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Abstract—In this paper, we present a methodology for effi-
ciently mapping neural networks over a neuromorphic computing
architecture. The target architecture is a globally asynchronous
locally synchronous (GALS) multi-core designed for simulating
spiking neural networks (SNN) in real-time, that is spike ti-
mings should be the same as in the human brain. The SNN
is implemented as a set of concurrent tasks modelling the
behaviour of biological neurons, which are executed on the
processing cores and communicate through spikes travelling on
a network-on-chip. The problem of neuron-to-core mapping is
relevant as a non-efficient allocation may impact real-time and
reliability of the neural network execution. We designed a task
placement pipeline capable of analysing the network of neurons
and producing a placement configuration that enables a reduction
of communication between computational nodes. The neuron-
to-core mapping problem has been formalised as a problem
of minimisation of synaptic elongation. Intuitively, this metric
represents the cumulative distance that spikes generated by
neurons running on a specific core have to travel to reach their
destination core. The proposed placement methodology allows
using different techniques to solve the problem. In this work
Spectral Analysis, Multilevel Static Mapping, and Simulated
Annealing were compared evaluating the overall post-placement
synaptic elongation. Results point out that mapping solutions
taking into account the directionality of the SNN provide a
better placement and quantify this impact. Between all techniques
considered only the Simulated Annealing was able to overcome
an improvement of 25% compared to a random placement.

I. INTRODUCTION

Finding the best way to map processes to physical cores
(PCs) in multi and many-core systems is a relevant op-
timisation problem, with significant impact on application
reliability, performance, and energy consumption. We explo-
red this problem in the case of a globally asynchronous
locally synchronous (GALS) multicore architecture designed
for neuromorphic applications. Here, tasks to be executed are
physical neuron models running in parallel on the platform and
communicating through messages. These messages represent
signals, called spikes, which biological neurons exchange
through their physical (neural) connections inside the brain.

The overall purpose of this application is to execute a
Spiking Neural Network (SNN) in real-time. In this case, real-
time means that the timings of the spikes generated by the
neurons should be compliant with the one of the real human
brain. Thus opening the way for the use of neuromorphic

platforms to interface external physical systems and elaborates
their signals (e.g. images, sounds) in the same way as the brain
does. Being the neurons executed as concurrent tasks by the
general purpose cores, there is a problem of efficient mapping
of neurons to cores to optimise the communication between
them. Indeed, these tasks are characterised by intensive com-
munication activity.

Generalising, the problem we faced concerns the mapping
of a large number of light parallel tasks with intensive
communication to a many-core architecture. A non-efficient
communication, in the specific case of SNN execution, may
impact real-time capabilities as well as the reliability of the
application. Indeed, spikes can be lost due to congestion
problems. In general, a possible approach to face the mapping
problem is to model the tasks and their communication as a
graph to be mapped over the underlying hardware architecture,
represented by another graph.

In this paper, we present a methodology for mapping a
task graph representing the SNN computation on a multi-
chip many-core architecture with communication awareness.
To achieve this target, we designed a task mapping frame-
work capable of analysing the network of neurons to find a
configuration with the target of reducing the communication
between computational nodes. The neuron-to-core mapping
problem has been formalised as a problem of minimisation
of synaptic elongation. Intuitively, this metric represents the
cumulative distance that spikes generated by neurons running
on a specific core have to travel to reach their destination core.

The framework starts by extracting a graph of independent
processes from a neural network description. In the case of
SNN, the direction of a communication path is also to be
represented using a directed graph. On the platform side, the
interconnect structure is described as a graph where nodes
represent on-chip cores while edges represent physical com-
munication links between them. In this way, we formalised a
neuron-to-core mapping as a graph-matching problem solvable
through the exploitation of various algorithms available in
the literature. The specific formulation we devised for SNN
mapping takes into account the typical organisation of these
type of neural networks into neuron populations, sharing
similar characteristics as well as the neuron model.

The results obtained by comparing four mapping algorithms
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points out and quantify the relevance of the communication
direction information to achieve a better mapping if compared
with non-directional algorithms.

