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Summary

Recent breakthroughs in the fields of computer vision and robotics are firmly

changing the people perception about robots. The idea of robots that substitute

humans is now turning into robots that collaborate with them. Service robotics con-

siders robots as personal assistants. It safely places robots in domestic environments

in order to facilitate humans daily life. Industrial robotics is now reconsidering its

basic idea of robot as a worker. Currently, the primary method to guarantee the

personnels safety in industrial environments is the installation of physical barriers

around the working area of robots. The development of new technologies and new

algorithms in the sensor field and in the robotic one has led to a new generation of

lightweight and collaborative robots. Therefore, industrial robotics leveraged the

intrinsic properties of this kind of robots to generate a robot co-worker that is able

to safely coexist, collaborate and interact inside its workspace with both personnels

and objects.

This Ph.D. dissertation focuses on the generation of a pipeline for fast object pose

estimation and distance computation of moving objects, in both structured and un-

structured environments, using RGB-D images. This pipeline outputs the command

actions which let the robot complete its main task and fulfil the safety human-robot

coexistence behaviour at once.

The proposed pipeline is divided into an object segmentation part, a 6 D.o.F. object

pose estimation part and a real-time collision avoidance part for safe human-robot

coexistence.
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Firstly, the segmentation module finds candidate object clusters out of RGB-D

images of clutter scenes using a graph-based image segmentation technique. This

segmentation technique generates a cluster of pixels for each object found in the

image.

The candidate object clusters are then fed as input to the 6 D.o.F. object pose

estimation module. The latter is in charge of estimating both the translation and

the orientation in 3D space of each candidate object clusters. The object pose is

then employed by the robotic arm to compute a suitable grasping policy.

The last module generates a force vector field of the environment surrounding the

robot, the objects and the humans. This force vector field drives the robot to-

ward its goal while any potential collision against objects and/or humans is safely

avoided.

This work has been carried out at Politecnico di Torino, in collaboration with

Telecom Italia S.p.A.
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Chapter 1

Introduction

Detection and pose estimation of 3D objects is of great importance in current

robotics applications, in both structured and unstructured environments, for many

high level tasks such as manipulation, grasping, localization, mapping and human-

robot interaction. Affordable RGB-D sensors, like the Microsoft KinectTM [40]

(Fig. 1.1a), have been of great interest to the robotics community. These sensors

are able to simultaneously capture high-resolution color and depth images (RGB-D

images) at high frame rates. Figure 1.2 shows a couple of images taken by the

Kinect sensor. In particular, figure 1.2(a) shows a standard RGB color image,

while figure 1.2(b) depicts the depth image of the same scene. The depth image is

generated by the Kinect through the structured light technique. An IR projector

projects on the scene a known pattern of infrared light as shown in Fig. 1.1(b). The

Kinect on board IR camera captures the deformed pattern which will be analyzed

by the internal Kinect software. The latter produces and time-synchronizes the

depth image with the RGB one. An external calibration between the RGB and

IR camera is required to have a one-to-one mapping among the pixels of the two

images. A depth image pixel can be modeled as 3D vector of the form:

pxi
= [ui, vi, Zi]T (1.1)
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1 – Introduction

where (ui, vi) are the pixel coordinates in the image plane, whilst Zi is the depth

information, in millimetres, carried by the i-th pixel.

(a) (b)

Figure 1.1: (a) Microsoft Kinect [36]. (b) IR pattern [30]

(a) (b)

Figure 1.2: Synchronized RGB Image (a) and color coded Depth Image (b) captured
by the Microsoft Kinect sensor

A depth image can be easily visualized as a RGB image. Figure 1.2(b) is thus

obtained by converting the i-th depth image pixel into an 8-bit RGB value. Pixels

far from the camera produce a color shift toward red while moving closer to the

camera the pixels fade into blue color.

Usually the depth map presents some shadows in which the depth information

cannot be extracted. E.g. the dark blue pixels in both figures 1.2(b) and 2.1(b)

are depth map surfaces where we are not able to retrieve any depth data. For

small areas, an in-paint process can be performed to reconstruct the missing depth

information. Fig. 2.1(c) depicts the result of the depth in-paint process. For wider

shadows the in-paint technique produces large depth estimation errors. This leads

2



1 – Introduction

(a) (b)

Figure 1.3: Colored PointCloud examples of different household objects

to an unusable depth image. In Chapter 2 we explain how to overcome this problem

without in-painting depth images with wide shadow areas.

A depth image may also be employed to generate a Point Cloud of the scene

captured by the camera. A Point Cloud is a set of 3D points in space that discretizes

the surrounding environment. Each point belonging to a Point Cloud carries its

own three-dimensional position information w.r.t. a reference frame (usually it is

the reference frame of the IR camera). Besides, each point can hold other data

such as its 3D color vector and its 3D normal vector.

Both figures 1.3 and 2.3(d)-(f) depict colored Point Clouds of household objects.

Those Point Clouds are computed through their corresponding depth images as

explained in Chapter 5.

In this work we focus on the problem of object pose estimation for robotic grasp-

ing, and in particular we are interested in the Amazon Picking Challenge (APC)

[4] scenario. A well known approach for object pose estimation is LINEMOD [23].

It exploits both depth and color to capture the appearance and 3D shape of ob-

jects using a set of templates to represent different views of the object. Since the

viewpoint of each template is known, a coarse estimate of the object pose can be

obtained at the time of detection. However, pose estimates are not very precise,

since each template covers a range of views around its viewpoint. 3D object mod-

els were exploited [25] in order to improve pose estimation accuracy and increase

3



1 – Introduction

robustness. In [59], LINEMOD is extented to be a scale-invariant patch descrip-

tor and integrated into a regression forest, which is trained with positive samples

only. Recent tests of LINEMOD showed only 32% accuracy rates in an APC-like

scenario [50]. Other commonly used approaches such as tabletop from the Point

Cloud Library [3] are based on a combination of coarse detection using 3D feature

descriptors and fine pose estimation using ICP (Iterative Closest Point). Some

of these approaches rely on object textures an are not suitable for many common

texture-less objects. Moreover, all these methods are limited to objects lying on a

flat tabletop, and are not robust to occlusions. In [26] the approach was extended

with a voting procedure based on hashing for selecting candidate templates. In

[7], random forests are trained on local features, while in [6] occlusion information

is also added in the learning phase. Other commonly used approaches, such as

tabletop from the Point Cloud Library [3], are based on a combination of coarse

detection using 3D feature descriptors and fine pose estimation using ICP. Most

of these approaches rely on object textures and are not suitable for many common

texture-less objects. Moreover, these methods are limited to objects lying on a flat

tabletop, and are generally not robust to occlusions. Given the difficulty to gather

large annotated datasets necessary for training learning-based methods, such as

Convolutional Neural Networks, and the long training times associated with learn-

ing, we propose a pipeline for detection and pose estimation of simple objects which

does not rely on 2D or 3D features and does not require any training phase. First,

candidate objects are segmented from the RGB-D image; then the object’s pose

is estimated using Particle Swarm Optimization (PSO). The contributions of this

work are the extension of a fast graph-based segmentation algorithm [18] with the

inclusion of depth information (similarly to [47]), and a detailed description of the

GPU implementation of a novel quaternion-based formulation of the standard PSO

equations which include the design of an objective function for pose estimation

4



1.1 – Pipeline Overview

which exploits depth information only. An optimized GPU version of the colli-

sion avoidance algorithm for a safe Human-Robot coexistence presented in [19] has

been developed. A 7 Degree of Freedom (D.o.F) lightweight manipulator has been

designed and built from scratch to test the proposed real-time collision avoidance

scheme.

1.1 Pipeline Overview

This PhD dissertation presents the pipeline for fast object pose estimation and

human-robot interaction depicted in fig. 1.5. This pipeline requires only three

inputs: both the RGB and Depth image of the robot surrounding environment, plus

a 3D model of the object the robot must interact with. The 3D object model can be

generated from scratch by any CAD software; alternatively, it can be reconstructed

by stitching together depth images of the object at different viewpoints. Figure 1.4

shows some 3D object models used in this work.

Figure 1.4: 3D Object Models Examples

5



1 – Introduction

The first module performs the objects segmentation on the RGB image. The

depth image of the captured scene is also employed to enhance the segmentation

process. The implemented segmentation executes a per pixel labelling. It outputs a

set of pixels clusters. Each cluster is a candidate object found in the image. Pixels

with the same color belong to the same cluster, therefore they belong to the same

object.

The second module takes as input the candidate object clusters, the depth image

and finally the 3D object model. This module performs both the object detection

and the 6 D.o.F object pose estimation. The detection phase indicates whether a

cluster is actually the cluster of the object we are looking for. The pose estimation

part estimates the pose of the object instead. The pose estimation is run only on

the clusters that passed the detection phase. Once the object pose is extracted, the

robot can be easily programmed to grasp the selected object.

The third module is focused on the development of a safe Human-Robot coexistence.

Given the depth images stream of the surrounding environment and, if necessary,

the objects poses of interest objects, this modules guarantees a safe collision free

robot trajectory. A safe coexistence between the robot and the human while they

are performing different tasks very close to each other is thus fulfilled.

1.2 Outline

In Chapter 2 we describe the proposed graph-based object segmentation al-

gorithm; in Chapter 3 we describe the novel quaternion formulation of the PSO

equations for pose estimation. In Section 3.3 we present and discuss experimental

results for the full pipeline, with an extension to articulated objects.

In Chapter 4 the GPU implementation and optimization of the proposed objects

pose estimation algorithm is explained in detail.

6



1.2 – Outline

Figure 1.5: Proposed Pipeline Overview
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1 – Introduction

In Chapter 5 we present and test a collision avoidance scheme for a safe Human-

Robot coexistence in unstructured environments.

Finally in Chapter 6 we draw some conclusions about the work developed in this

PhD dissertation.

8



Chapter 2

Graph-Based Object

Segmentation for RGB-D Images

This Chapter deeply explains the first module of the developed pipeline for fast

object pose estimation.

The image object segmentation is a technique in which given a RGB image of a

scene, objects are first detected and then singled out from the image background.

The proposed algorithm belongs to the class of instance segmentation, which con-

sists in delineating all the object pixels corresponding to each detection. The Kinect

sensor grabs a synchronized couple of images, i.e. both the RGB image and the

Depth one of the surrounding environment.

The graph-based segmentation algorithm combines both images to cope with ob-

jects with large variety in appearance, from lack of texture to strong textures. A

novel dynamic depth image smoothing filter is designed to filter the raw depth

image without softening any relevant object edges. The State of the Art Canny

edge detector is adapted and modified to extract only robust object edges out of

clutter scenes (see fig. 2.6 for an example). Two non-linear cost functions are thus

designed to combine color and depth cues. An unidirectional graph is then built.

The graph nodes correspond to image pixels and the graph edges connect pairs of

9



2 – Graph-Based Object Segmentation for RGB-D Images

neighbouring vertices. Each edge has a unique weight that is the outcome of the

non-linear functions. The graph is then partitioned using the concept of internal

and external differences between graph regions. The graph partition produces a set

of pixel clusters. Each cluster represents a candidate object located in the captured

image. A post-processing phase is finally run to discharge false positive clusters.

The remain object clusters can then be further processed in the second module of

the pipeline to obtain an estimate of their own 6 D.o.F pose (see Chapter 3).

Fig. 2.1 depicts all the steps performed by the segmentation algorithm needed to

produce the final candidate objects clusters.

10



2 – Graph-Based Object Segmentation for RGB-D Images

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.1: The algorithm in action. (a) RGB image; (b) depth image; (c) smoothed
and inpainted depth image; (d) obtained graph weights (color coded); (e) segmen-
tation result; (f) result after post-processing; (g) segmented objects.
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2 – Graph-Based Object Segmentation for RGB-D Images

2.1 Background

In [18] a graph-based segmentation algorithm has been developed based only

on color cues. The segmentation algorithm proposed in this thesis extends the one

in [18] and adds new feature vectors and novel non-linear weighting functions for

graph edges weighting.

Let G = (V , E) be an undirected graph with vertices V = (vi, . . . , vNp) corresponding

to image pixels, and edges eij = (i, j) ∈ E , that connect pairs of neighboring

vertices, namely vi and vj. Each edge eij has a corresponding weight wij, which is

a measure of the similarity between vi and vj. Hence image segmentation reduces

to partitioning of G in subgraphs sharing similar characteristics.

Edge weights can be computed by evaluating color or intensity difference. If the

function Λ : R2 →: R5 associates each node (pixel) vj with the corresponding feature

vector containing both node coordinates vix , viy and the RGB values vir , vig , , vib
,

then the edges weights are computed as:

wij = ||Λ(vi) − Λ(vj)||2, ∀(i, j) ∈ E . (2.1)

Let’s define the internal difference within the region Ra as:

I(Ra) = max
(i,j)∈E, i,j∈Ra

wij, (2.2)

Let’s also define the difference between two regions Ra and Rb as:

D(Ra, Rb) = min
(i,j)∈E, i∈Ra, j∈Rb

wij, (2.3)

The segmentation procedure starts by considering each pixel as a different region.

Such regions are pairwise compared and two regions are merged together in a bigger

12



2.2 – Image cues definition

cluster if the following condition holds:

D(Ra, Rb) ≤ min(I(Ra) + γ

|Ra|
, I(Rb) + γ

|Rb|
), (2.4)

otherwise a boundary exist between them. In eq. (2.4) the right part represents

the minimal internal difference between two regions Ra and Rb. Moreover, γ is a

constant parameter and the operator | · | returns the region size in pixels.

2.2 Image cues definition

In this section the definition of the different image cues (δ) are explained in

detail. Four different image cues are defined as follows:

1. δhsv : It is the cue matrix related to the Hue-Saturation-Value (HSV) color

space.

2. δdepth : It is the cue matrix related to the depth image space.

3. δs : It is the cue matrix related to the saliency image based on RGB color

image.

4. δbound : It is the cue matrix related to the object external boundaries.

Each cue matrix (δ) can be visualized as an image map where the element δi,j is

the feature associated to the pixel (i, j) of both RGB and Depth input images.

