POLITECNICO DI TORINO
Repository ISTITUZIONALE

Trading-off reliability and performance in FPGA-based reconfigurable heterogeneous systems

Original

Trading-off reliability and performance in FPGA-based reconfigurable heterogeneous systems / Vallero, Alessandro;
Carelli, Alberto; Di Carlo, Stefano. - ELETTRONICO. - (2018), pp. 1-6. (Intervento presentato al convegno 13th IEEE
International Conference on Design and Technology of Integrated Systems In Nanoscale Era, DTIS 2018 tenutosi a
Taormina, Italy nel 9-12 April 2018) [10.1109/DTI1S.2018.8368557].

Availability:
This version is available at: 11583/2713152 since: 2019-05-07T16:45:03Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/DTI1S.2018.8368557

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

20 May 2024

Trading-off reliability and performance in
FPGA-based reconfigurable heterogeneous systems

Alessandro Vallero, Alberto Carelli and Stefano Di Carlo
Politecnico di Torino, Control and Computing Departments,
{alessandro.vallero | alberto.carelli | stefano.dicarlo}@polito.it

Abstract—Recent years have witnessed the rapid growth of
heterogeneous systems, composed of CPUs and hardware accel-
erators, to face up the constant increase of computational perfor-
mance demand of digital systems. In this scenario, FPGAs offer
the possibility to implement high performance reconfigurable
accelerators, able to speed up the intrinsically parallel portions of
applications. The study of reconfigurable heterogeneous systems
is still maturing and, while some contributions about performance
and power consumption are available, in literature there are few
works addressing reliability. This paper analyzes reconfigurable
heterogeneous systems in presence of permanent faults occurring
in the FPGA. In this context, a reconfigurable heterogeneous
architecture, including a Run Time Manager responsible for the
communication of software tasks and the FPGA, the scheduling
and the placement of hardware tasks, is presented. In addition,
the paper introduces a reconfigurable heterogeneous system
simulator for the proposed architecture. This simulator is able to
evaluate during the design phase the degradation of the system
performance due to permanent faults and allows to explore the
design space dimensions efficiently.

I. INTRODUCTION

In recent years, the performance demand and complexity of
applications have constantly increased alongside with the de-
velopment of new technologies. As a result, the computational
paradigm is moving from CPU based computing platforms to
heterogeneous systems composed of CPUs and several classes
of dedicated hardware accelerators. In this context, this paper
addresses heterogeneous systems composed of a CPU and a
Field Programmable Gate Array (FPGA). FPGAs are among
the most promising hardware accelerators [1], [2]. This trend
is confirmed by the recent launch of the Intel® Programmable
Acceleration Cards enabling to build FPGA heterogeneous
systems based on the the Intel Xeon CPU and the Intel Arria®
10 GX FPGA [3]. FPGAs enable to dynamically reconfigure
the same hardware to perform different tasks. The introduction
of Dynamic Partial Reconfiguration (DPR) capabilities has
further increased this trend. DPR allows for the configuration
of a portion of the FPGA at run-time to implement a given
functionality. This happens without interrupting the tasks run-
ning on the remaining parts of the accelerator, thus achieving
high flexibility and responsiveness.

As in all deep sub-micron technologies, permanent faults
due to fabrication defects and/or aging of the device are a sig-
nificant concern in FPGA-based heterogeneous systems. They
may significantly impact the reliability and performance of the
final application. In literature, the effect of permanent faults in
standalone FPGA systems for mission critical applications has
been previously analyzed. This includes techniques to detect
permanent faults [4], [S] and techniques to tolerate or recover
from the effect of these faults [6], [7], [8], [9], [10]. In [6], [7],
the authors present a detection and recovery methodology for

permanent faults in FPGA systems. Whenever a permanent
fault is detected, the fault is recovered by reconfiguring the
whole FPGA with a precomputed configuration, thus excluding
the faulty area. This approach is however not feasible in case
of a large number of hardware tasks, since the number of
possible precomputed configurations grows exponentially. A
good strategy consists of dividing the reconfigurable area into
tiles as proposed in [8]. Recovery from a permanent fault is
achieved by moving the configuration of a faulty tile into a
spare one. In this way, the number of configurations becomes
proportional to the number of hardware tasks at the cost of a
more complex reconfiguration hardware architecture.