The paper is organised as follows. In Section II we give a
brief overview of the application and the target board used in
this work. In Section III we detailed the problem formulation
under the graph theory view-point, while we describe our
process placement method in Section IV. In Section V we
report on the results obtained during the validation process
performed on the cortical microcircuit SNN simulation. Finally
in Section VI we reach some conclusions and list some future
declinations of this piece of work.

II. BACKGROUND

In this section, we will introduce the application and the
MCSoC board selected as a target for demonstrating the
advantages of adopting our process-placement communication
aware framework.

Spiking Neural Network (SNN) is a particular neural model
used by neuroscientist for simulating biologically plausible
brain activity. During SNN simulations neurons and their
synapses are modelled as differential equations capable of
emulating the behaviours observed in biological networks
[5]. Two of the most adopted neuron models are the Leaky
Integrate and Fire (LIF) [3] and Izhikevich (IZK) [4], because
they are able to ensure a plausible picture of the biological
behaviours with reduced computational costs. Van Albada et
al. [7] designed an SNN application implementing the cell-type
specific cortical microcircuit (CM) model created by Potjans
et al. [8]. Then they simulated this SNN on a neuromorphic
multi-chip many-core platform called SpiNNaker [9] using
the standard application partitioning and placement system for
setting up the simulation on the board.

For validating our placement methodology framework, we
took as target a GALS Neuromorphic many-core architecture
and used its native application such as an example case.
We used the SpiNNaker architecture [9], which is a general-
purpose real-time many-core platform mainly used for simula-
ting neural networks following an event-driven computational
approach but the methodology could also be applicable for the
new Loihi platform [?] and the future SpiNNaker 2 architec-
ture.

The SpiNNaker chip has 18 ARM 968 cores running at
200MHz, a full-custom router for intra/inter-chip communi-
cations, and an SDRAM external to the chip and accessible
through the PL340 interface [11]. The SpiNNaker system is
built with boards of 48 chips interconnected for forming a
toroidal shaped triangular mesh where each chip is connected
to six neighbours chips.

Sugiarto et al. [14] presented an approach for improving the
overall performance of general-purpose applications running
as a task graph on the same many-core neuromorphic super-
computer. Whereas in a recent paper, we have used the cortical
microcircuit application as a test case for demonstrating that
an enhanced partitioning and placement system studied for
the SNN topology can produce a more reliable and stable
configuration for the simulation on the SpiNNaker system
[13].

III. PROBLEM FORMULATION

The SNN placement into the neuromorphic architecture can
be view as an optimisation problem that involves two graphs:
GN and GCPU.

A graph G = (V,E,W) is a mathematical representation
for describing a set of elements V and a set of relations E ⊆
{(vi, vj) : vi, vj ∈ V } among them. The elements are called
nodes of the graph and the relations are called edges of the
graph. An edge eij ∈ E binds two nodes vi, vj ∈ V to each
other. A graph can have aW : E →W function that associates
an edge eij ∈ E to a value wij ∈W . The value wij =W(eij)
is called edge weight. A graph can be categorised according
to two properties: i) If the nodes on edges form unordered
pairs eij : {vi, vj} the graph is said undirected otherwise it
is said directed and the nodes on edges form ordered pairs
eij : (vi, vj). ii) If the weight set W is empty the graph is
said unweighted, otherwise it is said weighed.

A Spiking Neural Network (SNN) can be represented using
a directed and weighted graph called neuron graph GN . In
GN the nodes are the SNN neurons and the edges are the SNN
synapses. Taking into account a synapse eij : (vi, vj), the
neuron vi is called pre-synaptic neuron and the neuron vj is
called post-synaptic neuron. The edge weight wij represent the
synapse contribution to injected current into the post-synaptic
neuron after a stimulus received by the pre-synaptic neuron
and is called synaptic weight.

The neuromorphic architecture can be represented using an
undirected and weighed graph, called target graph GT . The
graph nodes are the ARM processors, and the graph edges
are the connections between them. The SpiNNaker board has
48 chip with 16 available processors each, and each chip is
connected to other six chip. The edge between two processors
of the same chip has a weight of one, the edge between two
processors of two neighbour chip has a weight of two.