2.2.1 Color Cue δhsv

The RGB input image is first converted into the HSV color space. The HSV

color space allows a more robust separation between the color information (Hue,

Saturation) and intensity (Value) in presence of objects with shadows or changes

in lightness. Therefore, the metric described in [2] has been adjusted to compute

13



2 – Graph-Based Object Segmentation for RGB-D Images

the color difference between two vertices vi = (vih
, vis , viv) and vj = (vjh

, vjs , vjv),

in HSV space, as follows:

δijhsv
=

√
δ2

v + δ2
s√

k2
dv + k2

ds

, (2.5)

where:

δv = kdv|viv − vjv |, δh = |vih
− vjh

|,

θ =

⎧⎪⎪⎨⎪⎪⎩
δh, if δh < 180◦

360◦ − δh, if δh ≥ 180◦

δs = kds

√
v2

is
+ v2

js
− 2visvjs cos θ.

The denominator in (2.5) is introduced to normalize the color error in the range

[0,1]. The parameters kdv, kds are used to weight the value and saturation differences

respectively. In our experiments these parameters are always kept fixed to kdv =

4.5, kds = 0.1.

Figure 2.2 provides a graphical representation of the metric described in eq. 2.5.

Figure 2.2a depicts the standard HSV color model as a solid cone. In contrast,

fig. 2.2b visualizes all the parameters involved in eq. 2.5. The top view image of

the HSV cone focuses on the Hue and Saturation components of the HSV color

space. It shows two different Hue values for pixel i and j. i.e., vih
and vjh

. The

angular difference between these two Hue values is visualized as δh. The saturation

component of two pixels is highlighted by two red segments vis and vjs , respectively.

The error distance δs between these two components can be found applying the law

of cosines (i.e., violet segment in fig. 2.2b).

Finally, two pixels Value error δv can be visualized through the lateral view of the

HSV cone model. The HSV Value components of two pixels are always parallel,

hence the pixels Value distance can be computed simply as difference between viv

and vjv (i.e. blue segment).

The final Color Cue δhsv is defined as a normalized distance between the pixels

14



2.2 – Image cues definition

saturation error and value error.

(a) HSV Color Cone Model

(b) Details of the HSV metric

Figure 2.2: Visualization of the HSV color metric in eq. 2.5

2.2.2 Depth Cue δdepth

Since depth maps obtained from low-cost Kinect-like sensors are usually noisy
and prone to quantization errors, a smoothing to the depth map is required. In [27],
a depth-dependent smoothing algorithm is proposed which generates a smoothing
kernel of different size for each pixel in the depth image. The area of such a kernel is
based on two indicators, i.e. depth information of the pixel itself and the distance of
the pixel from the object borders. The former is used to generate a wider smoothing
area for pixels far from the camera, since the noise of the depth data is proportional
to the distance from the sensor. The latter guarantees that the object edges are not
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smoothed by the filter. The final smoothing kernel sizes are saved in a Smoothing
Area Map S(y, x). The average value within a region is thus computed by means of
the depth integral image ID(y, x) and saved in the smoothed depth map Ds(y, x)
as follows:

Ds(y, x) = 1
(2r + 1)2 [ ID(y + r, x+ r) − ID(y + r, x− r)

−ID(y − r, x+ r) + ID(y − r, x− r) ] ;
(2.6)

where: r = S(y, x) . The smoothing from [27] has a drawback. It introduces

noise when the depth image contains shadows (depth image pixels with zero depth

value); this is because (2.6) is not able to discriminate between pixels having real

depth information and pixels having no depth component.The depth map D(y, x)

is therefore employed to generate a binary image BD(y, x) as follows:

BD(y, x) =

⎧⎪⎪⎨⎪⎪⎩
0 if D(y, x) /= 0

1 if D(y, x) = 0
(2.7)

The binary depth map integral image IB(y, x) is then used to count the number of

pixels with no depth information (γ0) inside the smoothing area of a given depth

image pixel.

γ0 =IB(y + r, x + r) − IB(y + r, x − r) +

− IB(y − r, x + r) + IB(y − r, x − r);
(2.8)

where: r = S(y, x) .

(2.6) is thus updated as shown in (2.9).

Ds(y, x) = 1
(2r + 1)2 − γ0

[ ID(y + r, x+ r) +

−ID(y + r, x− r) − ID(y − r, x+ r) + ID(y − r, x− r) ] ;
(2.9)
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2.2 – Image cues definition

The denominator in (2.9) equals zero if and only if all depth image pixels inside

the smoothing kernel are equal to zero (no depth data is available). In this case

the smoothing has no meaning and Ds(y, x) = D(y, x).

Figure 2.3 shows a comparison between the original depth smoothing algorithm

and the modified one.

The depth error between two vertices vid
= (yid

, xid
) and vjd

= (yjd
, xjd

) is then

defined as:

δijdepth
= Ds(yid

, xid
) − Ds(yjd

, xjd
) (2.10)

δijdepth
is then normalized to be in the range [0,1] .

When either vid
or vjd

is undefined (one of the pixels belongs to a shadow in the

depth image) δijdepth
is set to 0, since a shadow border is not necessarily an object

border. Shadows in Kinect-like depth images can be caused by several effects:

occlusions, highly reflective or absorbing materials, highly skewed surfaces, thin

objects, or objects placed too near to the sensor.

2.2.3 Saliency Cue δsal

A visual saliency map VS(y, x) is also computed on the color image using the

algorithm proposed in [43], which is a fast implementation of visual saliency that

uses an integral image on the original scale of the image in order to obtain high

quality features in real time. The algorithm is based on a single parameter for

computing all the filter windows on a single integral image ς = σ2s, where σ

represents the surround and s the scale. The saliency map in [43] has been post-

processed to highlight the actual object borders in the image. The saliency map

VS(y, x) is first normalized in the range [0,1] and then filtered through a power-law

transformation as:

V̂S(y, x) = VS(y, x)4 (2.11)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Comparison of depth smoothing algorithms in presence of missing depth
values (dark blue pixels in both (a) and (b) images). Left column shows the results
of the original smoothing algorithm as described in [27]. Right column depicts
the depth smoothing results obtained through our own changes to the original
algorithm. (a) and (b) show Ds(y, x). (c),(d) Show the PointCloud extracted from
Ds(y, x). (e) and (f) show object and edge details.
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2.2 – Image cues definition

This transformation lowers the values of middle gray-level pixels while keeping

the high gray-level ones (pixels close to white) almost unchanged. The latter are

pixels that are likely to belong to object borders. Figure 2.4 shows the transformed

saliency image.

(a) (b)

Figure 2.4: (a) Original saliency image. (b) Power-law filtered saliency image

The saliency for each vertex vis = (yis , xis) is thus defined as:

δisal
= V̂S (yis , xis) (2.12)

2.2.4 Boundary Cue δbound

Images with strong textures produce false-positive object borders when State

of the Art edge filters are used. Fig 2.5 (a) shows a scene of a clutter environment

with strong textures. Fig 2.5 (b) depicts the Canny edge filter outcome of that

image. Textures and object boundaries are then no more distinguishable. [53]

and [41] proposed two different approaches to obtain a good estimation of object

edges in strong textured images. The first approach averages the depth gradient

of an edge pixel within a small neighborhood of pixel along a candidate edge. The

second approach uses a logistic function trained over examples for detecting depth

boundary edges. The latter technique requires a labelled dataset of object borders.

19
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(a) (b)

Figure 2.5: (a) Clutter scene with strong textures. (b) State of the Art Canny Edge
Detector

In this thesis the state of the art Canny edge detector has been modified to allow

also a depth-based edge filtering along with the RGB one. We run a Canny edge

detector on the image, based on the Scharr kernels to obtain a binary edge map

EE(y, x). We also extract the gradient directions Θ of the edge pixels and we

discretize them to one of the possible angle (namely 0◦,45◦,90◦,135◦).

For each edge pixel e⃗ = (ye, xe) ∈ EE, we sample two points, one along the positive

edge gradient direction and the other along the negative one and we compute the

depth gradients as:

ρ+ = Ds(e⃗) − Ds(e⃗ + ερn⃗)

ρ− = Ds(e⃗) − Ds(e⃗ − ερn⃗)
(2.13)

where n⃗ is the edge normal vector and ερ indicate the pixel to pick along the edge

gradient direction.

A depth boundary map EB(y, x) is the computed as follows:

EB(e⃗) =

⎧⎪⎪⎨⎪⎪⎩
0 if ρ+ < tρ ∧ ρ− < tρ

1 otherwise
(2.14)
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2.2 – Image cues definition

If both ρ+, ρ− are below a given threshold tρ, then the edge point e⃗ does not

represent a real edge, but it is caused by texture instead; otherwise the point is

a depth boundary. While most boundary pixels of an object correspond to depth

discontinuities, the part of the object that touches the surface it is resting on does

not have present depth discontinuity across it, therefore the contact edge pixels are

filtered out from the depth boundary map EB(y, x).

For each edge pixel e⃗ = (ye, xe) ∈ EE, three points along the edge gradient direction

are sampled, with the central one being the pixel e⃗. These three pixels are then

projected onto the camera frame by means of the camera intrinsic matrix K in

order to obtain the corresponding three points: p⃗e, p⃗+, p⃗− ∈ R3.

p⃗e = K−1 [ Ds(e⃗) ẽ ]

p⃗+ = K−1 [ Ds(e⃗+) ẽ+ ]

p⃗− = K−1 [ Ds(e⃗−) ẽ− ]

(2.15)

where:

e⃗+ = e⃗ + εen⃗; e⃗− = e⃗ − εen⃗; ẽ = [xe, ye,1]T .

The unit vectors v⃗n+ , v⃗n− and the angle between them θv are computed as follows:

v⃗n+ = p⃗+ − p⃗e

∥p⃗+ − p⃗e∥
(2.16)

v⃗n− = p⃗− − p⃗e

∥p⃗− − p⃗e∥
(2.17)

θv = atan2
(

v⃗×

v⃗dot

)
(2.18)

where: v⃗× = v⃗n+ × v⃗n− and v⃗dot = v⃗n+ · v⃗n− . For everyday objects lying on ordinary

surfaces (such as tables, shelves, floors, etc.), contact edge pixels can be estimated

straightforward by filtering the angle θv in (2.18). Common interactions between

objects and holding surfaces lead to contact angles close to 90◦.
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A contact boundary map EC(y, x) is the computed as follows:

EC(e⃗) =

⎧⎪⎪⎨⎪⎪⎩
0 if θv > tθH

∨ θv < tθL

1 otherwise
(2.19)

where tθH
and tθL

are high and low thresholds used to cope with contact angles

perturbations around the ideal value.

The contact boundary map as defined by (2.19) and (2.18). It also includes false

contact edges called internal boundaries as shown in figure 2.6a. Since we are only

interested in the objects external contours (e.g., figure 2.6b), we cancel internal

edge pixels out by looking at the direction of the cross product v⃗× as depicted in

figure (2.7). Note that the vectors defined until now are all expressed w.r.t the

camera reference frame with the Z-axis pointing outwards along the optical axis

and the X-axis pointing to the right.

A contact edge pixel i⃗ = (yi, xi) ∈ EC(y, x) is estimated to be an internal

boundary pixel if and only if the x component of the cross product v⃗× is less than

zero. (2.18) is then updated as follows:

θv =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−atan2

(
v⃗×

v⃗dot

)
if v×x < 0

atan2
(

v⃗×

v⃗dot

)
otherwise

(2.20)

The contact boundary map EC(y, x) definition (see 2.19) is therefore left unchanged.

The final boundary map EF (y, x) is then computed as:

EF (y, x) = EB(y, x) ∪ EC(y, x) (2.21)

Despite the fact that the simple texture edge filtering might be seen as limited to a

small class of simple objects (i.e., prismatic ones), Figures 2.6d and 2.6f show how

the algorithm is very effective for other classes of objects as well (i.e., cylindrical
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: (a) Final Edge map with internal boundaries. (b) Final Edge map. (c)
Canny output with no texture edge filter (Coffe Cups). (d) Coffe Cups Final Edge
map. (e) Canny output with no texture edge filter (Milk Jugs). (f) Milk Jugs Final
Edge map.

ones) and, in general, is able to handle complex object shapes (e.g., milk jugs).
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Figure 2.7: Internal boundary pixels definition.

The boundary for each vertex vib
= (yib

, xib
) is thus defined as:

δibound
= EF (yib

, xib
) (2.22)

2.3 Weight Functions

The weight functions are used to compute a scalar weight wij for each edge eij

that links the two neighboring vertices vi and vj . The weights are computed as a

nonlinear function of all the cues (δ) introduced in this Section.

Two cost functions are proposed. The first one includes color, depth and saliency

information and it is found to work best when a large number of shadows are present

in the depth image. The second one includes depth, color and boundary edges and

works better when full depth information is available.

In the first cost function, the difference between two vertices vi and vj is defined
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2.3 – Weight Functions

as:
wij =

ky log2(1 + δijhsv
) + kx log2(1 + δijdepth

)
2 + kx + ky + ks

+
δijdepth

δ
1+δijdepth

isal
+ δijdepth

δ
1+δijdepth

ijhsv
+ ks log2(1 + δisal

)
2 + kx + ky + ks

,

(2.23)

where ks, ky , kx are parameters for weighting in the saliency map, the color and

depth difference respectively.

In the second cost function, the difference between two vertices is defined as:

wij =
kxδijdepth

log2(1 + δijhsv
) + kbδibound

kx + kb

, (2.24)

where kb is a parameter for weighting in boundary edges, while the denominator in

both (2.23) and (2.24) is needed to normalize the weights between [0,1].

We use base-2 logarithms since all the cues used as input to the weight functions

(δ) are in the range [0,1]; the dynamic range of the cues is thus left unchanged.

Moreover, logarithmic functions map a narrow range of low cue values into a wider

range of output levels while compressing higher values. This property tends to

create edge weights that are spread within their own dynamic range rather than

generating quasi-binary weights maps.

(2.23) is composed by a logarithmic term which handles a single independent

variable (i.e., k log2(1 + δ)) and a coupled term which relates two variables (i.e.,

δdepthδ
1+δdepth

hsv ). The former controls the effect of each input information indepen-

dently through the parameters k. It plays a fundamental role when no depth data

are available, since the coupled terms equal zero. Fig. 2.8a shows how an increase

or decrease of k would slide the red squares upward or downward respectively The

latter, instead, biases the weights assignment by introducing depth information.

