applications whose statistical
properties are similar to a target goodware can be injected.
Since a false positive detection mainly generates a disruption
to a third party service, causing a reputation fail for the AV
solution, the magnitude of the echo is proportional to the
diffusion of the target goodware. As a matter of fact, the
analyst will be alerted by such a family.

On the other hand, if the goal is to generate a false negative,
the attacker could inject several goodware with the same
statistical properties of a target unknown malicious app. Such
a family could be misclassified as a completely goodware
even after the validation process, as the manual analysis focus
only on few samples. However, such a situation applies only
as far as the malware is a zero-day, and no specif knowledge
about that threat is available. The identification of zero-day
malware is a challenging and an open-research problem in the
security community.

Finally, the proposed system strongly relies on the infor-
mation provided by the platform to automatically extend
the detection to new applications and identify new potential
malware families. It is a prerequisite that this information
is not tampered by any malicious actor. Although Koodous
provides protection mechanism for both YARA rules (rules
before becoming active undergo a review process) and the
triage process (community members are subject to a reputa-
tion check), it is not intent of this research to tackle those
issues, leaving their study to future works.

VIIl. FUTURE WORKS
The work presented in this paper can be improved and
extended in a number of ways. At the time of writing, we are

21Sample MD5: 7£5£d7b139e23bedlde5el34dda3blca

59554

focusing our efforts on the correct management of new sam-
ples collected every day. Since the current version of the sys-
tem does not allow to incrementally add new applications to
the existing model, when enough samples are collected, those
are treated as a new iteration of the clustering process. As an
alternative to the iterative approach, incremental clustering
algorithms have been proposed [63]-[65], although still non
directly applicable to HDBSCAN. Their study and adoption
will be addressed in future works.

IX. CONCLUSION

In this paper, we introduced a set of semi-supervised tech-
niques with the ultimate goal of assisting human experts in
the generation of malware family signatures. As a result,
we developed a scalable framework able to dig into massive
datasets of Android applications with the main purpose of
identifying new malware samples, while reducing false posi-
tive detections.

Our study shows that combining the scalability of the
automatic techniques with the inherent flexibility of the
manual analysis, achieves the best performances. Eventually,
the proposed approach introduces two essential automation
improvements in a well known and tested AVs standard detec-
tion mechanism based on signatures. An iterative clustering
algorithm allows for easy identification of hard to find poten-
tial threats, reducing the human intervention from the manual
analysis of thousands of applications to the validation of a
much smaller number of clusters where applications reflect a
similar class of behavior. Subsequently an automated proce-
dure, which exploits a heuristic optimization strategy, gener-
ates a set of YARA rules to cover newly identified malware
with an acceptable generalization capability yet minimizing
false positives.

Experimental results on a dataset of 1.5 million distinct
Android applications confirm the effectiveness of the pro-
posed system, both in the identification of new malware
samples and in the generation of new family signatures in the
form of YARA rules.

Finally, the proposed approach has been deployed in Jan-
uary 2018 and, since then, it is in use on Koodous, the mobile
antivirus platform developed by Hispasec.

ACKNOWLEDGEMENT
The authors would like to thank Dario Lombardo for his
support and insightful comments.

This article is based upon work from COST Action
CA15140 ‘Improving Applicability of Nature-Inspired
Optimisation by Joining Theory and Practice (ImAppNIO)’
supported by COST (European Cooperation in Science and
Technology).

REFERENCES

[11 (Aug.2010). AndroidOS.FakePlayer | Symantec. Accessed: Mar. 24, 2017.
[Online]. Available: https://www.symantec.com/security_response/
writeup.jsp?docid=2010-081100-1646-99

[2] S. Arshad, M. A. Shah, A. Khan, and M. Ahmed, “Android malware
detection & protection: A survey,” Int. J. Adv. Comput. Sci. Appl, vol. 7,
no. 2, pp. 463-475, 2016.