We can define the placement problem Π : GN → GT as a
minimization problem (2).

minimize
f(π)

f :
∑

eij∈EN

d(π(vi), π(vj)) (1a)

subject to π(i) = π(j)→M(i) =M(j), i, j ∈ VN (1b)
|π(i) = p| ≤ S(M(i)), i ∈ VN , p ∈ VT (1c)

The goal of a placement procedure is to minimise the overall
synaptic stretching (2a) to reduce the communication along the
network nodes. The synaptic stretching is the distance between
the processors where two adjacent neurons are placed. Where
π : VN → VT is the placement rule, M : VN → M is
the neuron-model association rule and, S : M → N is the
association rule between a neuron model and the maximum
number of neuron per CPU. The constraints of the placement
problem are two: i) All neurons mapped into a CPU must be
of the same model (2b). ii) Each CPU can simulate only a
certain number of neurons, and the quantity depends on the
complexity of the neuron model (2c).

A. Problem Relaxation

A SNN is almost never described in GN form, due the
high complexity in manage all neurons and synapses, but is



normally described in terms of Population and Projection. A
Population P is a set of neurons that share the same model
and the same properties. A Projection between two Population
P(a) and P(b) defines a rule for create a set of synapses where
the pre-synaptic neurons are in P(a) and the post-synaptic
neurons are in P(b). We will refer to the Population-Projection
graph using the notation GP .

We can eliminate the two constrains (2b, 2c) redefining
the problem Π working from the graph GP . The first step
is splitting each population P(i) into a set of partial popu-
lations

{
P(i)
1 ,P(i)

2 , . . . ,P(i)
z

}
. All partial populations must

contains at most a number of neurons equal to the maximum
number of neurons allowed to be simulated in a processor:
|P(i)
j | ≤ n(i) ∀j = 1, . . . , z, with n(i) = S(M(P(i))).
In this way we obtain the partial population graph Gpp. The

edges of the partial population graph are weighed and ordered.
Given an edge eij ∈ Epp between two partial population, its
weight wij is equal to the number of synapses shared between
the neurons belonging the two partial populations.

We can redefine (2) using the placement rule π : Vpp → VT
that map a partial population into a processor (3).

minimize
f(π)

∑
eij∈Epp

d(π(vi), π(vj)) ∗ wij (2a)

subject to |π(i) = p| ≤ 1, i ∈ Vpp, p ∈ VT (2b)

In (3a) we modify the cost function to take into account
the number of synapses shared between the processors. The
rule in (3b) describes the single constraint of the problem: a
processor may contain only one partial population.

B. Graph Partitioning

The partition problem of GP can be solved in different ways.
In [13] it was treated as a problem of clustering. The provided
solution was divided into three step:
• Graph expansion: GP → GN
• Spectral clustering: GN → R|VN |

• Legalization and clusters fusion: R|VN | → Gpp.
The first step is to create the neuron graph GN by applying
the synaptic generation rules defined into the Population-
Projections graph GP . In the second step, a spectral clustering
procedure is applied to the neuron graph.

The Spectral Clustering involves the eigendecomposition of
a representative matrix of the graph. In the case of GN , a
directed graph, it was used a Laplacian Matrix (4) obtained
throught a transition matrix induced by a random walk [15].

L = I − (Φ
1
2PΦ−

1
2 + Φ−

1
2PTΦ

1
2 )

2
(3)

The results of the Spectral Clustering is the GN rapresen-
tation into the eigenspace of L, a space belonging to R|VN |.
The neurons can be clustered into the eigenspace using the
KMeans algorithm. After the clustering, a legalisation phase
gathers in groups all neurons belonging to the same cluster
and the same population. Finally, a second legalisation phase,
called Fusion, builds the partial populations putting together
the nearby groups of neurons until reach the maximum number
of neurons that a processor can simulate.

Other techniques of graph clustering are Multilevel Graph
Partitioning and Markov Cluster Algorithm [16], [17]. These
techniques, like the Spectral Cluster, was born for undirected
graph and their usage should be analysed using different
symmetrisation techniques if applied to a directed graph.

IV. PLACEMENT

As seen in section III our goal is placing GN into a set
of processors GT . In subsection III-A we have relaxed the
constraints of the problem separating it into two subproblems:
i) Clustering GN (or partitioning if consider GP as a starting
point) into the partial population graph. ii) Placement of
Gpp into GT . We have briefly described the clustering (or
partitioning problem) in the section III-B. In this section, we
independently explore the placement problem (3) by compa-
ring different techniques: Naı̈ve, Spectral Embedding, Scotch
and Simulated Annealing.