The lower the depth variation is, the lower is the contribute of color and saliency

cues; this happens in highly textured objects where two pixels, belonging to the

same object surface, generate small depth gradient but large color (or saliency)

difference. For large depth gradients the weight shows an exponential trend and
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reaches maximum together with the color (or saliency) difference (see the blue curve

in 2.8a). The exponential shape of w for medium-high depth gradients is needed

to mitigate the linear contribute of δdepth. This situation may arise in presence of

concave objects (i.e., ceramic bowls or horseshoe-like objects) where medium-high

variations of the depth gradient do not necessarily mean that the corresponding

two graph vertices belong to different objects. In this case, in fact, the function

generates lower edge weights in presence of low and medium visual cue differences.

The cost function in (2.24) is used when little or no shadows are present in the

depth map. We fill the small gaps in the depth image by in-painting. Depth maps

with large shadows are not in-painted since the reconstruction error would generate

noise and false object boundaries. In this case, the depth map is not modified and

the cost function in (2.23) is used instead. The second weight function has a coupled

term that trades the information of δhsv and δdepth like the first weight function but

without any saliency data. The idea of this terms is the same defined in (2.23)

but we noticed how the logarithmic term here works better than the exponential

one. The second term adds a bias term kb when the vertex vi is a boundary pixel

pi = (yi, xi) ∈ EF .

Fig 2.9 shows the weight maps of the two cost function in (2.23) and (2.24) for a

given input image respectively.

The graph is partitioned using Disjoint-set Forests. At the first iteration each

node represents a distinct region Ri. Regions are iteratively merged based on (2.4).

The final result is a set of regions R.

2.4 Post-Processing

In order to discard false positives, such as regions that belong to the background,

some rejections steps are required on the set R.
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(a) (b)

Figure 2.8: (a) Cost function as defined in (2.23) without the saliency variable (δsal)
for visualization purposes. (b) Cost function as defined in (2.24) when δbound = 1
(i.e., the pixel under the vi−th vertex is a boundary one)

(a) (b)

Figure 2.9: Example weight maps w: (a) outcome of weight function in eq. (2.23).
(b) outcome of weight function in eq. (2.24)

Principal component analysis is performed on each region to estimate the prin-

cipal components x⃗1, x⃗2, the relative eigenvalues λ1, λ2 and its eccentricity ε.

ε =
√

1 − λ2

λ1
(2.25)

The eccentricity provides a rough estimation about the shape of the region R. High
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eccentricity values, hence high differences between the two eigenvalues, describe a

malformed cluster due to errors in the segmentation step or objects that are actually

wide (e.g. the table surface in fig. 2.1 which is correctly filtered out by this step.)

Fig. 2.1 (f) shows the outcome of the PCA region (R) discard step. Each cluster has

been overlaid with both its own centroid (red circle) and their principal component

unit vectors x⃗1, x⃗2 (blue and green arrows respectively). The magnitude of x⃗1, x⃗2

is driven by the eigenvalues λ1 and λ2 respectively. If either λ1, λ2 or ε are over

given thresholds, the region is discarded. The threshold can be roughly estimated

if the classes of objects to be found are known in advance.

We add two more rejection steps when dealing with difficult lightning conditions

and poor depth maps (see Section 2.5.1). When not using in-painting of the depth

image, regions whose pixels with no valid depth data are greater than 30% of total

region size are also discarded, as this may lead to the failure of the robot grasping

policies defined thereafter. Finally, dark regions can be discarded too. A 32 bins

histogram of the brightness component of the region is computed. If 30% of region

pixels fall within the first three bins of the histogram (i.e., pixels values in the

range [0,24]), the region is discarded. Since we are interested in grasping, it is

also possible to discard regions which are out of reach for a robotic arm, being too

distant to the camera frame.

2.5 Experimental Results

We tested our approach on three public datasets of RGB-D scenes [50], [51]

and [59]. We also compare the results with the one proposed in [41] and show a

qualitative comparison with the original algorithm [18] and [2]. For each image of

every dataset, objects have been manually labelled by delineating the pixels inside

the object boundary. If the segmented objects overlap more than 70% with the

corresponding object pixels, we consider the object as successfully segmented, as in
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[47].

The software has been developed using the OpenCV library in C++ under Linux

and runs on CPU. The source code is available 1. All frames are 640 × 480 and

the average processing time per image was 0.6 s on a standard PC with a 2.3Ghz

CPU (single thread). Figure 2.10 shows two results on different datasets, while

Figure 2.11 shows a comparison between different approaches. The full video of

the segmentation algorithm results on different publicly available datasets can be

watched at the following link: Graph Segmentation Results.

2.5.1 Rutgers APC RGB-D Dataset

This dataset ([50]) has been created specifically for the Amazon Picking Chal-

lenge and is composed of different runs, each one containing a series of RGB images

and corresponding depth images, acquired using a Asus XTion sensor in different

positions and with a variable number of objects on shelves. For each position, four

consecutive images are provided.

The dataset is particularly challenging due to low lightning and heavy presence

of shadows and missing areas in the depth image. We assembled three runs from

the dataset with increasing average number of objects in each image. We tested our

approach on a subset of runs. We used the first weight function, due to the large

number of shadows. Parameters have following values: γ = 5, kx = 1.05, ky = 1.5,

ks = 0.5. Results are reported in Table 2.1.

2.5.2 RGB-D Scenes Dataset

The RGB-D Scenes Dataset consists of 8 scenes annotated with objects that

belong to the RGB-D Object Dataset. (bowls, caps, cereal boxes, coffee mugs, and

soda cans). Each scene is a single video sequence consisting of multiple RGB-D

1https://github.com/rrg-polito/graph-canny-segm
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Table 2.1: Results for the Rutgers APC Dataset.

No. of objects % of objects detected
Run_1 80 87.9%
Run_2 120 92.3%
Run_3 121 75.6%

frames. The objects are visible from different viewpoints and distances and may be

partially or completely occluded. We compare the results of the proposed algorithm

with the one from [41]. We tested the approach on subset of six objects and on

three different scenes. We used the second weight function and set the parameters

to the following values: γ = 0.0016, kx = 7.5, kb = 0.66. Results are shown in Table

2.2. It should be noted that our approach does not rely on knowledge of the camera

pose and is thus more general, at the cost of lower accuracy for some objects, while

attaining 100% accuracy for other objects. Results are comparable to [41], though

the metric we use is more strict (in [41] an overlap of 50% is considered as a good

detection).

Table 2.2: Results for the RGB-D Dataset. Inside parentheses, the results from
[41] are reported for comparison.

% of objects detected
Soda can Coffee mug Cap Bowl Flashlight Cereal box

Table_1 90.6% (100%) 100% (83.6%) 80.1% (93.6%) 85.5% (90.3%) 98.1% (98.1%) 72% (97.8%)
Desk_1 100% (93.7%) 100% (92.5%) 74.2% (100%) - - -

Kitchen_small_1 98.6% (74.8%) 100% (70.1%) 86.5% (97.3%) 100% (90%) 100% (88.5%) 77.6% (84.4%)
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2.5.3 Multiple-instance dataset

In [59], 6 objects are captured under varying viewpoint with lots of background

clutter, scale and pose changes, and in particular foreground occlusions and multi-

instance representation (three instances of the same object are present in each frame

as well as other objects and clutter). We tested the approach on a subset of scenes.

Parameters for the second weight function are as follows: γ = 0.001, kx = 1.2,

kb = 0.05. Results are shown in Table 2.3.

Table 2.3: Results for the multiple instance dataset.

No. of objects % of objects detected
Milk 2589 66.6%
Coffee_Cup 2127 87.2%
Shampoo 2118 99.6%
Camera 894 96.3%
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.10: Examples of the results on the [41] dataset (a) and [59] dataset (b).
Dataset [50] in (c) and (d). Dataset [59] in (e) and (f). Dataset [41] in (g) and (h).
Segmented objects are highlighted.
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Figure 2.11: Comparison between different approaches. First and second row:
original images; third row: [18]; fourth row: [2]; fifth row: [47]; sixth and seventh
row: our approach.
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Chapter 3

Quaternion-based Particle Swarm

Optimization for Object Pose

Estimation From RGB-D Images

In Chapter 2, the segmentation phase produces a set of regions R that encloses

the actual objects present in the input image. Each region is composed by a col-

lection of pixels all belonging to the same object. All objects information returned

by the segmentation phase are related to the image reference frame, i.e. in the

two-dimensional domain.

Robot-Object interaction such as grasping, collision avoidance, navigation requires

a good knowledge of the objects pose in 3D space. An object in 3D space can be

uniquely defined by a translation component and an orientation one. The former

characterise the object position along the three axes component t = [x, y, z]T w.r.t.

to a given reference frame. The orientation part is used to uniquely defines the ob-

ject attitude in 3D space. Body attitude in 3D space can be embodied in different

orientation representations (e.g., Euler Angles, Axis-Angle, Rotation Matrix, Unit

Quaternions, etc..). Body orientation can always be expressed by three parameters,

irrespective of the chosen body attitude representation.
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In this Chapter is presented a novel algorithm for 6DoF object pose estimation

based on 2D information only. This algorithm takes as input the set of object

regions R resulting from the segmentation step in Chapter 2. Then, the estimation

procedure returns the pose w.r.t the camera frame for each cluster in R.

3.1 Background

Particle Swarm Optimization (PSO) [31] is an heuristic technique inspired by

the swarming or collaborative behavior of biological populations. It is useful for

exploring the search space of a problem to find the settings or parameters required

to maximize a particular objective. A set of candidate solutions (particles) pi(t) =

(xi(t), vi(t)), where xi and vi are the position and velocity of particle i at time

t, is maintained in the search space. The algorithm consists of three steps, which

are repeated until some stopping condition is met: first, the fitness of each particle

is evaluated, then individual and global best fitnesses and positions are updated;

finally velocity and position are updated for each particle. In the update phase the

velocity is computed as follows:

vi(t+ 1) = wvi(t) + c1r1[xpbest(t) − xi(t)] + c2r2[xgbest(t) − xi(t)], (3.1)

where w, c1, c2 (with 0 ≤ w ≤ 1.2, 0 ≤ c1 ≤ 2, 0 ≤ c2 ≤ 2) are tunable parameters;

r1, r2 are random values. xpbest(t) is the best candidate solution for the particle pi

at time t and xgbest(t) is the global best candidate solution at time t. The particle

position is then computed as:

xi(t + 1) = xi(t) + vi(t + 1). (3.2)
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3.2 Pose estimation

To estimate the 6DoF object pose we use a quaternion-based formulation of the

standard PSO equations (3.1) and (3.2). We use unitary quaternions to describe the

orientation of an object in 3D space since they are gimbal-lock free and they have

a well-defined interpolation formula (SLERP) [56]. Gimbal-lock would produce

wrong results when the fitness function of a particle is computed; moreover, other

rotation formalisms would require the conversion to and from rotation matrix form

at each step. Unitary quaternions, however, turn the optimization problem into

a constrained one. We design the new PSO equations such that the explored

orientations are always represented by unit-length quaternions. This means that

every particle, in every time instant, holds a valid object pose hypothesis. For

now on, when we talk about quaternions we refer to unit-length quaternions. Both

quaternions q = [ q0, q⃗ ] and -q ∈ S3 define the same orientation. To overcome this

ambiguity we cast the quaternion to the northern hemisphere of S3, i.e., we ensure

that the scalar part of a quaternion is always positive or equal to zero (q0 ≥ 0) .

3.2.1 Angular velocity and orientation update

The standard velocity update equation (3.1) describes a weighted sum of three

vectors in Euclidean space.

The current linear velocity of an object is expressed by the vector wvi(t). The ob-

ject cognitive linear velocity is given by vector c1r1 [xpbest(t) − xi(t)] and the social

linear velocity acting on an object is c2r2 [xgbest(t) − xi(t)]. This, along with (3.2),

is used to optimize the position component of the object pose. In (3.1) velocities

are computed as the difference between two position vectors. Subtraction has no

meaning for unit-length quaternions so a new equation must be derived to obtain

the object’s angular velocity based on the current and best orientations of an ob-

ject. The goal is to obtain both the cognitive and social angular velocity effecting
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an object, through the quaternion inverse displacement. Figure 3.1 shows a graph-

ical visualization of the SLERP interpolation on the S3 sphere.

The Spherical Linear Interpolation (SLERP) is a linear interpolation (LERP) per-

formed on a surface of a unit sphere. This is a fundamental property when we

are dealing with unit-quaternions interpolation. The SLERP, thus, ensures that

each intermediate quaternion along any interpolation path between the starting-

and ending- quaternions is always a unit-length one. Hence the SLERP guarantees

that any quaternion along the interpolation path represents a valid rotation in 3D

space.

Let p0, p1 ∈ R2 be the starting- and ending- points respectively and t ∈ R with

0 ≤ t ≤ 1, the LERP is defined as:

LERP(p0, p1, t) = (1 − t)p0 + tp1 (3.3)

The LERP generates a straight line connecting p0 and p1. On the contrary, the

SLERP generates points along the great circle arc on the surface of the unit sphere

as described in eq. 3.4

SLERP(p0, p1, t) = sin(1 − t)Ω
sin Ω p0 + sin(t)Ω

sin Ω p1 (3.4)

where Ω is the angle between p0 and p1.
Let q0, q1 ∈ S3 and t ∈ R with 0 ≤ t ≤ 1, the SLERP and its derivative are

defined as:

Slerp (q0,q1, t) = q(t) = (q1 ⋆ q∗
0)t ⋆ q0 (3.5)

dSlerp
dt = q̇(t) =Log (q1 ⋆ q∗

0) (q1 ⋆ q∗
0)t ⋆ q0 =

=Log (q1 ⋆ q∗
0) ⋆ q(t), (3.6)
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where the superscript ∗ is the quaternion conjugate operator, the symbol ⋆

defines the quaternion product and the Log operator is the logarithmic map. From
the quaternion kinematics we can write the derivative of q in t as:

q̇(t) = 1
2q(t) ⋆ ω(t), (3.7)

where ω(t) is the instantaneous angular velocity vector acting on the object. In
(3.7), ω(t) is the augmented angular velocity with scalar part equal to zero, i.e.,
ω(t) = [0, ωx, ωy, ωz]T . The instantaneous angular velocity needed to rotate the
object from the initial orientation (q0) to the final one (q1) is obtained combining
(3.7) and (3.6):

ω(t) = 2Log (q1 ⋆ q∗
0) (3.8)

Eq. (3.8) shows how the angular velocity remains constant throughout the quater-
nion interpolation since its value only depends on the quaterion error (q1 ⋆ q∗

0).
Moreover, we are dealing with quaternions belonging only to the northern hemi-
sphere of S3. This aspect ensures that the SLERP represents the shortest arc
between q0, q1. Hence, the obtained angular velocity is the optimal one. The
logarithmic map for a unit-length quaternion reduces to:

Log(q) =
[
0, q⃗

∥ q⃗ ∥
arccos(q0)

]
(3.9)

Eq. (3.8) can now be rewritten as:

ω̃ = 2
⃗̃q

∥ ⃗̃q ∥
arccos(q̃0) (3.10)

where q̃ = q1 ⋆ q∗
0 = [ q̃0, ⃗̃q ]. The angular velocity update equation for the i-th
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Figure 3.1: Visualization of SLERP interpolation in the angular velocity update
equation on the S3 hypersphere (Projection of 3-sphere into 3D space for visualiza-
tion purposes).

particle is formulated as follows:

ωi (t+ 1) = wωi(t)+

c1r1
[
2Log

(
qpbesti

(t) ⋆ q∗
currenti

(t)
)]

+

c2r2
[
2Log

(
qgbest(t) ⋆ q∗

currenti
(t)
)] (3.11)

The orientation of the i-th particle is then updated by means of the discrete form
of the quaternion kinematics:

qi (t+ 1) = cos (ψ(t)) qi(t)+ 1
2

sin(ψ(t))
ψ(t) qi(t)⋆ωi(t+1)Tc, ψ(t) = ∥ωi(t+ 1)∥2

Tc

2 (3.12)

Tc represents the integration time of the discrete time quaternion kinematics. In

this work Tc just collapses to a tunable parameter as we are dealing with iteration

steps (t) rather than with the true definition of time. This new parameter could

be employed to scale the total angular velocity obtained in (3.11). In this way, Tc

can control the amount of perturbation to apply to the current object orientation.
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3.2.2 Objective function

Each particles’ object pose hypothesis must be checked against a fitness func-

tion to estimate how close that particle is from the true pose of the real object.

