
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Work-in-Progress: Multiple Alignment of Packet Sequences for Efficient Communication in a Many-Core Neuromorphic
System / Urgese, Gianvito; Peres, Luca; Barchi, Francesco; Macii, Enrico; Acquaviva, Andrea. - ELETTRONICO. -
(2018). (Intervento presentato al convegno 2018 International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES) nel 2018) [10.1109/CASES.2018.8516870].

Original

Work-in-Progress: Multiple Alignment of Packet Sequences for Efficient Communication in a Many-Core
Neuromorphic System

Publisher:

Published
DOI:10.1109/CASES.2018.8516870

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2713315 since: 2020-10-21T10:39:32Z

IEEE

Work-in-Progress: Multiple Alignment of Packet Sequences
for Efficient Communication in a Many-Core Neuromorphic

System
Gianvito Urgese, Luca Peres, Francesco Barchi, Enrico Macii and Andrea Acquaviva

Department of Control and Computer Engineering
Politecnico di Torino, Italy 10129

Abstract—In this era, the requirement of high-performance computing
at low power cost can be met by the parallel execution of an application
on a large number of programmable cores. Emerging many-core architec-
tures provide dense interconnection fabrics leading to new communication
requirements. In particular, the effective exploitation of synchronous and
asynchronous channels for fast communication from/to internal cores
and external devices is a key issue for these architectures. In this paper,
we propose a methodology for clustering sequential commands used for
configuring the parallel execution of tasks on a globally asynchronous
locally synchronous multi-chip many-core neuromorphic platform. With
the purpose of reducing communication costs and maximise the exploita-
tion of the available communication bandwidth, we adapted the Multiple
Sequence Alignment (MSA) algorithm for clustering the unicast streams
of packets used for the configuration of each core so as to generate a
coherent multicast stream that configures all cores at once. In preliminary
experiments, we demonstrate how the proposed method can lead up to a
97% reduction in packet transmission thus positively affecting the overall
communication cost.

I. INTRODUCTION

Emerging many-core architectures provide synchronous and asyn-
chronous communication layers for interconnecting the many avail-
able cores and devices. Kalray Multi-Purpose Processing Array
(MPPA), Intel Lohi and SpiNNaker are three of the promising
architectures described in the literature [1].

The direction taken from hardware designers is to integrate
many processing elements (PE) cores and several layers of memory
on each chip with custom communication infrastructures. These
cores are distributed in compute clusters across the architecture,
each with locally shared memory. Kalray MPPA and Intel Lohi
are single-chip systems with clusters of PEs communicating using
a synchronous/asynchronous infrastructure supported by a custom
network-on-chip (NoC). The SpiNNaker system is a multi-chip many-
core globally asynchronous locally synchronous (GALS) architecture
where each computing node is a many-core SoC with 18 ARM
Processors, 128 MB of shared RAM and a custom router used for
addressing the asynchronous communication [2].

The router of the SpiNNaker chip is the main component of the
system allowing the chip to be connected with six neighbours chips
for building a modular toroidal-shaped triangular mesh of compute
nodes. This router can be configured for routing both multicast
and unicast packet types. The building block of the SpiNNaker
architecture is a PCB that contains 48 SpiNNaker chip that is effective
when used for executing problems modelled as a directed graph
with a critical communication component. The board requires two
preliminary phases for setting-up the applications: the task-graph
placement [3] where the application is partitioned and placed on the
many cores, and the configuration of cores with application-specific
data-structures [4].

This last phase requires to send a list of op-codes generated in
the host machine to a configurator application (pre-loaded on each

core) capable to interpret these codes and create the data structures
required by the final applications. Currently, the host transmits these
lists of op-codes to the SpiNNaker cores by instantiating many
unicast transmissions (one for each core involved in the application)
even if many of the transmitted packets have the same code and
could be potentially clustered in a more efficient stream. Due to
physical constraints, in the communication network is vital to exploit
the multicast capabilities offered by the architectures reducing the
transmission of unicast packets.

In this paper, we describe a methodology that uses a multiple
sequence alignment algorithm for transforming the many unicast
streams, needed for configuring the system, in a consistent multi-
cast/broadcast stream that fully exploits the features offered by the
custom communication infrastructure.

II. METHOD

For this purpose, we clustered the op-code lists in a single sequence
of packets that can be transmitted on the SpiNNaker board in a
multicast style.

In the following we will show, with a simple example, how
we adapted the Multiple Sequence Alignment (MSA) algorithm, a
technique commonly used in bioinformatics, for aggregating all the
sequences of op-codes in a single consensus sequence that can be
transmitted with a multicast stream.

The Multiple Sequence Alignment algorithm (Fig. 1) is commonly
used for aligning biological sequences such as DNA, RNA, and
proteins [5] since it is capable of generating consensus alignments
that preserve the original arrangement of the input sequences. These
algorithms consider the four biological events (conservation, substi-
tution, insertion and deletion) by using a scoring scheme that assigns
a positive score to the match, and a negative score to mismatches
and gaps found during the alignment.

