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ABSTRACT:

In today’s world, the number of vehicles is increasing rapidly in developing countries and China and remains stable in all other countries,
while road infrastructure mostly remains unchanged, causing congestion problems in many cities. Urban Traffic Control systems can
be helpful in counteracting congestion if they receive accurate information on traffic flow. So far, these data are collected by sensors
on roads, such as Inductive Loops, which are rather expensive to install and maintain. A less expensive approach could be to use a
limited number of sensors combined with Artificial Intelligence to forecast the intensity of traffic at any point in a city. In this paper,
we propose a simple yet accurate short-term urban traffic forecasting solution applying supervised window-based regression analysis
using Deep Learning algorithm. Experimental results show that is it possible to forecast the intensity of traffic with good accuracy just
monitoring its intensity in the last few minutes. The most significant result, in our opinion, is that the machine can generate accurate
predictions even with no knowledge of the current time, the day of the week or the type of the day (holiday, weekday, etc).

1. INTRODUCTION

Urban Traffic Control (UTC) system is an integral part of any
smart city scenario. Efficient use of road resources and infrastruc-
ture became essential due to the ever-growing number of road ve-
hicles. To achieve traffic flow control and coordination, UTC sys-
tems monitor, distribute and control the traffic flows (Wood and
K, 1993). In summary, a UTC system consists of a model of the
physical infrastructure, sensors, a single or multiple controllers
and actuators. The most common type of road-traffic sensor is
the Inductive Loop (IL) detector which is usually buried under
the road surface and identifies the passage of a vehicle through
the changes in its inductance. The actuator (such as a traffic light)
controls the flow of traffic according to the instructions of the
controller. The controller constantly monitors and forecasts the
traffic status and optimises the control strategy according to flow
efficiency and/or environmental criteria. Adaptive Traffic Control
System (ATCS) is a traffic light control program which provides
fully responsive traffic signal control based on real-time traffic
conditions (Skehan, 1996).

Without traffic forecasting, UTC systems can only rely on the
current situation of traffic, estimated by road sensors, which is
not sufficient for planning and optimization (Williams and Hoel,
2003). The aim of traffic flow prediction is to estimate the num-
ber of vehicles per unit time at a given location point or road seg-
ment (Zhang et al., 2011). It allows the implementation of several
ITS solutions, such as ATCS, traffic management systems, ad-
vanced public transportation systems and logistics management.
Forecasting is achieved using multi-sourced historical and real-
time data processed by multiple types of forecasting and predic-
tion models (Lv et al., 2015).

Machine learning is seeing more advancements and application
than ever. Ever since the revival of Deep Learning (Krizhevsky
et al., 2017), it is finding more and more applications in self-
driving cars, robotics, image/object recognition, voice recog-
nition, healthcare, cancer diagnosis, earthquake prediction and
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weather forecasting. Deep Learning is a type of machine learn-
ing which uses multiple-layer architectures to extract inherent
features and structure in data from lowest to highest level. Ac-
cording to the Gartner hype cycle for emerging technologies of
2017, machine learning is at its peak of inflated expectations and
is expected to reach a plateau within 2 to 5 years (Walker, 2017).

1.1 Current proposals

Traffic prediction approaches have been extensively researched
in literature and generally can be grouped into three basic cat-
egories, i.e. parametric, non-parametric and simulation-based
models. Parametric models include time-series models (Ghosh
et al., 2007), Kalman filtering models (Okutani and Stephanedes,
1984), etc. Non-parametric models include Support Vector Re-
gression (SVR) methods (Castro-Neto et al., 2009), Artificial
Neural Networks (ANNs) (Smith and Demetsky, 1994), etc. Sim-
ulation based approaches use traffic simulation tools to predict
traffic flow (Qiao et al., 2001).