The algorithm takes as inputs a set of regions R generated by the segmentation

algorithm described in Chapter 2; each one is a cluster of pixels that represents an

object. The depth map of that cluster is also extracted and it is the only source of

information used in the PSO algorithm. Each particle renders its pose hypothesis

against the depth map of the cluster.

Let pj be the j-th PSO particle. Let q̃j and t̃j be the unit quaternion orientation

and translation vector hypothesis of pj respectively.

Let rk ∈ R be the k-th pixels cluster extracted in Chapter 2. The cluster rk is a

cluster of depth pixels, i.e. the i-th pixel of rk is defined by the following vector:

rki
=

⎡⎢⎢⎢⎢⎢⎣
ui

vi

Zi

⎤⎥⎥⎥⎥⎥⎦ (3.13)

where (ui, vi) are the i-th pixel coordinates and Zi is the i-th pixel depth datum in

millimeter defined w.r.t. camera reference frame.

Every 3D object model is composed by a number Nh of faces (or triangles). Every

triangle is defined by three vertices modeled as 3D vectors (e.g. vertex 1 of h-th

model triangle ph1 = [Xh1 , Yh1 , Zh1 ]T ). For each triangle h can be defined a matrix

of vertices as follows:

pfaceh
=

⎡⎢⎢⎢⎢⎢⎣
Xh1 Xh2 Xh3

Yh1 Yh2 Yh3

Zh1 Zh3 Zh3

⎤⎥⎥⎥⎥⎥⎦ (3.14)
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The rendering of a 3D object model (e.g., fig.1.4) into a 2D depth image is performed

by the j-th particle as in eq. 3.15.

Yj =
Nh⋃
h=1

bjh = Fedge
[
KT

(
q̃j, t̃j

)
pfaceh

]
(3.15)

where: K is the intrinsic depth camera matrix defined in 5.2. T
(
q̃j, t̃j

)
is the

homogeneous transformation matrix built upon the j-th particle’s object pose hy-
pothesis. It converts all the triangles vertices defined in the object model reference
frame to the depth camera reference frame. Fedge is the rendering function that
fills with depth values all the pixels inside the 2D projected model face. bjh is the
h-th 2D filled projected triangle on the image plane (see Chapter 4). Finally, Yj is
the final 2D rendered pixel cluster of the given object model based on the object
pose hypothesis of the j-th particle.
The comparison is thus performed between each rendered cluster Yj and the real
segmented cluster rk.
The fitness value of the j-th particle is thus computed as follows:

Φj = α

NRj

NRj∑
i=1

(
zKi − zRij

)2
+ β

µj + κj

2 (3.16)

where: NRj
is the number of pixels of the depth map rendered by the j-th particle,

zRij
is the depth value of the pixel i rendered by the j-th particle, while zKi

is

the corresponding depth value of the cluster at pixel i. α and β are two constant

parameters used to weight the two terms of the fitness function. In the fitness

function, a second term along with the depth error one is needed. Depth error

alone might generate ambiguity, leading to wrong pose estimation in some special

cases (e.g., a box could fit one of its smaller sides against its largest size that

is visible in the segmented cluster, giving a depth error close to zero even if the

particle’s pose is wrong). The term µj models the percentage of cluster pixels that
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are not covered by the rendered 3D model of particle j:

µj =
NCWj

NP C

∈ [0,1] . If µj =

⎧⎪⎪⎨⎪⎪⎩
0 perfect match

1 the rendered object is outside the cluster

where NCWj
is the cluster’s area (in pixels) that is not covered by any pixel of the

rendered object of the particle j and NP C is the area of the segmented cluster. The

condition µj = 0 could also hold when the rendered object has a larger area than

the cluster and it is covering the entire cluster. Hence, the term κj is added to

compensate for this problem.

κj is the complement of µj i.e., it gives the percentage of rendered pixels of particle

j that are not covered by valid depth values in the cluster depth map:

κj = NRW

NRj

∈ [0,1] . If κj =

⎧⎪⎪⎨⎪⎪⎩
0 perfect match

1 the rendered object is outside the cluster

where NRW is the rendered object’s number of pixels which do not correspond to

pixels of the segmented cluster.

Figure 3.2 shows four cases where the depth error would be low, but the estimate

pose would be incorrect. Figures 3.2a and 3.2d also show the effect of µj and κj. If

we consider Figure 3.2a, the object model is rendered completely inside the object

cluster due to a wrong pose estimation, but κj equals zero. The index µj instead

hold into account that a part of the cluster is not covered by the rendered object.

In Figure 3.2d the rendered object is larger than the cluster, but since all the pixels

in the cluster are covered by the rendered object, µj is zero. Instead, κj assumes an

high value, taking into account how many rendered pixels fall outside the cluster.

Figures 3.2b and 3.2c show intermediate situations.
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(a) (b)

(c) (d)

Figure 3.2: (a) The rendered particle is inside the object cluster. (b) The rendered
particle is only partially inside the object cluster. (c) The rendered particle is
outside the object cluster (d) The rendered particle covers the object cluster.

3.2.3 PSO initialization

The PSO requires an initialization step in which different object pose hypotheses
are assigned to each particle. The segmentation phase provides a rough approxima-
tion of the 3D centroid of a cluster. The latter is not necessarily the 3D centroid of
the real object as errors in the clustering step might lead to either over-segmentation
(e.g., an object is split in two or more clusters), or under-segmentation (e.g., a clus-
ter does not enclose the whole object; thus object borders or even small parts of an
object are missing). However, the 3D centroid of a cluster (c̄) can be exploited to
generate the position component of the j-th particle (tj) as follows:

tj = t̂lo +
(
t̂hi − t̂lo

)
δ (3.17)

vj = −ṽ + 2ṽδ (3.18)

t̂lo = c̄ − t̃; , t̂hi = c̄ + t̃;
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where: δ ∽ U(0,1); t̃ is a constant relative position vector used to define the search

space domain of the translation component of the object pose. Eq. (3.18) assigns

a linear velocity, between the constant values ±ṽ, to the particle j.
The segmentation step cannot generate an estimate of the object orientation,

so the object attitude initialization and optimization are performed on the whole
surface of the northern hemisphere of S3. Let qinit ∈ S3 be a constant attitude
quaternion lying on the surface of the northern hemisphere of S3, the initial orien-
tation of the j-th particle is generated as follows:

qj = cos (ψ) qinit + 1
2

sin(ψ)
ψ

qinit ⋆ ω̂jTc (3.19)

ω̂j = ω̃lo + (ω̃hi − ω̃lo) δ (3.20)

ψ = ∥ω̂j∥2
Tc

2

where Eq. (3.20) assigns a random angular velocity to the particle j. The dynamic

range of the initial angular velocity is limited by the values ω̃lo and ω̃hi. The larger

the difference (ω̃hi − ω̃lo), the greater will be the perturbation of the initial attitude

quaternion qinit. Experiments show that the choice of qinit has no influence on the

convergence of the PSO as long as a wide dynamic range of the initial angular

velocity is provided. This result corroborates the fact that our algorithm converges

to the actual object pose without any prior knowledge about the object attitude.

We also experimentally determined that the final fitness value of the best particle

can be used to discriminate correctly detected objects from false positives. This

is necessary, since the segmentation part inevitably produces a number of false

positive regions.
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3.3 Experimental results

The software has been developed using the CUDA and the OpenCV library in

C++ under Linux. In our experiments, The algorithm was tested on a workstation

equipped with a Tesla K40 GPU, while the segmentation part runs on CPU. The

source code for Q-PSO is available online 1.

The video at this link: Particle’s Trajectory, shows the trajectory of a particle

toward the search space. The particle, at each time step, renders the 3D CAD model

of a shampoo bottle onto the 2D depth image of the candidate cluster regions R.

The fitness score of that rendering is thus computed and the particle current object

pose hypothesis is updated. Hence, a new particle rendering process is performed.

Note how the particle tends to converge toward the optimal pose estimation of the

shampoo bottle. Initially, the particle explores new object poses; accordingly the

object poses are quite far from each other between two consecutive steps. As the

iteration steps increase, the particle velocity slows down and a finer object pose

estimation begins.

3.3.1 Complete pipeline evaluation

We tested the complete algorithm on two public datasets for 3D pose estimation

[23] and [59]. In our experiments all the 3D models were decimated to 3072 faces,

which offers the best time performance with our GPU setup. This is a tradeoff,

since subsampling the 3D object will have a slight effect on the accuracy of pose

estimation.

[25] contains 15 registered video sequences, each with a texture-less 3D object

surrounded by clutter. Results are shown in Table 3.1. We compare the results

with ground truth using the metric from [25]. The proposed apporach performs

1https://github.com/morpheus1820/Q-PSO
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slightly better for four objects (phone, duck, eggbox and glue), comparable to [59]

for one object (driller), and with lower accuracy for one object (bench vise). The

reason for that is discussed afterwards and in Figure 3.4.

In [59], 6 objects are captured under varying viewpoint with lots of background

clutter, scale and pose changes, and in particular foreground occlusions and multi-

instance representation (three instances of the same object are present in each frame

as well as other objects and clutter). We tested the approach on a subset of objects

and scenes. Results are shown in Table 3.2. We compare the results with the

metric from [25]. We see comparable accuracy for one object (coffee cup) and lower

accuracy for one object (juice carton), while our method outperforms the others

on two objects (shampoo and milk). We used the following fixed parameters on

all the experiments: γ = 0.001, kx = 1.2, kb = 0.05, α = 1, β = 0.05, Tc = 1, ω̃lo =

[0, −10, −10, −10]T , ω̃hi = [0,10,10,10]T , c1 = c2 = 1, w = 0.3, t̃ = [0.3,0.3,0.3], ṽ =

[3,3,3].

The segmentation part runs on CPU and the average processing time per image

is 0.4s; the pose estimation part runs on GPU. In our experiments we used 1024

particles and run 10 PSO iterations for each segmented cluster and the total time

is 85ms for each cluster. We use global topology for the PSO. By comparison,

[25] requires a training stage of 17-50s for each object and 119ms for detecting an

object, but under some position and rotation constraints (0-90° for tilt, ±45° for

in-plane rotation, 65-115cm for scaling); our approach operates on the whole north

hemysphere of S3.

Figure 3.3 shows some examples of the results on different datasets. In Figure

3.4 we also show some failed pose estimation cases and discuss the probable causes.

We found out that failure in pose estimation is due to bad segmentation results

most of the time; in one case, however, as shown on the left column of Figure

3.4, we can see how dowsampling the 3D CAD model of a particularly complex

object can affect the computation of the fitness function and lead to wrong pose
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estimation.

Figure 3.3: Examples of the approach on different images. First column: RGB
image; second column: segmented objects; third column: rendered objects model
superimposed.
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Figure 3.4: Examples of failed detections. First column: wrong estimated pose
probably due to the complex model and its over-simplification after subsampling;
second column: a case with a true positive (top object), a false positive (left object)
and a wrong pose estimation (right object) both due to bad segmentation.

Approach [23] [59] Our Approach
Sequence
Bench Vise 0.85 0.96 0.72
Driller 0.69 0.9 0.9
Phone 0.56 0.73 0.98
Duck 0.58 0.91 0.97
Eggbox 0.86 0.74 0.95
Glue 0.44 0.68 0.8

Table 3.1: Comparison between different approaches on the [25] dataset.

3.3.2 Extension to articulated objects

An interesting property of the PSO formulation is that it can be easily adapted

to articulated objects. We define an articulated object as an object composed by an
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Approach [23] [59] Our Approach
Sequence
Coffee Cup 0.82 0.88 0.85
Shampoo 0.63 0.76 0.9
Juice Carton 0.49 0.87 0.4
Milk 0.18 0.39 0.67

Table 3.2: Comparison between different approaches on the [59] dataset.

arbitrary number of parts P = (P0, . . . , Pi), where P0 is the main part, connected

by a set of joints J = (j0, . . . , ji). Each joint can can be either prismatic or revolute.

The state vector for each particle is augmented with the position and velocity of

each joint. The velocity vart for each joint j is computed as:

v
artj

i (t+ 1) = wv
artj

i (t) + c1r1[xartj

pbest(t) − x
artj

i (t)]+

c2r2[xartj

gbest(t) − x
artj

i (t)].
(3.21)

In Figure 3.5 we show an example of the PSO running on two articulated ob-

jects (laptop and cabinet) composed by two parts joined by a revolute joint and a

prismatic joint respectively, from the Articulated Object Challenge dataset [39].