VOLUME 6, 2018

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

IEEE Access

[3]

[4]

[5]

[6]
[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(Mar. 2017). Accessed: Dec. 11, 2017. [Online]. Available: https://source.
android.com/security/reports/Google_Android_Security_2016_Report_
Final.pdf

F. Guo, P. Ferrie, and T.-C. Chiueh, “A study of the packer problem and
its solutions,” in Proc. Int. Workshop Recent Adv. Intrusion Detection.
Cambridge, MA, USA: Springer, 2008, pp. 98-115.

M. Apel, C. Bockermann, and M. Meier, ‘“Measuring similarity of mal-
ware behavior,” in Proc. IEEE 34th Conf. Local Comput. Netw. (LCN),
Oct. 2009, pp. 891-898.

J. Oberheide, E. Cooke, and F. Jahanian, “CloudAV: N-version antivirus
in the network cloud,” in Proc. USENIX Secur. Symp., 2008, pp. 91-106.
F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid: Towards
obfuscation-resilient mobile application repackaging detection,” in Proc.
ACM Conf. Secur. Privacy Wireless Mobile Netw., 2014, pp. 25-36.
Apktool—A Tool for Reverse Engineering 3rd Party, Closed, Binary
Android Apps. Accessed: Mar. 24, 2017. [Online]. Available: https://
ibotpeaches.github.io/ Apktool/

J. Freke. (2013). Smali, An Assembler/Disassembler for Android’s
Dex Format, Google Project Hosting. [Online]. Available: http://code.
google.com/p/smali

X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, “MutantX-S: Scalable
malware clustering based on static features,” in Proc. USENIX Annu. Tech.
Conf., 2013, pp. 187-198.

R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of
HTTP-based malware and signature generation using malicious network
traces,” in Proc. NSDI, vol. 10, 2010, pp. 1-14.

J. Jang, D. Brumley, and S. Venkataraman, “BitShred: Feature hashing
malware for scalable triage and semantic analysis,” in Proc. 18th ACM
Conf. Comput. Commun. Secur., 2011, pp. 309-320.

U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in Proc. NDSS, vol. 9,
2009, pp. 8-11.

(Nov. 2013). YARA—The Pattern Matching Swiss Knife for Malware
Researchers. Accessed: Mar. 27, 2017. [Online]. Available: https:/
virustotal.github.io/yara/

A. Desnos. (2011). Androguard: Reverse Engineering, Malware and
Goodware Analysis of Android Applications... and More (Ninja!).
Accessed: Jun. 10, 2014. [Online]. Available: https://github.com/
androguard/androguard

A. Desnos and P. Lantz, “DroidBox: An Android application sandbox for
dynamic analysis,” Lund Univ., Lund, Sweden, Tech. Rep., 2011.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proc.
KDD, vol. 96. 1996, pp. 226-231.

R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based cluster-
ing based on hierarchical density estimates,” in Proc. Pacific—Asia Conf.
Knowl. Discovery Data Mining. New York, NY, USA: Springer, 2013,
pp. 160-172.

R.J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander, ““Hierarchical
density estimates for data clustering, visualization, and outlier detection,”
ACM Trans. Knowl. Discovery Data, vol. 10, no. 1, 2015, Art. no. 5.

L. Mclnnes and J. Healy. (2017). “Accelerated hierarchical density clus-
tering.”” [Online]. Available: https://arxiv.org/abs/1705.07321

L. Mclnnes, J. Healy, and S. Astels, “HDBSCAN: Hierarchical density
based clustering,” J. Open Source Softw., vol. 2, no. 11, pp. 1-2, Mar. 2017,
doi: 10.21105%2Fjoss.00205.

A.Rosenberg and J. Hirschberg, ““V-measure: A conditional entropy-based
external evaluation measure,” in Proc. EMNLP-CoNLL, vol. 7, 2007,
pp. 410-420.

M. Sebastidn, R. Rivera, P. Kotzias, and J. Caballero, “AVclass: A tool for
massive malware labeling,” in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses. Paris, France: Springer, 2016, pp. 230-253.