Reviews of short-term traffic forecasting indicate that models are
becoming more and more data-driven rather than analytical, due
to an increase of computational intelligence (Vlahogianni et al.,
2014). Researchers have been proposing traffic flow prediction
models as early as in the seventies. For example, the AutoRegres-
sive Integrated Moving Average (ARIMA) model and its deriva-
tions have been used to predict short-term flows of traffic for over
3 decades (Box and Pierce, 1970). Although, now the focus has
moved from classical statistical models to neural-network based
models (Vlahogianni and Karlaftis, 2011). Non-parametric mod-
els have also been extensively researched due to the non-linear
nature of traffic flow. Apart from three basic categories of pre-
diction models, hybrid models, which combine one or more tech-
niques have also been proposed (Hong et al., 2011). A Stacked
AutoEncoder (SAE) based model was proposed for 15 to 60 min
traffic flow prediction (Lv et al., 2015). This model generates
predictions with reasonable accuracy but is computationally com-
plex due to the need for higher number of hidden layers and hid-
den units in the learner.
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In summary, many traffic prediction models have been proposed
in the literature to provide real-time traffic flow information in
ITS, UTC and smart cities. Extensive comparison and review
studies suggest that there is no technique that clearly outperforms
other methods in all situations (van Hinsbergen and Sanders,
2007, Vlahogianni et al., 2014, Bolshinsky and Freidman, 2012).

1.2 Our contribution

In this paper, we propose a short-term urban traffic forecasting
solution applying supervised window-based regression analysis
using Deep Learning. We experimented with multiple configu-
rations and prediction schemes to optimise the learning and pre-
diction process. The resulting model is much simpler than other
Deep Learning based traffic models proposed in the literature, yet
it still outperforms them.

The rest of this paper is organized as follows: Section 2 in-
troduces and analyses the traffic flow dataset used for this
study; Section 3 extensively presents the Deep Learning pre-
diction work-flow, pre-processing steps and schemes and hyper-
parameter optimization; Section 3.5 outlines the error measures
used to evaluate the performance of models; Section 4 discusses
the experimental results and compares them to other state-of-the-
art solutions. Finally, concluding remarks are presented in Sec-
tion 5.

2. THE DATASET

The dataset used to train the AI machine is pub-
licly available at the Uniform Resource Locator (URL)
http://opendata.5t.torino.it/get fdt in eXtensible Markup Lan-
guage (XML) format (5T srl, 2011). It provides information
about the number and average speed of the vehicles travelling in
the urban area of Turin, detected by the means of ILs or aerial
sensors. The dataset contains a single table with the following
columns:

• start time: Timestamp for the start of the period to which
the data are referred

• end time: Timestamp for the end of the period to which the
data are referred

• period: Aggregation period [min]

• lat: Latitude in the WGS84 system of the measuring station

• lng: Longitude in the WGS84 system of the measuring sta-
tion

• Road name: Name of the road where the measuring station
is located

• Road LCD: Traffic Message Channel (TMC) code of the
road on which the measuring station is present

• lcd1: Code of the initial node or TMC code of the initial
location of the source arc

• direction: TMC direction (positive or negative)

• accuracy: Accuracy of the measurement [percentage]

• offset: Distance from the start of the arc along the direction
of travel [m]

• flow: Vehicular flow [vehicle/hour]

• speed: Average speed [km/h]

The table contains roughly 130 data sources that are updated ev-
ery 5 minutes. In the analysis that follows, we will only consider
the data sources that are inside the boundaries of Metropolitan
City of Turin (some 126 observation points). This data is col-
lected by Urban Traffic OPtimization by Integrated Automation
(UTOPIA) project (Mauro and Taranto, 1990). UTOPIA is a hi-
erarchical decentralized traffic light control system that has been
implemented and tested in a large area within the city of Turin.

2.1 Dataset analysis

Figure 1. Geographical location of all data sources (red dots) in
the urban area of Turin

Figure 1 shows the map of all data sources in the urban region
of Turin. The data sources are well spread out over major city
roads and intersections. For the sake of this analysis and tests,
data was collected from 01-Oct-2017 till 28-Feb-2018. During
this period there were 103 weekdays, 20 Saturdays, 21 Sundays
and 7 holidays.

The analysis of the dataset shows that the data can be categorized
into four types of days (Fox and Clark, 1998):

1. Weekdays (from Monday till Friday)

2. Saturdays

3. Sundays

4. Holidays (national and local holidays)

The average vehicular flow in the city changes according to the
categories of days, as seen in the Figure 2(a). As expected, week-
days show the highest flow while holidays experience the lowest
flow. During weekdays, the two highest peaks are from 07:40 un-
til 8:50 and from 17:10 until 18:35. These peaks are due to com-
muters travelling between home and workplace and back. Sat-
urdays and Sundays experience much less traffic than weekdays
and the highest peaks are between 12:05 and 12:50. The average
speed in the city is shown in Figure 2(b). Saturdays, Sundays
and holidays follow a very similar trend and the average stays
at some 29 km/h. On weekdays traffic slows down during peak
hours (i.e. from 07:20 till 09:55 and from 16:55 till 19:25). This
is due to the high vehicular flow during those periods, which gen-
erates congestion.
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(a) Average vehicular flow (b) Average vehicular speed