Figure 3.5: Examples of the algorithm running on 2-parts articulated objects.
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3.3.3 Robustness of pose estimation to segmentation inac-

curacy

We also evaluate the effect of the segmentation accuracy on the pose estimation

performances. Degradation of the cluster from the ground truth is measure using

the image dissimilarity index presented in [8]. We show five levels of degradation,

from 0% (perfect contours) to 50%. In Table 3.3 we report the effect of noise

affecting the segmented cluster on the PSO performance for the same objects as

Table 3.2. We report the average pose estimation accuracy over 10 runs for each

object using the same metric as [25]. In Figure 3.6 we also show some visual results

on the articulated dataset. It can be seen that the PSO is unaffected up until 30% of

degradation, after which the pose estimation consistently fails. This conforms with

what we expect, as the noise on the segmented cluster borders has a direct effect

on the computation of the second part of the fitness function. Current learning-

based approaches like [23] and [59] do not rely on a segmentation step, but are still

affected by the same issues that can cause bad segmentation, such as presence of

strong textures or lack of textures, and noisy depth images.

Degradation 0% 15% 30% 45% 50%
Object
Coffee Cup 0.8 0.8 0.8 0.3 0.3
Shampoo 0.9 0.9 0.7 0.1 0
Juice Carton 0.5 0.5 0.5 0 0
Milk 0.6 0.5 0.5 0.2 0.1

Table 3.3: Effect of segmentation noise on the performances of pose estimation..
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Figure 3.6: Effect of segmentation noise on the performances of pose estimation.
First row: degraded segmentation masks (0% to 50%); second row: estimated poses.
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Chapter 4

GPU implemetation and

optimization of the Q-PSO

4.1 Introduction

The PSO algorithm belongs to the class of parallel metaheuristic. Every PSO

particle can evolve and test its current fitness to solve the optimization problem

concurrently. This peculiarity is well suited to exploit the huge parallel computa-

tion capacity of modern GPUs (e.g. , [62], [5], [44]).

A number of GPU implementations of PSO have been proposed (e.g. , [62], [5], [44]).

They all present their own GPU implementation of the standard PSO algorithm

considering different types of particles’ topology. Final results and comparisons

with the other methods are then carried out through the most common benchmark

functions (e.g., Rosenbrock, Schwefel, Rastrigin and Griewank functions).

Our optimized GPU algorithm differs widely from the above cited ones. The eval-

uation of the particles’ fitness score must be preceded by a parallel rendering phase

in which each particle renders the 3D object model through its own pose hypothe-

sis. The rendering data are thus gathered by the fitness function that updates the

quality of the particles’ object pose hypothesis in a concurrent way.
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Hence, the standard PSO algorithm must be rearranged with new data structures

to guarantee the maximum utilization of the GPU resources. New optimization

techniques are thus carried out in order to develop an efficient quaternion-based

PSO implementation:

Algorithm 1 shows the main algorithmic flow of the GPU implementation. All

functions are CUDA kernels. Each GPU thread is uniquely allocated to a particle,

unless otherwise stated.

4.2 Variables definition

Let DIM be the dimensions of the search space and NPART be the swarm

size. We create the following one-dimensional arrays:

• d_pso_pose[DIM ∗ NPART ]: particles current pose.

• d_pso_vel[DIM ∗ NPART ]: particles current velocity.

• d_pso_pose_b[DIM ∗ NPART ]: particles best pose.

• d_randGen[H ∗ NPART ]: random float numbers, where H >> DIM .

• d_randIdx[NPART ]: it is used to keep track of the index each thread has

within the d_randGen vector.

• d_depth_buffer [R ∗ C ∗ NPART ]: particles depth buffer, where R is the

depth image rows and C is the depth image columns.

• d_AABB[NPART ∗ 64 ∗ 4]: Partial Axis-Aligned Bounding Box (AABB)

of the rendered 3D objects by the particles.

• d_finalAABB[NPART ∗ 32]: Final AABB of the rendered 3D objects by

the particles.
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• d_obj_model[3 ∗ NUM_V ERTICES]: Array of the 3D object model ver-

tices.

• d_depth_kinect[R ∗ C]: Post-segmentation Depth Image of the scene cap-

tured by the Kinect sensor.

• d_pso_fit_error [NPART ]: Fitness score of each particle in a given loop

iteration.

• d_pso_personal_best_fit[NPART ]: Particles’ personal best fitness score.

• d_solution_best_fit[1]: Global Best Fitness Score

• d_solution_best_pose[DIM ]: Global Best Object Pose in Global Topol-

ogy

• warpSize=32: Constant CUDA Warp size.

4.3 PSO Initialization on GPU

Algorithm 3 highlights the main steps of the Q-PSO initialization process present

inside the initAllParticles() CUDA kernel. Let the number of particles (NPART)

be equal to 1024. This kernel is launched with 8 blocks of 128 threads each in order

to allocate 1 thread per particle. Firstly, each particle initializes the local variable

s_randIdx that it will use to fetch, from global memory, the random numbers (δ)

required by Eqs (3.17),(3.18),(3.19),(3.20). The layout of the d_randGen array de-

picted in Fig 4.1 has been designed to guarantee a coalesced warp access to global

memory by indexing the array as d_randGen[tIdx+(s_randIdx++)*NPART].

We decided to fill an array of dimension [H ∗ NPART ] in CPU with random num-

bers and then upload it only once in device global memory at start-up. In our

tests, we noticed how this approach along with the coalesced memory access is

much faster than using the GPU random number generator offered by the CUDA
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library. Moreover, it guarantees backwards compatibility with older CUDA ver-

sions.

The particles then compute their own indices in agreement with the array layout

specified in Fig 4.3. Therefore each parallel thread initializes its particle current

pose, its particle personal best pose and its particle current velocity in a coalesced

fashion.

Finally each particle stores to device global memory its own current random number

index for the next iteration.

Figure 4.1: d_randGen array layout.

Figure 4.2: Layout of d_AABB for the i-th particle.
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Figure 4.3: d_pso_pose, d_pso_pose_b (black array elements), d_pso_vel
(red array elements) arrays’ layout to guarantee the coalesced memory access

Figure 4.4: d_obj_model: array layout of the object model vertices to guarantee
the coalesced memory access

Figure 4.5: d_depth_buffer : array layout of the depth buffer used by each
particle to render its own 3D object model.
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4.4 Rendering of the particles pose hypotesis

The particles move through the search space trying to minimize a given fitness

function. This function must be designed in a way that is able to discriminate a

good object pose hypothesis from a wrong one. A given object pose hypothesis can

be quantified if and only if a particle utilizes it to render the 3D object model against

the 2D object cluster. A 2D object cluster can be obtained by any segmentation

algorithm that works on RGB-D images, as the one we proposed in this Ph.D.

dissertation. In computer graphics, the most used pipeline to render a 3D object

model is OpenGL. Unfortunately the OpenGL architecture does not fit well with

our needs of both high computational speed and full particles parallelism. Actually,

OpenGL would have broken the desired particles parallelism and would have slowed

down the optimization process. The OpenGL pipeline cannot be called inside any

CUDA kernel. Therefore, the only workaround would have been to load back

to CPU all the particles’ pose. Moreover, parallel OpenGL instances cannot be

instantiated. This would have led to a single OpenGL instance designed to render

each particle sequentially onto NPART different depth buffers. Different depth

buffers are required to avoid any depth value overwriting. Ultimately, a copy of the

CPU depth buffers should have been uploaded to device global memory to continue

the GPU algorithm flow.

In the light of foregoing, we designed our own software rendering pipeline directly

in GPU. This solves the hardware rendering limitations ensuring parallel rendering

among the particles and no memory copy between CPU and GPU at each iteration.

The rendering phase is intrinsically a parallel process, as multiple mesh trian-

gles can be drawn at once onto the depth buffer. We leverage this property to

build an optimized version of the edge function(see [46]) that ensures high GPU

occupancy. The goal is to design a kernel that is able to render each particle’s

object pose hypothesis independently from the others and simultaneously it must
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process each particle mesh triangles concurrently. This two levels of parallelism

is achieved using the CUDA streams. If multiple kernels are launched on a single

CUDA stream, they will be executed sequentially. On the contrary, if multiple ker-

nels are launched on different CUDA streams they will run, if possible, concurrently.

The approach is shown in Algorithm 2. The kernel renderAllParticlesPoseHp()

is launched with one thread per triangle mesh to obtain the first level of paral-

lelism. NSTREAMS are instantiated and launched to achieve the second level of

parallelism, i.e. the concurrent particles. GPU hardware limitations forced us to

set the numbers of streams to 16 instead of NPART. A complete particle paral-

lelism cannot be accomplished. Our experiments showed that opening more than

16 streams does not reduce anymore the time of the rendering phase.

Algorithm 4 outlines the main steps of the parallel rendering process. Let the

object mesh faces be equal to 3072. The renderAllParticlesPoseHp kernel

is launched with Nblocks=6 blocks of NthsPerBlock=512 threads each; i.e., a

thread per object triangle. This kernel is also designated to find the axis-aligned

bounding box (AABB) of the rendered object onto the depth buffer. The AABB

keeps track of the area onto the depth buffer which has been written by a particle.

This technique will narrow the search area when the fitness function is computed.

We optimized the AABB calculus inside this kernel by exploiting the shared mem-

ory properties. Each block instantiates its own shared memory and only the threads

belonging to that block can access it. To store the top-left and the bottom-right

corners coordinates of a AABB are needed four values. We thus instantiate four

shared memory arrays of dimensions 512 (i.e. the numbers of threads per block)

and we initialize them (Alg. 4, lines 4 to 8).

Lines 9 to 14, in Alg. 4, project the 3D mesh triangle of index tIdx onto 2D pixels

coordinate. Lines 15 to 18, in Alg. 4, then compute the 2D triangle’s AABB. Lines

19 to 23, in Alg. 4, save, in an univocal array position, the current coordinates of

the triangle AABB. So far, each block holds a subset of triangles’ AABB, as tough
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the final AABB was fragmented in 6 groups of 512 smaller chunks. Hence, line

24 performs a Parallel Min Max Reduction optimized to run in shared memory.

The outcome of this function is to join all the 512 smaller AABBs per block into

a single AABB per block. At this stage, each block owns only a partial AABB.

The OR-operation of the 6 AABBs would build the final AABB up. Unfortunately,

the final AABB of the particle rendering cannot be computed inside this kernel

as shared memory access is local to blocks. To avoid any atomic operations that

will serialize the threads, we decided to define in device global memory a tem-

porary array of partial results d_AABB (see Fig. 4.2) where each particle can

save in a coalesced way its 6 partial AABBs (lines 26 to 30). The total length of

d_AABB is NPART*64*4. Each particle has 64*4 elements reserved. 4 are to

store the two rectangle corners coordinates. 64 are twice the CUDA warp size.Even

if 64 − Nblocks elements are not used at all, this choice lets the optimized parallel

reduction run as fast as possible.

Finally, each triangle is drawn onto the depth buffer concurrently (line 31). The

layout of the depth buffer d_depth_buffer is depicted in Fig. 4.5.

4.5 Reconstruction of the final AABB

The ComputeAABBFinalReductionKernel kernel is assigned to recon-

struct the final AABBs of the renderings performed by all the particles. This

function takes as input the d_AABB array. The layout of this array, as already

explained, has been designed to optimize and speed-up the process of forming the

final AABB. We reserved 64 ∗ 4 elements per particle. 64 elements per particle

might be thought of as a waste of memory since only 6 (i.e., Nblocks) out of 64

values are needed. A multiple number of the CUDA Warp Size is actually required

to perform the fastest parallel reduction in GPU. The number 64 turns out to be

the smallest number that is a multiple of the Warp Size (i.e., 32).
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We thus launched this kernel with 1 block per particle and 64∗4 = 256 threads per

block. 256 threads are 8 warps, this means that we can assign 2 warps to load in

shared memory each coordinate of the partial AABBs. This choice ensures both a

bank conflict free write in shared memory and a coalesced read from global memory.

Lines from 15 to 30 in Alg. 5 outline the read and write procedure.

The block locality property of the shared memories are no more a problem in this

kernel as each block corresponds to a PSO particle. Therefore, each particle can

execute the OR-operation of its partial AABBs directly in shared memory to ob-

tain its final AABB. The MinMaxAABBReduction function in line 31 computes

this OR-operation. Finally, the particles’ final AABB is stored in device global

memory.

4.6 Fitness function on GPU

Each particle must now quantify the goodness of its own object pose hypothesis.

The fitness function introduced in Eq. 3.16 gathers information from the rendering

step, such as the pixels depth value (zKi
, zRij

) and the rendering coverage indices

(i.e., µj, κj).

The particles’ rendering depth values zRij
and the object cluster depth values zKi

can be read respectively from the d_depth_buffer and the d_depth_kinect arrays.

In contrast, the rendering coverage indices must be computed just before the eval-

uation of the fitness function. We leverage the AABBs computed in the previous

kernel to reduce the number of accesses in global memory and thus speed-up the

computations.

The ComputeAllParticlesFitness kernel is launched in the same way of the

rendering kernel. We open 16 streams and run the kernel with 1 block of 1024

threads. This configuration leaves available 1024 threads per particle. We designed

this approach to generate two levels of parallelism in this phase too. The particles
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process 1024 pixels at once while they evaluate their own object pose hypothesis

concurrently. The AABBs are not of fixed area; moreover, we do not know the

number of rendered pixels inside the AABB until we count them. Dynamic mem-

ory allocation is a very expensive operation in GPU that would have greatly slowed

down the computation of the fitness scores. We thus create four circular buffers in

shared memory (Lines 6 to 9 in Alg. 6) where we store: the partial results of the

pixels depth error (sError[]), the partial indices value (sµ[], sκ[]) and the partial

number of rendered pixels of that particle (sNrenderedPoints[]).

Firstly, we load in shared memory the final AABB of each particle. The array

d_finalAABB is of dimension [NPART * 32] even if the number of elements nec-

essary to define a AABB is only four. We reserve 32 elements as the CUDA warp

size to allow a coalesced warp access in device global memory (Lines from 11 to 15

in Alg. 6).

The definition of the rendering coverage indices force us to find the minimum AABB

that encloses both the particle rendering and the segmented cluster object. An OR-

operation is then performed between the rendering AABB and the cluster one (lines

from 24 to 27 in Alg. 6).

Secondly, we launch a grid-stride loop to access 1024 pixels at once and we loop

NumIters times. NumIters is the number of loops needed by a block of 1024 threads

to access all the pixels in the AABB only once. In line 45 we fill the circular buffers

with partial results obtained from the current 1024 pixels.