(Jul. 2016). malicialab/AVCLASS: AVClass Malware Labeling Tool.
Accessed: Mar. 27, 2017. [Online]. Available: https://github.com/
malicialab/avclass

Y. Li et al., “Experimental study of fuzzy hashing in malware clustering
analysis,” in Proc. 8th Workshop Cyber Secur. Exp. Test (CSET), vol. 5,
no. 1, 2015, p. 52.

T. Lee and J. J. Mody, “‘Behavioral classification,” in Proc. EICAR Conf.,
2006, pp. 1-17.

M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “‘Automated classification and analysis of Internet malware,”
in Proc. Int. Workshop Recent Adv. Intrusion Detection. Berlin, Germany:
Springer, 2007, pp. 178-197.

VOLUME 6, 2018

(28]

[29]
(30]

(31]

(32]
(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

(52]

(53]

K. Rieck, T. Holz, C. Willems, P. Diissel, and P. Laskov, “Learning and
classification of malware behavior,” in Proc. Int. Conf. Detection Intru-
sions Malware, Vulnerability Assessment. Paris, France: Springer, 2008,
pp. 108-125.

A. Gionis, P. Indyk, and R. Motwani, ‘‘Similarity search in high dimensions
via hashing,” VLDB, vol. 99, no. 6, pp. 518-529, 1999.

U. Bayer, C. Kruegel, and E. Kirda, “Anubis: Analyzing unknown bina-
ries,” Virus Bull., Geneva, Switzerland, Tech. Rep., 2009.

K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of
malware behavior using machine learning,” J. Comput. Secur., vol. 19,
no. 4, pp. 639-668, 2011.

M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation
techniques,” J. Intell. Inf. Syst., vol. 17, no. 2, pp. 107-145, Dec. 2001.
D. Korczynski, “ClusTheDroid: Clustering android malware,” Royal Hol-
loway, Univ. London, London, U.K., Tech. Rep., 2015.

K. Tam, S.J. Khan, A. Fattori, and L. Cavallaro, “‘CopperDroid: Automatic
reconstruction of Android malware behaviors,” in Proc. NDSS, 2015,
pp. 1-15.

P.-N. Tan, M. Steinbach, and V. Kumar, “Data mining cluster analysis:
basic concepts and algorithms,” Introduction to data mining, 2013.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

A.K.Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM
Comput. Surv., vol. 31, no. 3, pp. 264-323, Sep. 1999.

R. Perdisci and M. U, “VAMO: Towards a fully automated malware
clustering validity analysis,” in Proc. 28th Annu. Comput. Secur. Appl.
Conf., 2012, pp. 329-338.

Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2012,
pp. 95-109.

E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14,
no. 3, pp. 249-260, Sep. 1995.

A. Mohaisen and O. Alrawi, “AV-Meter: An evaluation of antivirus scans
and labels,” in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability
Assessment. Milan, Italy: Springer, 2014, pp. 112-131.

C. Kreibich and J. Crowcroft, ““Honeycomb: Creating intrusion detection
signatures using honeypots,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 1, pp. 51-56, 2004.

H.-A. Kim and B. Karp, “Autograph: Toward automated, distributed worm
signature detection,” in Proc. USENIX Secur. Symp., San Diego, CA, USA,
vol. 286, 2004, p. 19.

S. Singh, C. Estan, G. Varghese, and S. Savage, ‘‘Automated worm finger-
printing,” in Proc. OSDI, vol. 6, 2004, p. 4.

K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous payload-based worm
detection and signature generation,” in Proc. Int. Workshop Recent Adv.
Intrusion Detection. Berlin, Germany: Springer, 2005, pp. 227-246.

V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha, “An architecture for
generating semantics-aware signatures,” in Proc. USENIX Secur. Symp.,
2005, pp. 97-112.

Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez, ‘““Hamsa: Fast
signature generation for zero-day polymorphic worms with provable attack
resilience,” in Proc. IEEE Symp. Secur. Privacy, May 2006, pp. 15 and 47.
K. Rieck, G. Schwenk, T. Limmer, T. Holz, and P. Laskov, “Botzilla:
Detecting the ‘phoning home’ of malicious software,” in Proc. ACM Symp.
Appl. Comput., 2010, pp. 1978-1984.