Figure 2. Vehicular flows in the city of Turin categorized by type of day (bands represent 95% confidence interval)

3. METHODOLOGY

To predict the intensity of traffic, we used supervised window-
based regression analysis with Deep Learning. Regression analy-
sis is a set of statistical processes for estimating the relationships
among variables. Supervised learning is the machine learning
task of inferring a function from labelled training data. Deep
Learning is based on a multi-layer feed-forward artificial neu-
ral network that is trained with stochastic gradient descent using
back-propagation. A feed-forward neural network is an artifi-
cial neural network wherein connections between the units do not
form a cycle.

The process of machine learning usually involves gathering data,
preparing data, selecting a model, training the model, evaluating
its performance, tuning model parameters and finally generating
predictions. Figure 3 shows prediction work-flow for forecast-
ing this time series. Firstly, the labelled training dataset is read
from the database. Then it passes through a few pre-processing
steps depending on the type of test being performed. An expla-
nation related to the different pre-processing steps can be found
in Section 3.1. The labelled training dataset is passed to the Deep
Learning machine which creates a model of the data. The unla-
belled testing dataset is read and passed through the same pre-
processing steps to evaluate the performance of the generated
model. Once the testing dataset is labelled, it is evaluated using
measures described in Section 3.5.

Figure 3. Prediction work-flow for supervised Deep Learning
based regression for windowed time series forecasting

For the sake of conducting tests, we randomly selected multiple
intersections across the city as data sources. We ran each test on
all of them and results were very consistent across all intersec-
tions. In the following, as an example, the intersection between
Corso Giovanni Agnelli (CGA) and Via Filadelfia (VF) is chosen

as the data source. At this intersection, two data sources are avail-
able in the open data, specifically for northbound traffic (towards
city centre) and southbound traffic (away from city centre). We
selected the data source with northbound traffic for the discussion
that follows.

3.1 Pre-processing

To further enhance and enrich the collected data, some pre-
processing operations are performed. Their description is pro-
vided below.

3.1.1 Date to numerical converts a text-based timestamp
into an integer number indicating the minutes from the origin of
the dataset. For example, in case of weekdays and weeks dataset,
00:00 Monday is set to number 0 and 00:05 Monday to 5 and so
on. For weekends dataset, 0 is set to Saturday midnight. This
allows the machine to treat the string-based timestamp attribute
as an index.

3.1.2 Replace missing values fills in gaps in a series due to
missing data. A simple linear interpolation is applied to the data
if one value is missing in the series. If more than one value is
missing, the missing portion is replaced with the minimum value
of the series.

3.1.3 Moving average is commonly used with time series
data to smooth out short-term fluctuations and highlight long-
term trends or cycles. In other words, moving average works
like a low-pass filter. A triangular weighted window function is
applied to the data with a window width of five (5 × 5 mins =
25mins) and the result of the weighted average is inserted at the
end of the window.

3.1.4 Time series windowing is a very popular pre-
processing step used in time series analysis and prediction. It
takes any time series data and transforms it into a cross-sectional
format. It essentially converts time values into cross-sectional at-
tributes on which any predictive modelling algorithm can be used
to predict future values. In other words, it transforms the given
example set containing series data into a new example set con-
taining single valued examples. For this purpose, windows with
a specified window size (the width of the used window) and step
size (the distance between the first values) are moved across the
series and the attribute value lying horizon (the distance between
the last window value and the value to predict) values after the
window end is used as the label which should be predicted.

As an example, in case of the vehicular flow time series of one
data source, a window size of six, a step size of one and a horizon
of one would mean:
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• The window considers the vehicular flow of last 30 mins;

• The window is moved 5 mins per step;

• The window is used to predict the vehicular flow of the next
5 mins.

Figure 4 shows a visual representation of the same example. The
solid line boxes represent the input values while the dotted box
represents the future value to be predicted.