The partial results are then summed up through a parallel sum reduction over the

circular buffers (line 46). Finally, the first active thread computes Eq. (3.16) and

writes the resulting fitness score of the particle pIdx in the d_pso_fit_error array

in global memory.
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4.7 Updating personal and global best on GPU

The ComputeAllParticleFitness kernel fills the d_pso_fit_error array with

the current fitness scores of the particles. The updatePersonalAndGlobalBestAll-

Particles kernel takes as input this array and test whether the particles have

improved their personal fitness or not. Moreover, this kernel tests whether some

particles have exceeded the global best fitness score up to that iteration. The per-

sonal best update is a complete parallel process. In contrast, the global update in

a PSO with global topology is intrinsically a serial process where an atomic read

and write must be performed on the global best variable to avoid particles race

condition. We designed this kernel such that no atomic operations are executed.

Before launching the updatePersonalAndGlobalBestAllParticles kernel, we

run a parallel minimum reduction on the d_pso_fit_error array. The outcomes

of this command are both the best fitness score (d_result_min_fit) and the ID

of the best particle best_particle_Idx, in that iteration. These temporary results

are passed to the kernel. The kernel is then launched with 1 thread per particle.

Therefore, each particle fetches its current fitness score and personal best score. It

tests whether its current score is strictly minor of its personal best. If this condition

falls true, the particle updates its personal best and copies its current pose as its

best pose.

The update of the global best follows a slightly different approach. A single check

is required to determinate if the set of particles owns a particle with a lesser fitness

score. The first active thread is then elected to check the fitness score of the best

particle of that iteration (best_particle_Idx) against the global best score. If the

strictly minor condition holds true, the global best fitness is set to the fitness of

the best particle. The pose of the best solution is then updated with the pose of

the best particle. Alg. 7 highlights the above steps.
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4.8 Updating the particles pose and velocity

The kernel computeNewPoseAndVelAllParticles is used to propagate the

particles through the search space. In this kernel the update Eqs. (3.1), (3.2),(3.11)

and (3.12) are employed. These equations can be safely computed concurrently.

Hence, we run this kernel with 1 thread per particle. Each particle calculates its

indices to access the device global memory in a coalesced manner (Lines 4 to 10,

Alg. 8). In line 11, in Alg. 8, the particles store in local memory the current

random index. The actual particles propagation is performed starting from line 12

to 25 of Alg. 8. At the end, the particles save their current random index for the

next iteration (line 26 in Alg. 8).

64



Chapter 5

Human-Robot collision avoidance

for a safe coexistence

In the last few years, in the robotics community has grown the idea about

bringing closer humans and robots. Human-Robot collaboration could be the right

union to improve the skills of both the parties involved. In industrial robotics

applications a robot co-worker can simplify the personnels job; e.g. the robot

speeds up some repetitive or heavy tasks while the operator is performing the

peculiar ones. They both work on the same machine, they share the same working

area but they execute different tasks in parallel. This may yield to an increase of

the productivity for that company.

The human-robot collaboration paradigm is based on the concept of the robot

workspace sharing with no physical guarding barriers between human and robot.

This inevitably leads to some human safety related issues. The main goal for

robotics engineers is therefore the generation of a virtual environment where the

human-robot coexistence is guaranteed to be safe. The first step toward a safe

coexistence is the employment of a new generation of collaborative and lightweight

manipulators. KUKA and Universal Robots with their own LWR and UR products

respectively, are the leaders in the field of collaborative robotics. These robots
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have been designed to be lightweight and precise. They have redundant joints

encoders to guarantee a safe robot stop in presence of failure. KUKA has also joint

torque sensors at each joint and harmonic drive that introduces joint elasticity.

New impedance control schemes have been proposed with or without torque/force

sensors to handle and react to any accidental contacts against both the environment

and the human (see [38] and [37]).

This Chapter is focused on the design of a collision avoidance scheme for human-

robot coexistence. For this porpoise, we built our own lightweight manipulator.

The designed robot has 7DoF in order to be redundant for any task assigned to it.

To validate our algorithm, we first assign to the robot a task that must be fulfilled

(e.g. the robot is programmed to execute a given trajectory). Then, we stress any

collision that may occur in a real scenario of human-robot collaboration. Collision

avoidance against both people and objects are tested.
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5.1 Overview of the proposed control scheme

Point Cloud gen-

eration on GPU
Ts = 30ms

Repulsive Vector

Force compu-

tation on GPU

Reference Joints

Velocity computation

Tg = 25ms

Tc = 5ms

Real-Time Joints

Space Trajec-

tory Generation

Kinematic Constraints(¨⃗qmax,
...
q⃗ max

)

F⃗ee

q̇r(t)

Depth Image stream

[
q̂(t), ˙̂q(t), ¨̂q(t)

]

[
q̂(t), ˙̂q(t), ¨̂q(t)

]

qr(t+ 1)

q̇r(t+ 1)

q̈r(t+ 1)

The above block diagram highlights the main steps of the proposed collision

avoidance algorithm. The Microsoft Kinect is the only exteroceptive sensor em-

ployed in this dissertation. The Kinect captures a new depth frame of the sur-

rounding environment at a frequency of 30Hz. The monitored environment covers

the robot workspace and any object and/or person that may interfere with the

robotic arm. The Kinect sensor is placed at a horizontal distance of 2 meters and

at a height of 1.2 meters w.r.t. the robot base frame. Once a new depth frame is

ready, the point cloud generation block converts the depth image in an organized

Point Cloud. The computed point cloud is then moved to the repulsive vector

force generation block. The latter reads the actual joint state of the robot (i.e.[
q̂(t), ˙̂q(t), ¨̂q(t)

]
) and compute a force vector for each point in the point cloud that
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may interfere with the main robot task. The outcome of this block is a cumulative

vector force F⃗ee that must be applied to the robot end-effector in order to mod-

ify the current robot trajectory in case any imminent collision has been detected.

The reference joints velocity computation block takes as input the cumulative force

vector and generates the reference joints velocities (q̇r(t)) required to execute the

desired collision-avoidance trajectory. Both the reference joints velocity computa-

tion block and the repulsive vector force generation one have a sampling time of

25ms. Finally, a real-time, 7-th order joints space trajectory generation block is

needed to respect the robot kinematic motion constraints
(¨⃗qmax,

...
q⃗ max

)
and avoid

jerky movements of the robotic arm. This block generates a new trajectory point

[qr(t + 1), q̇r(t + 1), q̈r(t + 1)] which is sent to the robot controller every 5ms.

The following chapter sections will explain each block in detail.

5.2 Point Cloud generation on GPU

The depth image captured by the Kinect sensor is a 2D image where each

pixel encodes the distance between the camera frame and the object seen by that

pixel. Hereafter the i-th depth image pixel can be expressed by the following three

coordinates:

pxi
= [ui, vi, Zi]T (5.1)

where (ui, vi) are the pixel coordinates in the image plane, whilst Zi is the depth

information, in millimetres, carried by the i-th pixel.

Basically, a point cloud is a collection of 3D points (e.g. pci
= [Xi, Yi, Zi]T ) used to

discretize any object in the 3D space. This block is asked to convert a depth image

to a point cloud.

The Kinect depth sensor is simply modelled as pin-hole camera. The latter is

characterized by an intrinsic camera matrix K required to project a pixel from the
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2D image reference frame to the camera 3D reference frame and vice versa.

K =

⎡⎢⎢⎢⎢⎢⎣
fx 0 cx

0 fy cy

0 0 1

⎤⎥⎥⎥⎥⎥⎦ (5.2)

where fx and fy are the focal lengths of the camera; cx and cy are the coordinates

in pixel of the center of the image plane. Hence, eq. 5.3 projects a depth image

pixel pxi
into the 3D camera reference frame.

pcami
= K−1pxi

(5.3)

The extrinsic camera matrix T cam
base defines the rigid transformation between the

camera frame and the robot base frame.

To obtain the point cloud of the scene in robot base frame the rigid transformation

in eq. 5.4 must be applied.

pbase = (T cam
base )−1 pcam (5.4)

We coded the above rigid transformations in GPU since each pixel can be processed

independently from each other speeding up the execution time of this block.

5.2.1 Extrinsic camera calibration

The extrinsic camera matrix T cam
base defines the rigid transformation between the

camera frame and the robot base frame.

This matrix must be known in advance. In the presented control scheme, T cam
base is a

static transformation since no relative motion occurs between the camera frame and

the robot base frame. Hence, an offline extrinsic calibration is needed to estimate

the extrinsic camera matrix T cam
base .
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Beforehand, a 9 × 7 chessboard is laid down on a flat table. Thereafter, we ensured

that each corner of the chessboard is both framed by the camera and is reachable

by the robot end-effector. We then found the 63 corner pixels pxi
in the captured

depth image. The projection pcami
of the depth image corner pixels pxi

into the

3D camera reference frame is performed through the eq. 5.4.

Finally, The end-effector of the robot arm is placed on each chessboard corner and

the 63 end-effector position vectors peei
w.r.t the robot base frame are sampled by

means of the robot forward kinematic function.

peei
= FK(q) (5.5)

where q is the current joints positions vector. The problem of finding the optimal

rotation matrix and translation vector can be solved through the Singular Value

Decomposition (SVD) approach.

Let tcam
base and Rcam

base the translation vector and the rotation matrix of T cam
base respec-

tively. The following cost function must be minimized:

63∑
i=1

∥ (Rcam
basepeei

+ tcam
base) − pcami

∥2 (5.6)

Firstly, we compute the centered vector of both point sets as follows:

xi = peei
− p̄ee , yi = pcami

− p̄cam (5.7)

where: p̄ee and p̄cam are the centroid of both points sets respetively.

The 3 × 3 covariance matrix S is computed as follows:

S = XYT (5.8)
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where X and Y are the 3 × 63 matrices that have xi and yi as their columns,

respectively.

The SVD returns the covariance matrix as a product of three matrices: S = UΣV T .

Hence, the optimal rotation is given as:

Rcam
base = V UT (5.9)

The optimal translation is thus:

tcam
base = p̄cam − Rcam

basep̄ee (5.10)

5.3 Repulsive vector force computation on GPU

We rearrange the equation in [19] to compute on GPU the repulsive vector force

for each point in the point cloud.

Beforehand, we define a maximum human-robot interaction workspace as a 3D

sphere centred in the robot base frame and radius ρ = 1.1m. Points outside this

sphere do not contribute in the force vector field computation. Moreover, we cancel

from the depth image the manipulator itself. This ensures that the robot is not

considered as an obstacle. In the robot design phase, we created the 3D CAD model

of the manipulator. We render this 3D CAD model onto the image plane using the

actual pose of the robotic arm. The depth image pixels affected by the rendering

process are not considered for the point cloud generation.

From now on, all the vectors are defined w.r.t. the robot base reference frame.

Firstly, the distance between the point obstacle po and the current end-effector

position is computed as:

D(ee, o) = pee − po (5.11)
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where pee is the current position of the robot end-effector given by the robot forward

kinematic function as shown in eq. 5.12.

pee(t) = FK(q̂(t)) (5.12)

The point obstacle po generates a repulsive force vector on the robot end-effector

as shown in eq. 5.13.

Vr(ee, o) = v(ee, o) D(ee, o)
∥D(ee, o)∥ (5.13)

The direction of the vector force is equal to the one of the D(ee, o) vector, but the

magnitude is formulated as in eq. 5.14 (see [19]).

v(ee, o) = Vmax

1 + e(∥D(ee,o)∥(2/ρ)−1)α (5.14)

The force magnitude is zero outside the sphere with radius ρ. The maximum value

of the force (Vmax) is reached when the distance ∥D(ee, o)∥ = 0. As the distance

∥D(ee, o)∥ approaches ρ, the magnitude converges smoothly to zero as depicted

in fig. 5.1. The parameter α defines the sharpness of the exponential function.

A parallel reduction sum is then performed in GPU to sum up all the point force

vectors. The cumulative force vector is thus given by the eq. 5.15.

Vrtot(ee) =
∑

po∈S
Vr(ee, o) (5.15)

The final force vector F⃗ee that must be applied to the robot end-effector is formu-

lated in eq.5.16.

F⃗ee(ee) = v(ee, omin) Vrtot(ee)
∥Vrtot(ee)∥ (5.16)

The direction of F⃗ee(ee) is given by the direction of the total sum vector Vrtot(ee).

The magnitude of F⃗ee(ee) is computed as in eq. 5.14 using only the the closest
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Figure 5.1: Magnitude of the vector field for different values of α, Vmax = 3m/s,
ρ = 1.1m

obstacle pomin
to the robot end-effector.

5.4 Reference Joints Velocity Computation

The total force vector F⃗ee(ee) is a three-dimensional vector in robot base frame

that tries to push the robot away from imminent collision against objects or people.

In order to control the robot along the new obstacle-free trajectory, we need to

converter the end-effector external force into a reference joints trajectory.

Given the desired force vector at the end-effector, this block generates a reference

joints velocity vector (q̇r(t)) at each sampling time Tg=25ms.

Beforehand, the force vector F⃗ee(ee) is simply converted into a velocity vector

vee(ee) as follows:

vee(ee) .= F⃗ee(ee) (5.17)

Once the desired end-effector velocity is computed, the inversion of differential

kinematics can be carried out.

The robotic arm built for this work has n = 7 active joints. This means that the
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robot is always kinematically redundant for any assigned task. In particular, for a

task that requires positioning and orienting the end-effector in 3D space (m = 6),

the degree of redundancy is equal to n − m = 1. In this thesis, we are interested in

positioning the robot end-effector in 3D space (m = 3). The degree of redundancy

is thus equal to n − m = 4. We leverage the properties of redundant robots to

solve the obstacle avoidance problem efficiently. Kinematically redundant robots

produce infinite solutions to the inverse kinematics problem. Moreover, robot’s

joints internal displacement can be generated without affection the task variables.

This self-motion is employed to optimize the behaviour of the robot by managing

some additional constraints. The redundancy resolution is based on the null-space

method. The differential kinematics equation for a manipulator is formulated in

eq. 5.18 (see [55]).

ṗ(t) = J(q)q̇(t) (5.18)

For a 7DoF manipulator and a positioning task in 3D space, J(q) is the 3 × 7

Jacobian matrix, q̇(t) is the 7 × 1 joints velocities vector and, finally, ṗ(t) is the

3 × 1 end-effector linear velocities vector.

