
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Work-in-Progress: Impact of Graph Partitioning on SNN Placement for a Multi-Core Neuromorphic Architecture / Barchi,
Francesco; Urgese, Gianvito; Macii, Enrico; Acquaviva, Andrea. - ELETTRONICO. - (2018). (Intervento presentato al
convegno International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES 2018)
tenutosi a Turin nel 30 Sept.-5 Oct. 2018) [10.1109/CASES.2018.8516831].

Original

Work-in-Progress: Impact of Graph Partitioning on SNN Placement for a Multi-Core Neuromorphic
Architecture

Publisher:

Published
DOI:10.1109/CASES.2018.8516831

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2713316 since: 2020-10-21T11:52:10Z

IEEE

Work-in-Progress: Impact of Graph Partitioning on SNN
Placement for a Multi-Core Neuromorphic Architecture

Francesco Barchi, Gianvito Urgese, Enrico Macii, Andrea Acquaviva
Politecnico di Torino

Torino, Italia
francesco.barchi@polito.it

ABSTRACT
In this paper, we evaluate a partitioning and placement technique
for mapping concurrent applications over a globally asynchronous
locally synchronous (GALS) multi-core architecture designed for
simulating a spiking neural network (SNN) in real-time. We de-
signed a task placement pipeline capable of analysing the network
of neurons and producing a placement configuration that enables
a reduction of communication between computational nodes. The
neuron-to-core mapping problem has been formalised as a two
phases problem: Partitioning and Placement. The Partitioning phase
aims at grouping together the most connected network components,
maximising the amount of self-connections within each identified
group. For this purpose we used a multilevel k-way graph par-
titioning strategy capable of generating network-partitions. The
Placement phase aims at placing groups of neurons over the chip
meshminimising the communication between computational nodes.
For implementing this step, we designed and evaluate the perfor-
mances of three placement variants. In the results, we point out the
importance of using a partitioning algorithm for the SNN graph.
We were able to achieve an increase in self-connections of 19% and
an improvement of the final overall post-placement synaptic elon-
gation of 29% using the simulated annealing placement technique,
compared to 22% obtained without partitioning.

1 INTRODUCTION
Finding the best way to map processes to physical cores (PCs) is
an important optimization problem with significant impact on ap-
plication reliability, performance and energy consumption [8]. In
this paper, we evaluate the graph partitioning impact on process
graph placement for a multi-chip many-core architecture called
SpiNNaker. The SpiNNaker Machine is a globally asynchronous
locally synchronous (GALS) architecture and was born in the neuro-
morphic field. The SpiNNaker Compute node is the SpiNNaker chip,
a multi-core SoC with 18 ARM Processors, 128MB of shared RAM
and a custom router [2]. The router is the main component of the
system, it allows each chip to be connected with six other chips. In
this way, it is possible to build a modular system of interconnected
compute nodes. The building block of the SpiNNaker architecture
is the Spin5 Board, a PCB that contains 48 SpiNNaker chips [3].

Spiking Neural Network (SNN) is a neural model used by neuro-
scientists for simulating biologically plausible brain activity. The
neurons and their synapses are modelled as differential equations
capable to emulate the behaviours observed in biological networks
[6]. An SNN can be described as a graph where each vertex, named

xxx, xxx, xxx
xxx. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Population, contains a group of neurons sharing the same model
and parameters. Each edge (Projection) represents the rule used to
generate synaptic connections between the neurons of two Popu-
lations. Using this SNN description system, Van Albada et al. [9]
implemented the cell-type specific Cortical Microcircuit (CM) model.
In our work, we use the Cortical Microcircuit scaled to 5% (3 854
neurons and 716 567 synapses) for evaluating the partitioning self-
connectivity and the placement synaptic elongation.

2 METHOD
Using PyNN [1], an SNN can be represented as a graph of Popu-
lations and Projections GP . In the same manner, the neuromor-
phic architecture can be represented using an undirected-weighted
graph, GT . We can define the placement problem Π : GP → GT as
a minimisation problem under the following constraints: i) A pro-
cessor can simulate only neurons belonging to the same population.
ii) Each processor can simulate a maximum number of neurons,
depending on the complexity of the model.

The metric to be minimised is called overall synaptic stretching, it
describes the deterioration of communications due to the distance
between two communicating entities after being placed.

We can redefine the problem in order to fulfil the two constraints.
The first step is splitting each population P(i) into a set of partial
populations (part-population)

{
P
(i)
1 ,P

(i)
2 , . . . ,P

(i)
z

}
. In this way

we obtain the part-population graph Gpp. The second step is the
placement itself, assigning each part-population to a target node.
We develop three strategies for placing Gpp: i) Spectral Embedding:
The procedure performs a spectral analysis of the graph and ap-
plies a dimension reduction obtaining a planar representation of
it. ii) SCOTCH: The procedure uses the programs available in the
homonym software suite for generating the placement through a
Dual Recursive Bi-partitioning [7]. iii) Simulated Annealing: A well
know method, used for finding a good solution of an optimisation
problem [5]. From these three procedures we obtain a placement
rule Π by which we can construct a permutation vector π and a per-
mutation matrix Pπ = (pi j) in row form. Using the Gpp adjacency
matrix A and the GT distance matrix D we obtain the reordered
target distance matrix Dπ = PπDPπ and we can use it to calculate
the overall synaptic stretching (1).

f : eT (A ⊙ Dπ)e =
∑
i, j

ai j ∗ d
(π)

i j (1)

Going back to the first phase, we removed the two constraints of
the original placement problem transforming them into a partition-
ing problem. All part-populations must contain at most a number
of neurons equal to the maximum number of neurons allowed to
be simulated in a processor. For solving this partitioning problem
GP → Gpp, we exploded the Population-Projection graph into the

https://doi.org/10.1145/nnnnnnn.nnnnnnn

0 10 20 30 40 50 60 70 80 90 100
METIS "nparts" parameter

52000

54000

56000

58000

60000

62000

64000

Cl
us

te
rs

 S
el

f-C
on

ne
ct

io
ns

naive
metis-reorder
metis-fusion

Figure 1: Exploration of the METIS parameter nparts. The bench-
mark is a CM5% with a constraint of 200 neurons per part-population.

neuron graph GN and performed a multilevel k-way graph parti-
tioning using METIS [4]. The partitioning phase therefore takes
place on the graph of the neurons in which each node is labelled
according to the afferent population.