Reconfigurable architectures and reconfiguration strategies
have already been addressed in literature [11]. The most
important limitation of these reconfigurable architectures is
that they are designed for standalone FPGA systems. In these
systems, the hardware functionality configured in the FPGA is
constant and does not change according to the run-time needs
of the application. General purpose reconfigurable heteroge-
neous systems including both FPGAs and CPUs introduce a
higher level of complexity. The execution of the tasks must
be properly orchestrated between the CPUs and the hardware
accelerators implemented in the FPGAs. This is required to ex-
ploit all the computational resources efficiently, thus reaching
the best possible performance. To achieve this goal, Burns et
al. [12] introduced the concept of Run-Time Manager (RTM),
a component able to coordinate and manage a reconfigurable
hardware architecture, thus enabling self-awareness and self-
adaptivity. The RTM is usually part of an Operating System
(OS). It is responsible for the scheduling and the placement
of hardware tasks in the underlying reconfigurable hardware
architecture. The RTM monitors the load of the FPGA and
keeps track of the parts of the FPGA that are involved
in the computation at a given time. On the basis of these
parameters, it decides the execution order of the hardware tasks
and the portion of reconfigurable area where they must be
accommodated. An RTM able to schedule hardware tasks for
2D reconfigurable areas, taking into account a reuse approach,
was proposed in [13]. However, the impact of the occurrence
of permanent faults is not considered. An optimized RTM for
heterogeneous systems was presented in [14], [15]. However,
these works assume that the execution order of the hardware
tasks is known in advance, thus limiting the application of this
methodology in case of general purpose applications.

This paper analyzes FPGA based reconfigurable hetero-
geneous systems in presence of permanent faults occurring
in the FPGA. For this purpose we introduce a reconfigurable
heterogeneous architecture able to tolerate permanent faults, in
which software applications can issue requests for acceleration
via reconfigurable hardware to an RTM. In addition, the paper
introduces a reconfigurable heterogeneous system simulator for

the proposed architecture. This simulator is able to evaluate
during the design phase the degradation of the system per-
formance due to permanent faults. It therefore allows us to
explore the design space dimensions efficiently.

The reminder of the paper is organized as follows: Section
I describes the proposed reconfigurable heterogeneous system
framework while Section III shows the experimental results
analyzing the performance degradation due to permanent faults
for different configurations of the proposed system architec-
ture. Finally Section IV concludes the paper.

II. THE RECONFIGURABLE HETEROGENEOUS SYSTEM
FRAMEWORK

The proposed FPGA-based reconfigurable heterogeneous
system framework is designed to allow hardware acceleration,
while taking into account the occurrence of permanent faults
occurring in the reconfigurable hardware. The framework is
designed to operate in a context in which the order and the
starting time of applications is not predictable. It allows to
accelerate application tasks by executing them on the recon-
figurable hardware. In details, every time a task is mapped to
the reconfigurable hardware a new configuration of a portion
of the FPGA is issued. Multiple tasks can be accommodated
concurrently into the FPGA, depending on the area they
require. By exploiting DPR, it is possible to configure the
FPGA without stopping the execution of the tasks not involved
in the configuration process. Whenever hardware faults are
detected, the hardware is reconfigured in order to avoid the
use of the faulty portion of the FPGA.

A. System architecture

At the software layer, two main actors play a role into
the proposed system architecture: (i) the software applica-
tions that require hardware resources to be executed, and
(i1) the RTM that is in charge of orchestrating the execution
of the applications. These two players are organized into a
client/server architecture as depicted in Figure 1. The RTM acts
as a server able to receive requests for computing resources
from the applications. Every time a software task requires
to be accelerated by reconfigurable hardware, the application
sends a request to the RTM. When the task is completed, the
server informs the application that the output of the accelerated
computation is available.