The general solution of eq. 5.18 using the null-space approach is given by eq. 5.19

q̇(t) = J†(q)ṗ(t) +
(
I − J†(q)J(q)

)
q̇0(t) (5.19)

where: J† is the damped pseudo-inverse defined as follows:

J†(q) = JT (q)
(
J(q)JT (q) + ρ2I

)−1
(5.20)

I is the 7 × 7 identity matrix and ρ is the damping factor. The damped pseudo-

inverse has been introduced to mitigate the effect of any kinematic singularities

along the real-time generated trajectory.

Eq. 5.19 is composed by two terms. The first term J†(q)ṗ(t) fulfils the constraint

74



5.4 – Reference Joints Velocity Computation

5.18 by minimizing the velocity norm cost function in eq. 5.21.

g(q̇) = 1
2 q̇T q̇ (5.21)

In contrast, the second term
(
I − J†J

)
q̇0 is the homogeneous solution of eq. 5.18.

It tries to satisfy a secondary constraint by projecting an arbitrary joints velocity

q̇0 in the null space of J. The 7 × 7 matrix
(
I − J†J

)
is thus the projection matrix

that projects q̇0 in the null space of J without breaking the constraint 5.18.

Therefore, the general solution in eq. 5.19 allows the manipulator self-motion. If

ṗ(t) = 0, it can be chosen a proper joints velocity q̇0 in order to reconfigure the

robotic arm without affecting neither the end-effector position nor the end-effector

orientation.

The kinematic constraint in 5.18 has higher priority than the additional constraint

imposed by q̇0. We thus assign the highest priority to the collision avoidance task

and the lower priority task is left to the trajectory tracking.

The reference joints velocities are then computed as follows:

q̇r(t) = J†(q)vee(ee) +
(
I − J†(q)J(q)

)
q̇0(t) (5.22)

where, the null space velocity q̇0(t) is designed in 5.23 to let the robot track a given

trajectory imposed during a common working cycle (e.g. the robot is asked to pick

some objects from point A and place them to point B).

q̇0(t) = Kp(q∗(t) − q̂(t)) + Kd(q̇∗(t) − ˙̂q(t)) (5.23)

In eq. 5.23 the pair (q∗(t), q̇∗(t)) is the desired robot trajectory, the pair
(
q̂(t), ˙̂q(t)

)
is the current robot trajectory and both Kp and Kd are constant gains.
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5 – Human-Robot collision avoidance for a safe coexistence

5.5 Joints Space Trajectory Generation

This block generates an on-line smooth trajectory for the robot joints given

both the robot kinematic constraints and the target joints velocity vector q̇r(t).

The latter is updated every Tg=25ms but the trajectory generator produces a new

trajectory point [qr(t + 1), q̇r(t + 1), q̈r(t + 1)] every Tc=5ms.

We used the on-line trajectory generator presented in [34]. Figure 5.2 depicts the

Figure 5.2: Input and output values of the velocity-based On-Line Trajectory Gen-
eration algorithm in [34]

black-box scheme of the trajectory generator. The target velocity usually varies

at each sampling time Tg. This block guarantees a smooth velocity trajectory

interpolation between the ongoing trajectory and the new one. This is mandatory

in order to have a differentiable acceleration profile and a continuous jerk profile.

The new state of motion is directly fed to the robot controller that is designated to

control the axes motion.
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5.6 – Collision Avoidance Test on a Real Lightweight Manipulator

5.6 Collision Avoidance Test on a Real Lightweight

Manipulator

In this section we use the robot we built in our laboratory to test the collision

avoidance algorithm presented in this Chapter. We encourage to watch the full

video of the test at the following link HRC:Collision Avoidance to fully appreciate

the algorithm in action.

The robot base has been fixed on a common desk of our lab. We assign to the robot

a positioning task. The null space joints velocity q̇0(t) in eq. 5.23 is thus computed

based on the desired trajectory expressed in eq. 5.24.

⎧⎪⎪⎨⎪⎪⎩
q∗(t) = q∗ =

[
−π

6 , 0,
π

2.5 , −π

3 , 0, −π

3 , 0
]T

q̇∗(t) = q̇∗ = 0
(5.24)

The end-effector desired position in the operational space can be visualized in the

video and in both figures 5.3 and 5.4 as a red square. A person is asked to perturb

the robot positioning task with voluntary gestures that could yield to human-robot

collisions.
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5 – Human-Robot collision avoidance for a safe coexistence

(t = 0) (t = 1)

(t = 2) (t = 3)

(t = 4) (t = 5)

(t = 8) (t = 9)

(t = 10)
Figure 5.3: A person perturbs the positioning task of the robot. He is trying to
generate a human-robot collision
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5.6 – Collision Avoidance Test on a Real Lightweight Manipulator

(t = 0) (t = 1)

(t = 2) (t = 3)

(t = 4) (t = 5)

(t = 7) (t = 8)

Figure 5.4: A person surrounds the robot while it is performing the positioning
task
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Chapter 6

Conclusion

This Ph.D. dissertation is focussed on novel and optimized algorithms devel-

oped by the author during a three year Ph.D. path in Politecnico di Torino with

the collaboration of Telecom Italia S.p.A.

We presented a novel pipeline for segmenting simple tabletop-like objects from

RGB-D images and estimating their 3D pose that, contrary to many current ap-

proaches, does not rely on machine learning methods and it is robust to changes in

object appearance, lack of textures and heavy textures. The pipeline is composed

by a object segmentation algorithm, a pose estimation part and finally a collision

avoidance algorithm for a safe human-robot coexistence in both structured and un-

structured environment.

In Chapter 2 the segmentation algorithm is presented. Candidate object regions

are first retrieved using a fast graph-based image segmentation algorithm that in-

tegrates color and depth information and is able to work with texture-less objects

as well as heavy textured ones. We designed a modified Canny edge detector that

integrates depth information in order to find robust edges in RGB-D images. We

proposed a novel depth smoothing filter with dynamic smoothing kernels that also

work with depth shadows. Actual object borders are correctly preserved. Two non-

linear weighting functions are designed in order to generate the graph edge weights.
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6 – Conclusion

These functions take as inputs both color and depth image cues. A post-processing

phase is used to discard most false positives. Future work, related to the segmen-

tation part will be devoted to parallelization of the graph creation and partitioning

phases and to investigate different partitioning strategies.

In Chapter 3, we presented QPSO, a Particle Swarm Optimization algorithm with

a novel quaternion-based kinematics formulation. The QPSO is run on the candi-

date object regions, using a 3D model of the object. The fitness function is based

on depth information only, keeping the algorithm robust to textureless or heavy

textured objects. Moreover, we argue that the final fitness value can be used to

further discard false positive regions from the segmentation part. This assigns to

the QPSO an intrinsically object detection property that can be exploited in par-

allel with the pose estimation part.

We also show how QPSO can be easily extended in order to estimate the pose of

articulated objects with prismatic or revolute joints, by simply adding the joint

values in the PSO state.

The segmentation part runs in linearithmic time. The PSO exploits the paralleliza-

tion potential offered by GPUs and it is able to run 10 iterations at more than

10 fps on a current GPU. Chapter 3 is devoted to the optimized GPU code of

the QPSO. A novel GPU code is thus designed to efficiently solve this constrained

optimization problem. Future work will be devoted to the full extension of the

algorithm to articulated objects with arbitrary number of links and experiments

with different segmentation algorithms.

Finally, Chapter 5 explains how humans can safely work close to the robots. An

important aspect of human-robot coexistence is the real-time generation of colli-

sion free robot trajectories. A novel GPU-optimized collision-avoidance algorithm

is tested on a real lightweight manipulator. The robot is asked to fulfill a given

task while the human is trying to perturb it in order to generate a human-robot

collision.
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6 – Conclusion

Future work will be dedicated to the design of robot reaction strategies in presence

of human-robot collisions. Moreover, contact force estimation along the robot body

without any force-torque sensor is a growing research topic. This work could be

the starting point for the development of a safe Human-Robot interaction.

83



84



Appendix A

Pseudo-code of the GPU

implementation
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A – Pseudo-code of the GPU implementation

Algorithm 1: Main steps of the multi-instance Q-PSO GPU implementation.
Input: Depth map of all the object clusters (R) found in the scene
Input: 3D object model to search for
Result: Multi-instance object pose

1 object_best_poses = ∅;
2 for cluster = 1 to | R | do
3 initAllParticles<<<, >>>();
4 for step = 1 to maxSteps do
5 renderAllParticlesPoseHp<<<, >>>();
6 computeAllParticlesFitness<<<, >>>();
7 updatePersonalAndGlobalBestAllParticles<<<, >>>();
8 computeNewPoseAndVelAllParticles<<<, >>>();
9 end

10 if best_fitness > th then
/* the object does not belong to the same class of the 3D

model */
11 continue;
12 else

/* load the best object pose back to CPU and save it */
13 object_best_poses.push_back(best_pose);
14 end
15 end

86



A – Pseudo-code of the GPU implementation

Algorithm 2: Parallel rendering on multiple streams
Input: d_depth_buffer, d_AABB, d_pso_pose, particleIdx, offset_buffer
Input: 3D object model to render: d_obj_model
Result: d_depth_buffer, d_AABB

1 offset_buffer = 0;
2 particleIdx = 0;
3 streams[NSTREAMS] = init(NSTREAMS);

/* Nblocks × NthsPerBlock >= 3D Object Mesh Faces */
4 Nblocks = 6;
5 NthsPerBlock = 512;
6 for i = 0 to NP ART /NST REAMS do
7 for Sidx = 0 to NSTREAMS do
8 renderAllParticlesPoseHp<<<

Nblocks,NthsPerBlock,streams[Sidx]>>>
9

(d_obj_model,d_pso_pose,particleIdx,offset_buffer,d_depth_buffer,d_AABB);

10 offset_buffer += R*C;
11 ++particleIdx;
12 end
13 end
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A – Pseudo-code of the GPU implementation

Algorithm 3: Q-PSO GPU Initialization
Input: d_randGen, d_pso_pose, d_pso_vel, d_pso_pose_b, d_randIdx
Result: d_pso_pose, d_pso_vel, d_pso_pose_b are initialized
/* One Thread per PSO particle */

1 tIdx = blockDim.x * blockIdx.x + threadIdx.x;
/* Local variable to access the d_randGen array in a coalesced

fashion */
2 s_randIdx=0;

/* Compute the arrays’ indices to fullfil the coalescent access
requirement */

3 idx_tx = tIdx + tx_*NPART;
4 idx_ty = tIdx + ty_*NPART;
5 idx_tz = tIdx + tz_*NPART;
6 idx_q0 = tIdx + q0_*NPART;
7 idx_q1 = tIdx + q1_*NPART;
8 idx_q2 = tIdx + q2_*NPART;
9 idx_q3 = tIdx + q3_*NPART;

/* Initialize the particles’ Position */
10 d_pso_pose[idx_tx] = Eq. (3.17);
11 d_pso_pose[idx_ty] = Eq. (3.17);
12 d_pso_pose[idx_tz] = Eq. (3.17);

/* Initialize the particles’ Orientation */
13 d_pso_pose[idx_q0] = Eq. (3.19);
14 d_pso_pose[idx_q1] = Eq. (3.19);
15 d_pso_pose[idx_q2] = Eq. (3.19);
16 d_pso_pose[idx_q3] = Eq. (3.19);

/* Initialize the particles’ Linear Velocity */
17 d_pso_vel[idx_tx] = Eq. (3.18);
18 d_pso_vel[idx_ty] = Eq. (3.18);
19 d_pso_vel[idx_tz] = Eq. (3.18);

/* Initialize the particles’ Angular Velocity */
20 d_pso_vel[idx_q0] = Eq. (3.20);
21 d_pso_vel[idx_q1] = Eq. (3.20);
22 d_pso_vel[idx_q2] = Eq. (3.20);
23 d_pso_vel[idx_q3] = Eq. (3.20);

/* Copy Results to Personal Best */
24 d_pso_pose_b[idx_tx] = d_pso_pose[idx_tx];
25 d_pso_pose_b[idx_ty] = d_pso_pose[idx_ty];
26 d_pso_pose_b[idx_tz] = d_pso_pose[idx_tz];
27 d_pso_pose_b[idx_q0] = d_pso_pose[idx_q0];
28 d_pso_pose_b[idx_q1] = d_pso_pose[idx_q1];
29 d_pso_pose_b[idx_q2] = d_pso_pose[idx_q2];
30 d_pso_pose_b[idx_q3] = d_pso_pose[idx_q3];

/* where δ in Eqs. (3.17),(3.18),(3.19),(3.20) =
d_randGen[tIdx +(s_randIdx++)*NPART] */

/* keep track of the indices */
31 d_randIdx[tIdx] = s_randIdx;
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A – Pseudo-code of the GPU implementation

Algorithm 4: GPU Rendering Kernel
Input: d_depth_buffer, d_AABB, d_pso_pose, particleIdx, offset_buffer
Input: 3D object model to render: d_obj_model
Result: d_depth_buffer, d_AABB

1 renderAllParticlesPoseHp( . . . )
2 {

/* one thread per triangle (Mesh Face). tIdx = Global Mesh Face Index */
3 tIdx = blockDim.x * blockIdx.x + threadIdx.x;

/* Shared Memories declaration and initialization. */
/* threadIdx.x = Local (within a block) Mesh Face Index) */

4 __shared__ sMinX[NthsPerBlock]; sMinX[threadIdx.x] = maxAABB;
5 __shared__ sMaxX[NthsPerBlock]; sMaxX[threadIdx.x] = minAABB;
6 __shared__ sMinY[NthsPerBlock]; sMinY[threadIdx.x] = maxAABB;
7 __shared__ sMaxY[NthsPerBlock]; sMaxY[threadIdx.x] = minAABB;
8 __syncthreads();
9 pso_pose_vec[7] = fetch_particle_pose_hypothesis(d_pso_pose,particleIdx);

10 float4 triangle[3] = fetch_mesh_face(d_obj_model,tIdx);
/* Compute the normalized pixels coordinate (UV) of the projected triangle

vertices */
11 float4 UVz[3];

/* first vertex of the face tIdx */
12 projectModelPointsToPixels(pso_pose_vec,triangle[0],UVz[0]);

/* second vertex of the face tIdx */
13 projectModelPointsToPixels(pso_pose_vec,triangle[1],UVz[1]);

/* third vertex of the face tIdx */
14 projectModelPointsToPixels(pso_pose_vec,triangle[2],UVz[2]);