A. Naı̈ve Placement

The Naı̈ve approach is the standard mapping procedure
adopted in the SpiNNaker toolchain for assigning populations
of neurons to be simulated on the cores available in the
SpiNNaker Platform. It is a simple and computationally light
method to perform the graph placement without taking into
account neither source and target graph connectivity.

The processor graph was ordered following a polar coor-
dinate system (ρ, ϕ) starting from a chip of choice. The
radius ρ = max(|x|, |y|, |x − y|) has been calculated using
the hexagonal distance. The angle ϕ ∈ [0, 2π) is expressed in
radians. The procedure starts to place a partial population into
each processor and change the chip when all processors inside
a chip are used. As the ρ increases, the sub-populations will
be distributed along the chip on the circumference and will be
separated by a greater and greater distance.

B. Spectral Embedding

The Spectral Embedding placement was partially used in
a previous work described in [13]. The procedure involves
the spectral analysis of the graph and a dimension reduction
procedure to obtain a planar representation of it. By doing
so, the target graph can be directly superimposed on the
graph of the partial populations. Contrary to previous work, in
which a greedy heuristic was used, the association of partial
populations with processors was finally described through an
Integer Linear Programming (ILP) problem.

The procedure starts with the extraction of the first five
eigenvalues, and the relative eigenvectors, from the matrix L.
The eigenvectors form a matrix Λ that represents the partial
populations in a R5 space. We apply a non-linear dimension
reduction procedure using Sammon Mapping obtaining a space
in R2.

The Sammon Mapping algorithm minimise the error
function in (5) where dij is the distance in the high-
dimensional space (eigenspace) and d∗ij is the distance in the
low-dimensional space (placement space) [18].



E =
1∑

i<j dij

∑
i<j

(dij − d∗ij)2

dij
(4)

Each chip, in the chip mesh, is represented as a point (x, y)
in an axial coordinate system. We superimpose the graph GT
on Gpp projecting the chip mesh in the placement space (7).(

x∗

y∗

)
=

√
2Ah

3
√

3

√3 −
√

3

2

0
3

2

(xy
)

(5)

Where (x, y) is the chip coordinate in the hex mesh, and
(x∗, y∗) is the chip coordinate in the placement space. The
side length of the hex is used as a normalising factor and
calculated using the area Ah = A

m occupied by each chip. The
normalising factor allows scaling the chip mesh concerning the
area A occupied by the partial populations. After projecting
the points into the placement space, they are translated to
centre them on the median of the points representing the partial
populations. Now we can describe the placement problem
using the ILP formulation (8).

minimize
f(X)

f :

n∑
i=1

m∑
j=1

xi,jdi,j (6a)

subject to
n∑
i=1

xi,j ≤ k ∀j ∈ {1, . . . ,m} (6b)

m∑
j=1

xi,j = 1 ∀i ∈ {1, . . . , n} (6c)

Where the X = (xij), xij ∈ {0, 1} matrix is the placement
matrix. An entry xij = 1 means that partial population i is
mapped on the target node j. The problem constraints are two:
i) Each target node can host at most k partial populations
(8b). ii) Each partial population can be associated to only
one target node (8c). The ILP problem was modelled using
PuLP Python library and solved with COIN-OR branch and
cut (CBC) solver.

C. Scotch

The Scotch mapping procedure makes use of the programs
available in the homonym software suite (SCOTCH). The Dual
Recursive Bipartitioning (DRB) is the primary procedure used
by this tool [19]. The DRB can use a plethora of other bi-
partitioning methods according to a strategy defined by the
user or deducted by graph properties. The main available met-
hods are: Gibbs-Poole-Stockmeyer [20], Fiduccia-Mattheyses
[21], Greedy Graph Growing [16] and Diffusion [22].

The mapping workflow with SCOTCH plans to pre-partition
the target graph through the amk grf program. The amk grf
program take in input a graph in grf format and create a target
file (tgt format) which contains a decomposition-defined target
architecture of same topology as the input graph.