In the current implementation (step A followed by step B in Fig.
2), each stream of op-codes generated from the host are transmitted
to the dedicated core on the SpiNNaker board in turn with a unicast
transmission. When a core is filled, the host starts filling another one.
However, looking into the lists of generated streams, we recognised

Fig. 1: Multiple alignment of three sequences of chars

1 2 3 4 5

1 8 6 7 5

1 6 7 4 5

C1

C2

C3

1 2 3 6 8 4 7 5

C3

SpiNNaker System Host System Host System SpiNNaker System

Unicast 1

Unicast 2

Unicast 3

Multicast

B U U M U M M B
1 1 2 3 1 2

3 2 3

C1

C2

Step AStep B Step C Step D

MSA

Fig. 2: Dataflow for current and MSA implementations

a high level of recursive sub-sequences of op-codes that are common
for many cores. Thus, we decided to implement a pre-processing step
(orange arrow labelled with MSA in Fig. 2)capable of clustering the
recurrent pieces into a single stream that can be transmitted by means
of a multicast transmission. Now packets are labelled as Multicast
(M), Broadcast (B) or Unicast (U) and sent to the target group of
cores depending on the label.

The Clustering step is divided into four phases: i) Encoding, where
we scan all the streams looking for recurrent op-codes appearing
on multiple streams. These frequent op-codes are encoded with an
integer that is then used in the MSA step, while op-codes appearing
only once are encoded with the 0 value since not informative for the
MSA algorithm. This last procedure reduces the effort required to
the MSA that otherwise should try to align unique op-codes that will
anyway be transmitted as unicast packets (Fig. 2, Step A).

ii) Alignment, where encoded op-codes are treated as input
sequences for the MSA algorithm that began the computation of
all the pairwise alignments, where all the sequences are aligned in
pairs. Then, the score of pairwise alignments are sorted, and the best
pairwise alignment is selected as a seed for the generation of the
multiple alignment. The MSA algorithm, at this point, aggregates
in turn the other sequences by including matches for the pieces of
sequences that share the same op-codes and gaps when the sequences
do not share sub-sequences. At last, MSA produces the consensus
alignment that preserves the sequential flow of all the input list
of packets. We configured the MSA parameters for avoiding the
mismatch detection allowed by the original algorithm. The MSA
algorithm can be configured with four main parameters: the Match
value that we set to +5, a Mismatch score equal to -10, and two Gap
values for considering the gap event and the elongation that we set
both to 0 since we prefer to have a gap instead of a mismatch. We
used an MSA function implemented in the SeqAn C++ bioinformatics
library [6].

iii) Group definition, where we analyse the consensus alignment
for defining the groups of cores that will be targeted for each op-
code during the multicast transmission. In this step, we generate the
multicast groups that are encoded in the routing keys.

iv) Alignment Collapsing, where the many alignment sequences
are collapsed into a single consensus sequence of op-codes. The op-
codes filtered from the original sequences, because the ones appearing
only once, are included in the positions coherently with the sequential
arrangement, and labelled as unicast for a specific core. A label with
the correspondent multicast group is assigned to all the other packets
(red numbers in Fig. 2, Step C).

III. RESULTS

The figure 3 presents the number of packets generated for four
versions of the Thalamo-Cortical Microcircuit (TCM). Blue bars
represent the number of packets sent using unicast streams, without
op-codes alignment, in which data is transmitted as it is (steps A and

Fig. 3: Packets comparison

TCM Chip Core Saved
100% 157 390 97.1%
70% 70 274 97.5%
50% 40 196 97.3%
20% 17 80 94.3%

TABLE I: Execution stats

B in figure 2 show the flow). Green/red/yellow stacked bars show the
number of packets sent using a multicast stream generated with the
MSA procedure designed for clustering recurrent packets (steps A,
C and D in figure 2).

It can be noticed that, as reported in table I, the number of saved
packets is above the 94%. The table also presents the number of cores
and chips on the SpiNNaker board allocated for executing the four
scaled versions of the cortical microcircuit application.

IV. CONCLUSIONS

In conclusion, we developed a system able to cluster the informa-
tion in order to exploit the multicast network, reducing the number
of packets generated of a quantity up to the 97% and improving
the host-board communication phase. The described procedure, in
principle, can be applied to all type of packet transmissions towards
the communication mesh for reducing the bottleneck given by the
data transmission phase.

ACKNOWLEDGMENT

The research leading to these results has received funding from
European Union Horizon 2020 Programme [H2020/2014-20] under
grant agreements no. 720270 and no. 785907 [HBP].

REFERENCES

[1] Wikipedia. (2018) Ai accelerator. [Online]. Available: https://en.
wikipedia.org/wiki/AI accelerator

[2] S. B. Furber et al., “Overview of the spinnaker system architecture,” IEEE
Transactions on Computers, vol. 62, no. 12, pp. 2454–2467, 2013.

[3] G. Urgese et al., “Optimizing network traffic for spiking neural net-
work simulations on densely interconnected many-core neuromorphic
platforms,” IEEE Transactions on Emerging Topics in Computing, 2016.

[4] A. Siino et al., “Data and commands communication protocol for neu-
romorphic platform configuration,” in Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), 2016 IEEE 10th International Symposium on.
IEEE, 2016, pp. 23–30.

[5] C. Notredame et al., “T-coffee: a novel method for fast and accurate
multiple sequence alignment1,” Journal of molecular biology, vol. 302,
no. 1, pp. 205–217, 2000.

[6] K. Reinert et al., “The seqan c++ template library for efficient sequence
analysis: a resource for programmers,” Journal of biotechnology, vol. 261,
pp. 157–168, 2017.