Figure 4. An example of original time series to windowed
cross-sectional format conversion

3.1.5 Shuffled order pre-processing step shuffles the order or
sequence of a windowed data table in a random fashion. The pur-
pose of adding a shuffled order pre-processor is to further ver-
ify that the learner can correctly predict the traffic flow without
timestamp even when the order of samples is shuffled (after win-
dowing). Figure 5 shows a sample windowed data table randomly
shuffled.

label flow-0 flow-1 label flow-0 flow-1

144 96 264 180 180 132

60 144 96 180 132 60

132 60 144 60 180 180

180 132 60 144 96 264

180 180 132 132 60 144

60 180 180 60 144 96

Original windowed data table
Randomly shuffled 

windowed data table

Figure 5. An example of random shuffling of windowed data
table

3.2 Pre-processing schemes

To investigate the best approach for traffic prediction, we ex-
perimented with six different combinations of pre-processing
schemes:

A. Standard: This scheme involves no special pre-processing
other than converting the date to a number, replacing miss-
ing values and windowing.

B. Moving average: This scheme uses data passed through the
date to a number, replacing missing values, moving average
and windowing blocks.

C. Moving average without timestamp input: The dataset for this
test does not contain any attribute related to time. The pre-
processing steps include replacing missing values, moving
average and windowing.

D. Moving average without timestamp input and shuffled order:
The dataset for this test does not contain any attribute related
to time. At the testing stage, the test dataset is shuffled to re-
move any chronology associated with it. The pre-processing
steps include replacing missing values, moving average and
windowing.

E. No timestamp input: The dataset for this test does not contain
any attribute related to time. The pre-processing steps include
replacing missing values and windowing.

F. No timestamp input with shuffled order: The dataset for this
test does not contain any attribute related to time. At the test-
ing stage, the test dataset is shuffled to remove any chronol-
ogy associated with it. The pre-processing steps include re-
placing missing values and windowing.

Figure 6 shows a comparison between all pre-processing scheme
pipelines. Note that the alphabets on the left of the figure corre-
spond with items in the list.

O
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Shuffle order
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Moving 
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Moving 
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Moving 

average

Replace 

missing 

values

Replace 

missing 

values

Replace 

missing 

values

Remove 

timestamp

Replace 

missing 

values

Remove 

timestamp

Remove 

timestamp

Remove 

timestamp

Date to 

numerical

Date to 

numerical

Figure 6. A comparison of all pre-processing scheme pipelines

3.3 Hyper-parameter optimization

A very important step involved in machine learning is tuning
the model and the pre-processing parameters. Hyper-parameter
optimization is the process of choosing a set of optimal hyper-
parameters for a learning algorithm. A hyper-parameter is a pa-
rameter whose value is set before the learning process begins.
By contrast, the values of other parameters are derived via train-
ing. We used an exhaustive grid search based hyper-parameter
optimization to optimize the window size of windowing pre-
processor and the number of epochs and learning rate of the Deep
Learning machine. The loss function is based on Mean Rela-
tive Error (MRE). The grid search configuration for all hyper-
parameters is shown in Table 1. This results in 726 total combi-
nations of hyper-parameters per pre-processing scheme. The best
combination of hyper-parameters is chosen based on the mini-
mum value of MRE. Please note that the number of hidden layers
and the number of neurons per hidden layer are fixed to two and
50, respectively.

3.4 Software configuration

For the experimentation, we used RapidMiner version
7.6 (RapidMiner, 2017). RapidMiner is a data science
software platform that provides an integrated environment
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Hyper-parameter
Grid range

Min Max Steps Scale
Window size 2 12 10 Linear

Epochs 10 200 10 Linear

Learning rate 0.0 1.0 5 Linear

Table 1. Grid search based hyper-parameter optimization
configuration

for data preparation, machine learning, Deep Learning, text
mining, and predictive analytics. The specific implementation
of Deep Learning algorithm used in these tests is included in
H2O 3.8.2.6 (H2O.ai, 2016). H2O is an open source in-memory
platform for distributed and scalable machine learning.

3.5 Error measures

The error measures used to evaluate the accuracy of the predic-
tions are listed below.

• Root Mean Square Error (RMSE) is the averaged root-mean-
squared error such that:

RMSE =

√√√√ 1

N

N∑
i=1

(f̂i − fi)2 (1)

where f̂ is the predicted value, f is the true value and N is
the total number of readings.