Once a decomposition of the target graph has been obtained,
the graph of the partial populations is placed on the target
graph using the gmap program. The program gmap take in
input the partial population graph in grf format and the target
graph in tgt format and perform the DRB procedure minimi-
sing the communication cost function1. The gmap output file

1The SCOTCH cost function is similar to our Synaptic Stretching
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Fig. 1: The graph represents the improvement of a mapping techni-
que with respect to the median of the results obtained with a random
placement, y-axis. The x-axis shows the CM scale factor.

is a mapping file (map format) that contains the association
between the Source and the Target nodes.

We had developed a Python module able to exporting a
NetworkX graph to a file according to the grf format used by
SCOTCH and capable of automating the procedures described
above.

D. Simulated Annealing

The Simulated Annealing is a well know procedure used to
find a good solution to an optimisation problem [23]. Given
the problem in (3a), it is convenient to express the overall
synaptic stretching in a matrix form and define a cost function
to minimise. Given the partial population graph Gpp we build
its Adjacency matrix A = (aij) as described in (9).

aij =

{
wij if ∃(vi, vj) ∈ Epp

0 otherwise
∀i, j ∈ {1, . . . , n} (7)

Given the processor graph GT we build its distance matrix
D = (dij) where each entry dij is the lenght of the mimimum
path between two target nodes cpui and cpuj . The distance
matrix can be build using the Floyd–Warshall algorithms or
repeating Dijkstra’s algorithms if |ET | � |VT |2.

Assuming to have as many subpopulations as processors
and a placement rule Π : {v1, . . . , vn} → {cpu1, . . . , cpun}
we construct the permutation vector π : (Π(v1), . . . ,Π(vn))
and the permutation matrix Pπ = (pij) in row form (10).

pij =

{
1 if i = πj
0 otherwise

∀i, j ∈ {1, . . . , n} (8)

The permutation matrix is applied to D to permutate its
rows and columns. We obtain the matrix Dπ = PπDPπ .
The overall synaptic stretching can be expressed in a matrix
form and used as the cost function for the simulated annealing
algorithm (11).

f : eT (A�Dπ)e =
∑
i,j

aij ∗ d(π)ij (9)

Where � is an element-wise multiplication and e is a
column vector whose all elements are equal to one.

We used the Simulated Annealing implementation provided
in the SciPy ecosystem using the temperature to decide how
many elements of the permutation vector π to swap.
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Fig. 2: The figures in the first row represent the placement of the partial population graph build from a CM20% with 1000 neurons per chip
on 19 chip (5 processors per chip). The figures in the second-row represent for each partial population the number of synapses (white line)
and the percentage of synapse stretching.

V. RESULTS

In this section, we present the exploration experiments using
the methods described in Section IV.

We use the Cortical Microcircuit (CM) as benchmark net-
work, [8]. This network represents the connectivity of neurons
inside a slice of the cerebral cortex with an area of 1mm2. The
CM has been chosen because it is a rapresentative biological
model with a relativly high global connectivity (5%) and
natural clusters defined by the four cerebral cortex layers
{L23, L4, L5, L6}. The CM is described in terms of Population
and Projection with two populations for each layer, for a total
of 8 Population and 64 Projections.

The network is composed of Integrate and Fire (LIF) and
Spike Source (SRC) neuron models. The LIF neurons are
models that mimic the biological neurons behaviour. The SRC
neurons are simple programmable applications for outputting
signals when desired. In this network, the SRC neurons are
used to simulate the background activity of cortical neurons
not presents in the model. Each SRC neuron is connected to
only one LIF neuron, so they can be excluded by the GN
provided that processors are reserved for their execution.

The CM model has 7.72e+4 LIF neurons and 2.99e+8
synapses. The network can be down-scaled to a percentage
CMp, for example:
• CM5% has 3.86e+3 neurons and 7.47e+5 synapses.
• CM10% has 7.72e+3 neurons and 2.99e+6 synapses.
• CM50% has 3.86e+4 neurons and 7.47e+7 synapses.
For each processor in charge of simulating a LIF partial po-

pulation, we must reserve two further processors. A processor
is reserved for the simulation of paired SRC neurons. A further

processor is reserved to host a special application necessary to
manage synapses with delays greater than 10 ms, as described
in [24]. Taking into account a set of 16 processors belonging
to the same chip, we can place 5 partial population per chip
for a total of a thousand neurons per chip.