C. Rossow and C. J. Dietrich, “ProVeX: Detecting botnets with encrypted
command and control channels,” in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment. Berlin, Germany: Springer, 2013,
pp. 21-40.

Y. Xie, F. Yu, K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov, “Spam-
ming botnets: Signatures and characteristics,” in Proc. SIGCOMM, 2008,
vol. 38. no. 4, pp. 171-182.

W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto, “Shield-
Gen: Automatic data patch generation for unknown vulnerabilities with
informed probing,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 252-266.

P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda, “Auto-
matically generating models for Botnet detection,” in Proc. Eur. Symp.
Res. Comput. Secur. Saint-Malo, France: Springer, 2009, pp. 232-249.

J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating
signatures for polymorphic worms,” in Proc. IEEE Symp. Secur. Privacy,
May 2005, pp. 226-241.

59555

http://dx.doi.org/10.21105%2Fjoss.00205

IEEE Access

A. Atzeni et al.: Countering Android Malware: Scalable Semi-Supervised Approach for Family-Signature Generation

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]
[62]

[63]

[64]

[65]

P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, ‘“‘AndroSim-
ilar: Robust statistical feature signature for Android malware detection,”
in Proc. 6th Int. Conf. Secur. Inf. Netw., 2013, pp. 152-159.

M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature based
analytic system to collect, extract, analyze and associate android malware,”
in Proc. 12th IEEE Int. Conf. Trust, Secur. Privacy Comput. Commun.
(TrustCom), Jul. 2013, pp. 163-171.

(Jan. 2008). Virus Bulletin: Rule-Driven Malware Identification and
Classification. Accessed: Mar. 4, 2017. [Online]. Available: https://www.
virusbulletin.com/virusbulletin/2008/01/rule-driven-malware-
identification-and-classification

N. Kiss, J.-F. Lalande, M. Leslous, and V. V. T. Tong, “Kharon dataset:
Android malware under a microscope,” in Proc. Learn. Authoritative
Secur. Exp. Results (LASER) Workshop, 2016, pp. 1-19.

R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, ‘‘Misleading worm
signature generators using deliberate noise injection,” in Proc. IEEE Symp.
Secur. Privacy, May 2006, p. 15-pp.

J. Newsome, B. Karp, and D. Song, “Paragraph: Thwarting signature
learning by training maliciously,” in Proc. Int. Workshop Recent Adbv.
Intrusion Detection. Hamburg, Germany: Springer, 2006, pp. 81-105.

W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in Proc.
Netw. Distrib. Syst. Symp., 2016, pp. 1-15.

B. Biggio et al., “Poisoning behavioral malware clustering,” in Proc.
Workshop Artif. Intell. Secur. Workshop, 2014, pp. 27-36.

J. Crussell and P. Kegelmeyer, “Attacking DBSCAN for fun and profit,”
in Proc. SIAM Int. Conf. Data Mining, 2015, pp. 235-243.

M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu, “Incremental
clustering for mining in a data warehousing environment,” in Proc. VLDB,
vol. 98, 1998, pp. 323-333.

N. Goyal, P. Goyal, K. Venkatramaiah, P. C. Deepak, and P. Sanoop,
“An efficient density based incremental clustering algorithm in data ware-
housing environment,” in Proc. Int. Conf. Comput. Eng. Appl. (IPCSIT),
vol. 2, 2011, pp. 482-486.

A. M. Bakr, N. M. Ghanem, and M. A. Ismail, “Efficient incremental
density-based algorithm for clustering large datasets,” Alexandria Eng. J.,
vol. 54, no. 4, pp. 1147-1154, 2015.