To obtain the Gpp from the clustering results of METIS we define
two procedures: METIS reordering and METIS fusion. Both proce-
dures start from the graph clustered using the METIS tools and a set
of hyper-parameters. In the current state of the work, we explored
the nparts parameter and indirectly the size of clusters identified by
the tool. After the METIS clustering, each neuron is labelled with a
(population, cluster) pair. Within each population the size of each
cluster (intra-population cluster) is used to reorder the adjacency
matrix AN of the neuron graph GN . Neurons belonging to small
clusters will be moved before neurons of larger clusters without
mixing neurons belonging to different populations.

Starting from the reordered adjacency matrix of the neuron
graph, the METIS Reordering procedure splits each population
maintaining a balanced amount of neurons and the intra-population
cluster-size order. In this way, the boundaries of the clusters identi-
fied by METIS are partially lost but the Gpp nodes contain the most
coupled neurons. The METIS Fusion attempts to remedy the loss of
boundaries of the clusters. This heuristic, at each step, identifies two
intra-population clusters (belonging to the same population) whose
the fusion contains a feasible number of neurons to be simulated
in a processor. The selected pairs are fused together into a new
intra-population cluster, this procedure continues until no more
valid candidates are available. In this way, we preserve the graph
cuts identified by the METIS procedure and reduce the number of
part-populations.

3 RESULTS
We designed an experiment for checking the performances of three
partitioning techniques: METIS reordering, METIS fusion, and
a Naïve procedure that divides a population into balanced part-
populations not considering network connectivity information. We
used the Cortical Microcircuit model as benchmark network.

The gpmetis program is configured to maintain an imbalance
ratio of 1.03 and a number of clusters ranging from 5 to 100. In
Fig. 1 a chart depict the partitioning performance in terms of self-
connections of part-populations and number of clusters. In general,
the METIS related techniques leads to a good improvement over

Table 1: Impact of partitioning on four placement techniques.

Partitioning ImpactPlacement Naive Fusion
Naive +8% +12% +3.23%
Spectral Embedding +14% +21% +8.62%
SCOTCH +17% +22% +5.83%
Simulated Annealing +23% +29% +7.37%

Naïve partitioning. In particular, the METIS fusion outperforms
the METIS reorder technique when clusters are small enough to be
fine-grained fused into part-populations. The METIS fusion reach
a self-connectivity value of 64 k compared to Naïve, which stops at
54 k, this results in an improvement of 18.5%.

In Tab. 1 we present the impact of the partitioning step on the
placement performances. After partitioning, we obtained an im-
provement in synaptic elongation on all the considered placement
techniques. Looking this data we think that the best placement
performances can be obtained using the METIS Fusion Partitioning
combined with the Simulated Annealing Placement. Indeed, this
combination achieves a synaptic elongation improvement of about
30% compared to a random placement (median of 100 attempts).

4 CONCLUSIONS
In this paper, we evaluated the potential impact of the partitioning
phase applied to the problem of SNN placement within a neuromor-
phic architecture. We designed a placement technique called Fusion
capable of exploiting the clustering of neurons of an SNN obtained
with METIS. The Fusion Partitioning creates a graph that satisfies
the constraints of the architecture obtaining an improving by about
18.5% of intra-population connectivity. Finally, we evaluated the
partitioning impact on the placement metric by achieving a 7.37%
improvement using Simulated Annealing and 8.62% using Spectral
Embedding.

ACKNOWLEDGMENT
The research leading to these results has received funding from
European Union Horizon 2020 Programme [H2020/2014-20] under
grant agreements no.720270 and no.785907 [HBP].

REFERENCES
[1] A.P. Davison et al. 2008. PyNN: a common interface for neuronal network simula-

tors. Frontiers in neuroinformatics 2 (2008).
[2] S. Furber et al. 2006. On-chip and inter-chip networks for modeling large-scale

neural systems. In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on. IEEE, 4–pp.

[3] S. Furber et al. 2014. The spinnaker project. Proc. IEEE 102, 5 (2014), 652–665.
[4] G. Karypis and V. Kumar. 1998. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on scientific Computing 20, 1 (1998),
359–392.

[5] S. Kirkpatrick et al. 1983. Optimization by simulated annealing. science 220, 4598
(1983), 671–680.

[6] W. Maass. 1997. Networks of spiking neurons: the third generation of neural
network models. Neural networks 10, 9 (1997), 1659–1671.

[7] F. Pellegrini and J. Roman. 1996. Scotch: A software package for static mapping by
dual recursive bipartitioning of process and architecture graphs. In International
Conference on High-Performance Computing and Networking. Springer, 493–498.

[8] G. Urgese et al. 2016. Optimizing network traffic for spiking neural network
simulations on densely interconnected many-core neuromorphic platforms. IEEE
Transactions on Emerging Topics in Computing (2016).

[9] S.J. Van Albada et al. 2016. Full-scale simulation of a cortical microcircuit on
SpiNNaker. In Front. Neuroinform. Conference Abstract: Neuroinformatics, Vol. 10.

2

	Abstract
	1 Introduction
	2 Method
	3 Results
	4 Conclusions
	References