• Mean Relative Error (MRE) is the averaged absolute devi-
ation of the prediction from the actual value divided by the
actual value such that:

MRE =
1

N

N∑
i=1

∣∣∣∣∣ f̂i − fi
fi

∣∣∣∣∣ (2)

where f̂ is the predicted value, f is the true value and N is
the total number of readings.

• Correlation is the averaged correlation coefficient between
the label and prediction attributes.

4. RESULTS

We present here the results for six different pre-processing
schemes applied to three different sets of data. Table 3 shows the
summary of all test results for all schemes. The results presented
in the table are the best results after hyper-parameter optimiza-
tion for each pre-processing scheme. In general, the machines
can follow the general trend of vehicular flow and the results are
quite promising.

The moving average pre-processor improves the accuracy of the
predictions significantly. On average for all datasets, RMSE,
MRE and Correlation for all schemes without moving average
are 120.82, 27.69% and 93.51% respectively. The same values
for schemes with moving average improve as much as 36.29,
8.15% and 99.38%. This constitutes up to 70% improvement in
RMSE and MRE and 6% improvement in correlation due to mov-
ing average. Figure 7(a) and Figure 7(b) shows the comparison
between predicted and true value of vehicular flow for the same
dataset without and with moving average respectively.

The machine can generate an accurate model of the data with and
without timestamp as an input. On average for all datasets, it
shows a degradation of only 0.9% in MRE without timestamp as
an input. This implies that the machine can model traffic without
being aware of the time domain at all. It is possible to generate
a very high accuracy prediction just by observing a few samples
of vehicular flow in the past. Also, by removing time as an input
attribute to the learner, simplifies the complexity of the learner,
resulting in faster training and predictions.

Figure 9 shows the comparison between the predicted and true
value of vehicular flow for the same dataset with moving average
and without timestamp as an input. In this case, a single learner
was trained to predict the entire week’s vehicular flow. Please
note that the x-axis of the figure was just added for illustration
purposes since the actual dataset does not contain any time frame
reference. The best overall results are achieved by pre-processing
schemes B and C.

Our assumption is that the learner can correctly predict the flow
of traffic without timestamp or index or any information about the
order or sequence of a prediction. Results show that this assump-
tion is true since on average for all datasets, with and without
shuffled order schemes show negligible difference in error mea-
sures (4 RMSE, 0.4% MRE and 0.18% correlation). This proves
that the learner predicts every prediction individually and does
not rely on previous or future predictions.

As far as the window size is concerned, results show that it does
not have a major impact on the performance of the learner. The
best three combinations of hyper-parameters show negligible dif-
ference in error measures with a major variation in the value of
window size. Overall, in our experience, a window size of 10
to 30 minutes is reasonable for generating high accuracy predic-
tions.

To further demonstrate the robustness of our approach, we per-
formed a cross-examination among different datasets. We trained
a machine using one type of dataset (such as two weekdays) and
used this machine to predict the traffic flow of a different dataset
(such as a weekend). Table 2 shows a summary of best results
achieved after this cross-examination. Please note that all tests
are performed using pre-processing scheme C (moving average
without timestamp input). Results suggest that a machine trained
with an entire week of traffic flow is the most suited to predict
traffic flow on any day of the week. This hypothesis is confirmed
by the machine trained using a set of data covering two full weeks
instead of two weekdays or two weekends shows an improvement
of on average 12.88 in RMSE, 1.6% in MRE and 0.23% in corre-
lation.

Training data Testing data RMSE MRE Correlation

2 weekdays
1 weekend 36.41 8.49% 98.90%

1 week 43.30 9.03% 99.20%

2 weekends
1 weekday 61.97 10.57% 98.90%

1 week 64.61 10.65% 98.70%

2 weeks
1 weekday 41.78 7.99% 99.30%

1 weekend 35.60 8.19% 99.00%

Table 2. Summary of vehicular flow prediction errors with
cross-examination among different datasets using Deep Learning

4.1 Comparison with state of the art

In comparison, the best results achieved by Deep Learning Archi-
tecture (DLA) based forecasting method by (Huang et al., 2014)
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(a) using pre-processing scheme A (No special pre-processing) (b) using pre-processing scheme B (Moving average)

Figure 7. Predicted traffic flow vs actual traffic flow for CGA intersection VF northbound dataset consisting of a weekday

Figure 8. Predicted traffic flow vs actual traffic flow for CGA
intersection VF northbound dataset consisting of weekends

(Saturday and Sunday) using pre-processing scheme B (Moving
average)