For simplifying the problem we perform a sequential slicing
of each population in order to obtain partial populations with
at most 1 000 neurons. In this way, we use an entire chip (5
processors with 200 LIF neurons each) for a partial population.

The experiment environment is composed of four different
mapping procedures: Naı̈ve, Spectral, Scotch and Simulated
Annealing. We had generated 5 CM networks for 10 different
scale factors, from 5% to 50%, for a total of 50 networks. For
each network, we applied all mapping procedures 20 times.
We evaluate the performance of each mapping procedure for
each scale factor, using the fitness function (11). As a result,
we obtain a distribution of 100 different placement results
concerning overall synaptic stretching.

The performance of mapping procedures is compared to
the performance of random placement. The median value of
the results obtained with the Random procedure is used to
compute the percentage improvement of the results obtained
with other techniques.

In figure 3 is depicted a chart that summarize all the
experiments. On the x-axis, there are the network scale factors,
on the y-axis the percentage placement improvements versus
random. The data series are represented by polylines of
different colours representing the medians of the results set.
Each polyline is drawn within an area whose extremes delimit
the first and third quartile of the results set.



In figure 4 are depicted the mapping results of a CM20%

into a target graph of 19 chip using the four placement
techniques. Each hex represents a SpiNNaker chip connected
with six neighbours. The colour of the hex area points out
the belonging of the neurons, mapped on the chip, to one
of the eight populations of the CM. The number of synapses
shared between two partial populations is highlighted with
the colour intensity of the edge that connects them. The
different concentration of the connections with more synapses
can be appreciated qualitatively from the figures 4a to 4d and
quantitatively from the figures 4e to 4h.

In figure 4a can be seen how the Näive method does not
consider the connectivity but place each partial population
sequentially following the polar ordering of the chip. Indeed
there are many connections with a large number of synapses
directed towards distant chips. This not happens in figure 4d
where the Simulated Annealing can localise in a defined area
all partial population with a high number of shared synapses.
In figures 4e and 4h the same information can be appreciated
quantitatively. The chart has a bar for each partial population.
Each bar represents the overall outgoing synapses of a partial
population and shows the percentage of synapses at different
levels of elongation. The white line depicts the number of
synapses belonging to each partial population. The partial
populations are sorted in descending order according to the
total number of synapses.

We can see how better methods improve the percentage of
synapses at a distance of 1 chip (Green) and decrease the
percentage of synapses at a distance of 4 chips (Red).

VI. CONCLUSIONS

In this paper, we described a mapping problem that involves
a complex directed graph to be placed in a mesh of processors.
We have modelled the mapping problem of SNN into SpiNNa-
ker processor-mesh and split the problem into 3 phases: the
expansion, clustering, and mapping. Focusing on the mapping
phase, we have identified and test 4 methodologies to solve
the problem. The Naı̈ve method maintains the proximity of
clusters but does not take into account their connectivity. The
Spectral method uses the graph eigendecomposition to obtain
a planar representation of it and perform the node association
with the chip mesh through an ILP formulation. The Scotch
method uses the Dual Recursive Bipartitioning heuristic for
fast mapping of a source graph into a target graph. The
Simulated Annealing method uses the well-known procedure
to minimise a cost function.

We are redefining the cost function of the placement
problem bringing it into matrix form as a function of a
permutation vector. We have chosen the cortical microcircuit
at different scale factors as our benchmark network, preferring
it for its high connectivity and the presence of clusters. After
performing several tests on the chosen benchmark network, the
results highlight the superiority of the Simulated Annealing
method that works natively on direct graphs. This modelling
system for SNN placement problems can be adapted to other
architectures such as Intel Lohi and SpiNNaker 2 for investi-
gating new mapping techniques to be adopted for improving
the usability of these emerging architectures.

In the next works, we will implement these techniques
within the placement pipeline of the SpiNNaker neuromorphic
architecture, to offer an alternative to the currently imple-
mented method (Naı̈ve) and evaluating experimentally the
reduction of communications between the chips involved.
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