/* AABB of the projected triangle */
15 minx = (min(min(UVz[0].X, UVz[1].X), UVz[2].X);
16 maxx = (max(max(UVz[0].X, UVz[1].X), UVz[2].X);
17 miny = (min(min(UVz[0].Y, UVz[1].Y), UVz[2].Y);
18 maxy = (max(max(UVz[0].Y, UVz[1].Y), UVz[2].Y);

/* fill the shared memories with the t.l. and b.r. corners of the AABB of
each rendered face */

19 sMinX[threadIdx.x] = minx;
20 sMaxX[threadIdx.x] = maxx;
21 sMinY[threadIdx.x] = miny;
22 sMaxY[threadIdx.x] = maxy;
23 __syncthreads();
24 MinMaxAABBReduction(sMinX,sMaxX,sMinY,sMaxY);

/* The partial results of each block is stored in sMXXX[0] */
/* Only the first active thread of each block stores its block partial

results to global memory */
25 _8warpSize_ = 8*warpSize;
26 if isFirstActiveThread(tIdx) then
27 d_AABB[particleIdx*_8warpSize_ + blockIdx.x] = sMinX[0];
28 d_AABB[particleIdx*_8warpSize_ + blockIdx.x + 64] = sMaxX[0];
29 d_AABB[particleIdx*_8warpSize_ + blockIdx.x + 128] = sMinY[0];
30 d_AABB[particleIdx*_8warpSize_ + blockIdx.x + 192] = sMaxY[0];

/* Parallel Rendering of the projected triangle */
31 renderFixedPointEdgeFcn(d_depth_buffer,minx,maxx,miny,maxy,offset_buffer);
32 }
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A – Pseudo-code of the GPU implementation

Algorithm 5: Parallel Final Reduction for computing the Final AABB of
each particle

Input: d_AABB, d_finalAABB
Result: d_finalAABB

1 ComputeAABBFinalReductionKernel( . . . )
2 {

/* 1 Block per particle with 256 (8 Warps) threads per block */
3 tIdx = blockDim.x * blockIdx.x + threadIdx.x;
4 globalWarpIdx = tIdx/32;// Global Warp ID
5 blockWarpIdx = threadIdx.x/32;// Warp ID within a Block
6 laneIdx = tIdx & 0x1F; // [0-31] Global Thread ID within a Warp
7 blocklaneIdx = threadIdx.x & 0x1F; // [0-31] Thread ID within a Warp in the Block
8 pIdx = blockIdx.x;// particle ID
9 _2warpSize_=2*warpSize;

10 _8warpSize_=8*warpSize;
11 __shared__ sMinX[_2warpSize_];
12 __shared__ sMaxX[_2warpSize_];
13 __shared__ sMinY[_2warpSize_];
14 __shared__ sMaxY[_2warpSize_];
15 tab:challenge /* Parallel and Coalesced copy of the AABB partial results from global

to shared memory */
16 if blockWarpIdx<2 then

/* chosen warp 0 and 1 to handle sMinX */
17 currentLaneIdx = blocklaneIdx+blockWarpIdx*_warpSize_; // [0-63]
18 sMinX[currentLaneIdx] = d_AABB[pIdx*_8warpSize_ + currentLaneIdx];
19 if blockWarpIdx>=2 && blockWarpIdx<4 then

/* chosen warp 2 and 3 to handle sMaxX */
20 currentLaneIdx = blocklaneIdx+blockWarpIdx*_warpSize_; // [64-127]
21 idx = blocklaneIdx+((blockWarpIdx-1)/2)*_warpSize_;
22 sMaxX[idx] = d_AABB[pIdx*_8warpSize_ + currentLaneIdx];
23 if blockWarpIdx>=4 && blockWarpIdx<6 then

/* chosen warp 4 and 5 to handle sMinY */
24 currentLaneIdx = blocklaneIdx+blockWarpIdx*_warpSize_; // [128-191]
25 idx = blocklaneIdx+((blockWarpIdx-3)/2)*_warpSize_;
26 sMinY[idx] = d_AABB[pIdx*_8warpSize_ + currentLaneIdx];
27 if blockWarpIdx>=6 && blockWarpIdx<8 then

/* chosen warp 6 and 7 to handle sMaxY */
28 currentLaneIdx = blocklaneIdx+blockWarpIdx*_warpSize_; // [192-255]
29 idx = blocklaneIdx+((blockWarpIdx-5)/2)*_warpSize_;
30 sMaxY[idx] = d_AABB[pIdx*_8warpSize_ + currentLaneIdx];
31 __syncthreads();

/* Min and Max Reduction over the shared memories */
32 MinMaxAABBReduction(sMinX,sMaxX,sMinY,sMaxY);

/* Each Particle now has 4 values i.e. the AABB of its own rendered 3D model */
/* Let the first active thread of that Block fill the final AABB array */

33 if isFirstActiveThread(threadIdx.x) then
34 d_finalAABB[pIdx*_warpSize_ + 0] = sMinX[0];
35 d_finalAABB[pIdx*_warpSize_ + 1] = sMaxX[0];
36 d_finalAABB[pIdx*_warpSize_ + 2] = sMinY[0];
37 d_finalAABB[pIdx*_warpSize_ + 3] = sMaxY[0];
38 }
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A – Pseudo-code of the GPU implementation

Algorithm 6: Particles’ fitness computation
Input: d_depth_buffer, offset_buffer, particleIdx, d_finalAABB, d_pso_fit_error, d_depth_kinect
Result: d_pso_fit_error

1 ComputeAllParticlesFitness( . . . )
2 {

/* 1 Block of 1024 threads per particle (we test 1024 pixels at time) */

/* Global thread index */

3 tIdx = blockDim.x * blockIdx.x + threadIdx.x;
4 totalNumThreads = blockDim.x * gridDim.x;
5 __shared__ sMinMaxXY[warpSize];
6 __shared__ sError[2048];// 2*1024 threads

7 __shared__ sµ[2048];// mu

8 __shared__ sκ[2048];// kappa

9 __shared__ sNrenderedPoints[64];// 32 warps within 1024 threads x2

10 initSharedMemories();
/* Chosen the first warp to load the particle pIdx’s AABB in coalesced fashion */

11 if tIdx<warpSize then
12 MinMaxXY[tIdx] = d_finalAABB[pIdx*warpSize + tIdx];
13 sNrenderedPoints[tIdx] = 0;
14 sNrenderedPoints[tIdx+32] = 0;

15 __syncthreads();
/* Save in the local registers the particle’s AABB */

16 minXr=MinMaxXY[0];
17 maxXr=MinMaxXY[1];
18 minYr=MinMaxXY[2];
19 maxYr=MinMaxXY[3];

/* Save in the local registers the AABB of the segmented cluster */

20 minXs = constant.cAABBminX;
21 maxXs = constant.cAABBmaxX;
22 minYs = constant.cAABBminY;
23 maxYs = constant.cAABBmaxY;

/* OR of the 2 AABBs */

24 minX = min(minXr,minXs);
25 maxX = max(maxXr,maxXs);
26 minY = min(minYr,minYs);
27 maxY = max(maxYr,maxYs);
28 W_bar = maxX-minX;// AABB Width

29 H_bar = maxY-minY;// AABB Height

30 Area = W_bar*H_bar;
31 NumIters = ceil( Area / totalNumThreads );
32 for i = 0 : NumIters do

/* Get the absolute pixels coord. inside the final AABB */

33 tIdxLoop = tIdx + i*totalNumThreads;
34 x_bar = tIdxLoop % W_bar;
35 y_bar = fix(tIdxLoop / W_bar) ;
36 pxX = minX + x_bar;
37 pxY = minY + y_bar;
38 if pxX && pxY inside AABB then

/* Fetch the depth value of that pixel from the rendering */

39 pxIdxRendered = pxY*C + pxX + offset_buffer;
40 z_rendering = d_depth_buffer[pxIdxRendered];

/* Zero the depth buffer */

41 d_depth_buffer[pxIdxRendered]=0;
/* Fetch the depth value of that pixel in the segmented scene */

42 pxIdxKinect = pxY*C + pxX;
43 z_kinect = d_depth_kinect[pxIdxKinect];

/* Shared memory arrays are treated as circular arrays of dimensions 2048 */

44 tIdxLoopCirc = tIdxLoop & 2047;
/* Fill these circular buffers with partial results */

45 fill_partial_results(tIdxLoopCirc, z_rendering, z_kinect, sError[], sµ[], sκ[], sNrenderedPoints[]);

46 end
/* A Parallel Sum Reduction computes and stores the final results in the first element of each circular buffer */

47 SumReduction(sError[],sNrenderedPoints[],sµ[],sκ[],tIdx);
/* Store the final fitness for each particle to global memory */

48 if isFirstActiveThread(tIdx) then
49 d_pso_fit_error[pIdx] = Eq. (3.16);
50 }
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A – Pseudo-code of the GPU implementation

Algorithm 7: Update particles’ personal and global best fitness
Input: d_pso_fit_error, d_pso_personal_best_fit, d_pso_pose, d_pso_pose_b, d_solution_best_fit,

d_solution_best_pose, d_result_min_fit, best_particle_Idx
Result: d_pso_pose_b, d_solution_best_fit, d_solution_best_pose

1 updatePersonalAndGlobalBestAllParticle( . . . )
2 {

/* 1 Thread per Particle */
3 tIdx = blockDim.x * blockIdx.x + threadIdx.x;

/* Fetch the particle tIdx’s current and personal best fitness score */
4 personal_current_fit = d_pso_fit_error[tIdx];
5 personal_best_fit = d_pso_personal_best_fit[tIdx];

/* Update the particle’s personal best fit */
6 if personal_current_fit < personal_best_fit then
7 d_pso_personal_best_fit[tIdx] = personal_current_fit;

/* Update the particle’s personal best pose */
/* Compute the indices for a coalesced access */

8 idx_tx = tIdx + tx*NPART;
9 idx_ty = tIdx + ty*NPART;

10 idx_tz = tIdx + tz*NPART;
11 idx_q0 = tIdx + q0*NPART;
12 idx_q1 = tIdx + q1*NPART;
13 idx_q2 = tIdx + q2*NPART;
14 idx_q3 = tIdx + q3*NPART;
15 d_pso_pos_b[idx_tx] = d_pso_pose[idx_tx];
16 d_pso_pos_b[idx_ty] = d_pso_pose[idx_ty];
17 d_pso_pos_b[idx_tz] = d_pso_pose[idx_tz];
18 d_pso_pos_b[idx_q0] = d_pso_pose[idx_q0];
19 d_pso_pos_b[idx_q1] = d_pso_pose[idx_q1];
20 d_pso_pos_b[idx_q2] = d_pso_pose[idx_q2];
21 d_pso_pos_b[idx_q3] = d_pso_pose[idx_q3];

/* Update the Global Best */
22 if isFirstActiveThread(tIdx) then

/* Minimum fitness score in this very iteration */
23 min_fit = d_result_min_fit;

/* Best Particle ID in this very iteration */
24 pIdx = best_particle_Idx;

/* Best Fitness score until this very iteration */
25 solution_best_fit = d_solution_best_fit;
26 if min_fit < solution_best_fit then

/* Update the global best fitness score through the best particle pIdx */
27 d_solution_best_fit = min_fit;

/* Update the global best pose through the best particle pIdx */
28 idx_tx = pIdx + tx*NPART;
29 idx_ty = pIdx + ty*NPART;
30 idx_tz = pIdx + tz*NPART;
31 idx_q0 = pIdx + q0*NPART;
32 idx_q1 = pIdx + q1*NPART;
33 idx_q2 = pIdx + q2*NPART;
34 idx_q3 = pIdx + q3*NPART;
35 d_solution_best_pose[tx] = d_pso_pose[idx_tx];
36 d_solution_best_pose[ty] = d_pso_pose[idx_ty];
37 d_solution_best_pose[tz] = d_pso_pose[idx_tz];
38 d_solution_best_pose[q0] = d_pso_pose[idx_q0];
39 d_solution_best_pose[q1] = d_pso_pose[idx_q1];
40 d_solution_best_pose[q2] = d_pso_pose[idx_q2];
41 d_solution_best_pose[q3] = d_pso_pose[idx_q3];
42 } 92



A – Pseudo-code of the GPU implementation

Algorithm 8: Compute both the new particles’ pose and velocity
Input: d_pso_pose, d_pso_vel, d_pso_pose_b, d_solution_best_pose,

d_randIdx
Result: d_pso_pose, d_pso_vel, d_randIdx

1 computeNewPoseAndVelAllParticles( . . . )
2 {

/* 1 Thread per Particle */
3 tIdx = blockDim.x * blockIdx.x + threadIdx.x;

/* Compute the arrays’ indices to fullfill the coalescent access
requirement */

4 idx_tx = tIdx + tx_*NPART;
5 idx_ty = tIdx + ty_*NPART;
6 idx_tz = tIdx + tz_*NPART;
7 idx_q0 = tIdx + q0_*NPART;
8 idx_q1 = tIdx + q1_*NPART;
9 idx_q2 = tIdx + q2_*NPART;

10 idx_q3 = tIdx + q3_*NPART;
/* Read Random vector indices to generate (r1, r2) */

11 s_randIdx = d_randIdx[tIdx];
/* Update the particles’ Linear Velocity */

12 d_pso_vel[idx_tx] = Eq. (3.1);
13 d_pso_vel[idx_ty] = Eq. (3.1);
14 d_pso_vel[idx_tz] = Eq. (3.1);

/* Update the particles’ Position */
15 d_pso_pose[idx_tx] = Eq. (3.2);
16 d_pso_pose[idx_ty] = Eq. (3.2);
17 d_pso_pose[idx_tz] = Eq. (3.2);

/* Update the particles’ Angular Velocity */
18 d_pso_vel[idx_q0] = Eq. (3.11);
19 d_pso_vel[idx_q1] = Eq. (3.11);
20 d_pso_vel[idx_q2] = Eq. (3.11);
21 d_pso_vel[idx_q3] = Eq. (3.11);

/* Update the particles’ Orientation */
22 d_pso_pose[idx_q0] = Eq. (??);
23 d_pso_pose[idx_q1] = Eq. (??);
24 d_pso_pose[idx_q2] = Eq. (??);
25 d_pso_pose[idx_q3] = Eq. (??);

/* where r1, r2 in Eqs.(3.1),(3.11) =
d_randGen[tIdx +(s_randIdx++)*NPART] */

/* keep track of the indices */
26 d_randIdx[tIdx] = s_randIdx;
27 }
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