Figure 9. Predicted traffic flow vs actual traffic flow for CGA
intersection VF northbound dataset consisting of an entire week

using pre-processing scheme C (Moving average without
timestamp input)

are around 90% Mean Accuracy (MA = 1−MRE) using three
hidden layers with 128 hidden units each and 40 epochs with data
aggregated using a window size of 60 mins. Authors claim that
these results are better than those of the ARIMA model (Box and
Pierce, 1970), the Bayesian model (Sun et al., 2006), the SVR
model (Castro-Neto et al., 2009), the LWL model (Shuai et al.,
2008), the multivariate non-parametric regression model (Clark,
2003), the NN model (Smith and Demetsky, 1994), and the NN-
S model (Chan et al., 2012). Our solution outperforms these
results with MA of 94.2% while being much less complex (2

hidden layers with 50 hidden units each with data aggregated
using a window size of 25). The best results achieved by SAE
based Deep Learning forecasting method by (Lv et al., 2015) are
around 6.48% MRE using 3 hidden layers with 400 hidden units
each with data aggregated using a window size of 15 mins. Ac-
cording to authors, these results are better than those achieved
by the BackPropagation Neural Network (BPNN), the Random
Walk (RW), the Support Vector Machine (SVM) and the Radial
Basis Function Neural Network (RBFNN). Again, our solution
outperforms these results in terms of higher accuracy and lower
complexity (MRE of 5.8%; two hidden layers with 50 hidden
units each).

5. CONCLUSION

In this paper, we proposed a system for forecasting urban traf-
fic over a short time period using Deep Learning. The predic-
tion is accurate while being simple in terms of complexity. We
also proposed and analysed the effects of multiple pre-processing
schemes to improve the accuracy of forecasting. From experi-
ments on a real traffic flow dataset from the City of Turin, we
showed that our Deep Learning machine performs better than
state of the art DLAs. Results show that our solution outperforms
other DLAs with nearly 4% accuracy improvements while being
much simpler in terms of complexity (hidden layers and hidden
neurons). Furthermore, we presented that the most effective way
to pre-process data is to use a simple moving average without
timestamp as an input. This means that the machine can generate
a prediction with only the traffic flow of past few minutes without
any knowledge of the time. Moreover, to establish the robustness
of our approach, we cross-examined our architecture with differ-
ent datasets. Results show that a single Deep Learning machine
with only two hidden layers of 50 units each trained with traffic
flow data of a week can predict the flow on any day of the week
as well as holidays with remarkable accuracy.

The results are not only accurate, but they have significant ap-
plications. By accurately determining the intensity of traffic in
the near future, ATCS can optimize the traffic light control pro-
gram to minimize congestion. Moreover, when applied at multi-
ple intersections, a forecasted traffic congestion can be distributed
over multiple intersections to lower the overall impact. Further-
more, when using a multi-plan based traffic light control (e.g.
low, medium, high . . .) for an urban area, accurate predictions
can be used as an indication to swap the current plan with a more
appropriate plan. Although our focus was on the forecasting of
urban traffic we believe that the methodology we have devised for
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Training
data

Testing data Moving average
No timestamp

input
Shuffled order

Window size
[min]

RMSE MRE Correlation

2 weekdays 1 weekday

55 134.50 24.50% 93.60%

X 45 47.67 7.36% 99.33%

X X 60 40.41 11.00% 99.53%

X X X 15 45.73 8.92% 99.24%

X 20 126.51 28.52% 94.31%

X X 60 135.29 28.85% 94.27%

2 weekends 1 weekend

30 122.93 27.22% 91.81%

X 30 26.69 9.05% 99.42%

X X 25 24.22 5.39% 99.53%

X X X 35 35.01 8.23% 98.99%

X 15 100.11 27.27% 92.60%

X X 20 97.66 27.75% 92.71%

2 weeks 1 week

40 129.99 29.03% 93.54%

X 40 21.05 5.80% 99.84%

X X 25 43.50 8.79% 99.27%

X X X 30 42.34 8.82% 99.27%

X 35 118.40 27.60% 94.56%

X X 60 121.98 28.47% 94.23%

Table 3. Summary of vehicular flow prediction errors on different datasets using Deep Learning with different pre-processing schemes

pre-processing and prediction of traffic intensity time series can
be easily adapted to other time series with minor modifications as
per the domain of prediction.
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