ANDREA ATZENI received the M.Sc. and Ph.D.
degrees in computer engineering from Politecnico
di Torino. He is currently a Senior Research Assis-
tant at the TORSEC Security Group, Politecnico
di Torino. In last fifteen years, he contributed to a
number of large-scale European research projects
under the FP5, FP6 and FP7, and CIP programmes.
He addressed, among the others, the definition of
security requirements in multi-platform systems,
mobile security modelization of user expectation

on security and privacy, security specification, risk analysis and threat mod-
eling for complex cross-domain architectures, development of cross-domain
usable security, digital and cloud forensics, development and integration of
cross-border authentication mechanisms, malware analysis, and modeling.

FERNANDO DIAZ is currently pursuing the B.Sc.
degree in health engineering with the University
of Malaga. He is with Hispasec Sistemas as a
Security Engineer. He is a Malware Analyst and
also a Software Engineer. His daily work focuses
on automated malware configuration extractions,
distributed analysis environments, and developing
software for the Koodous platform. His research
includes analysis of new malware families and IoT
malware.

59556

ANDREA MARCELLI received the M.Sc. degree
in computer engineering from Politecnico di
Torino, Italy, in 2015, where he is currently pur-
suing the Ph.D. degree in computer and con-
trol engineering. He is a member of the CAD
Group, Politecnico di Torino. His research inter-
ests include malware analysis, semi-supervised
modeling, machine learning and optimization
problems, with main applications in computer
security.

ANTONIO SANCHEZ received the M.Sc. degree
in computer science from the Universidad de Jan,
Spain, in 2013. Since 2012, he has been a Security
Engineer at Hispasec Sistemas S.L. He is also a
Malware Analyst and also a Research Engineer.
His daily work focuses on the improvement of
systems for the automatic detection and analysis
of malware samples, while his research interests
include new techniques for storage, recovering,
and correlation of big data.

GIOVANNI SQUILLERO (M’01-SM’14) rece-
ived the M.S. and Ph.D. degrees in computer
science in 1996 and 2001, respectively. He is cur-
rently an Associate Professor of computer sci-
ence at Politecnico di Torino. His research mixes
the whole spectrum of bio-inspired metaheuristics
with computational intelligence, machine learn-
ing, and selected topics in electronic CAD, games,
multi-agent systems. Other activities focus on the
development of optimization techniques able to

achieve acceptable solutions with limited amount of resources, mainly
applied to industrial problems. He is a member of the IEEE Computational
Intelligence Society Games Technical Committee.

ALBERTO TONDA received the Ph.D. degree
in computer science engineering from Politec-
nico di Torino, Torino, Italy, in 2010. He is a
senior Permanent Researcher with the Université
Paris-Saclay, INRA, France. His research inter-
ests include semi-supervised modeling of complex
systems, evolutionary optimization and machine
learning, with main applications in food science
and industry.

VOLUME 6, 2018

	INTRODUCTION
	PROBLEM STATEMENT AND MOTIVATION
	KOODOUS
	PROPOSED FRAMEWORK
	ITERATIVE CLUSTERING
	FEATURES SELECTION

	EXTENDING MALWARE DETECTION
	FAMILY SIGNATURES GENERATION
	RULE QUALITY

	CASE STUDY
	EVALUATING CLUSTERING RESULTS
	EXTENDING MALWARE DETECTION
	EVALUATION OF MALWARE DETECTION EXTENSION
	EXAMPLE OF MANUAL ANALYSIS OF A MALWARE FAMILY
	THE ITERATIVE ALGORITHM

	AUTOMATIC FAMILY SIGNATURES GENERATION

	RELATED WORK
	CLUSTERING APPLIED TO MALWARE ANALYSIS
	EVALUATING CLUSTERING RESULTS
	SIGNATURE-BASED DETECTION
	AUTOMATIC SIGNATURE GENERATION

	LIMITATIONS
	FUTURE WORKS
	CONCLUSION
	REFERENCES
	Biographies
	ANDREA ATZENI
	FERNANDO DÍAZ
	ANDREA MARCELLI
	ANTONIO SÁNCHEZ
	GIOVANNI SQUILLERO
	ALBERTO TONDA