To support the high-level architecture presented in Figure
1, the reconfigurable hardware available in the heterogeneous
systems must be properly integrated with the CPU executing
the software applications. Figure 2 illustrates the proposed
architecture that partitions the FPGA in two parts: the static
area depicted in green, which is never modified, and the
reconfigurable area depicted in orange. The reconfigurable
area is partitioned into several reconfigurable tiles, named
reconfigurable slots. The reconfigurable slots can be config-
ured to accomodate the soft-cores required to accelerate the
computation. A single soft-core can occupy more than one
reconfigurable slot, depending on its size. The static area hosts
instead three main blocks. The communication manager is
responsible for moving data among reconfigurable slots and to
the external world (main memory). The configuration manager
is in charge of configuring the FPGA, based on the commands

SW
Apps
(Client)

0S
. RTM
7l (Server)

RECONFIGURABLE
HETEROGENEQOUS SYSTEM

Fig. 1. Software-layer view of the proposed heterogeneous architecture.

issued by the RTM. When requested, it moves the proper
configuration files (bitstreams), from a dedicated configuration
memory into the internal configuration port of the FPGA. A
dedicated configuration memory is adopted to achieve better
performance and to avoid congestion of interconnections. Fi-
nally, the fault manager monitors permanent faults occurring in
the reconfigurable area of the FPGA, transmitting information
about faulty slots to the RTM that can take proper actions
to reconfigure the FPGA. This task can be accomplished
by running periodic tests on the FPGA [4], [5], or simply
collecting error signals generated by fault detection hardware
embedded in the soft-cores mapped in the FPGA [10].

FPGA
Reconfigurable slots

oEaeE as
dagE ==

Fault Configuration Communication
manager manager manager
| |
$ $
Configuration Main
memory memory
””””””””””””” cu

Fig. 2. The target FPGA architecture

Based on this hardware architecture, the main modules
composing the RTM can be summarized as follows:

® Requests manager: it accepts and decodes requests
for hardware computing resources. Once the requests
are accepted, they are communicated to the scheduler.
Finally, when a request is served, it notifies the re-
questing software applications that the associated task
is completed.

e Scheduler: it manages the assignment of the FPGA
reconfigurable slots to the requests issued by the

software applications. This operation is performed
according to a particular scheduling policy.

e Hardware configuration dispatcher: it provides to the
FPGA configuration manager the information required
to configure and execute hardware tasks. This in-
cludes: information about the involved reconfigurable
slots, the bitstreams to be configured and the address
space in main memory associated with the software
application are communicated.

e Committer: it receives notifications from the FPGA
configuration manager about hardware tasks comple-
tion and results.

e Fault manager: it tracks the list of faulty slots mapping
computations to fault-free slots.

The scheduler decides where and when a hardware task
is executed. Each hardware task requires to configure and
use a specific set of soft-cores. In the proposed architecture,
several implementations of the same soft-core are considered.
In particular, each implementation is characterized according
to the configurable slots that are involved and must be stored
in the configuration memory. When a task is scheduled, one
of the available implementations is chosen and its associated
bitstreams are configured. The RTM has a database of all
bitstreams available for each soft-core. This feature allows the
RTM to access directly to the information of soft-cores as
soon as a new request arrives from a software applications. For
each bitstream, several properties are available including: the
configuration memory address of the bitstream, the involved
FPGA reconfigurable slots, an estimate of the configuration
time and of the execution time. The scheduler selects one of
the available configurations for each soft-core on the basis of
these parameters.

To achieve high performance, the scheduler keeps track
of the current status of the system. In particular, each recon-
figurable slot is monitored in order to know which soft-core
and its associated implementation are currently configured.
The status of the execution of each reconfigurable slot is
taken into account as well. The status can be executing, when
computation is running, cached, when the task is finished and
the soft-core is ready to begin a new task, or faulty, when
a permanent fault has occurred in the reconfigurable slot.
This information is particularly important since when a slot
is cached, it can be employed again without the need of the
configuration process. This saves time during the configuration
process.

The life-cycle of a software request consists of several
steps. During the steps, the request is moved into different
lists depending on its status. When the request is received
by the RTM, it checks if the associated hardware task can
be executed on the reconfigurable hardware. In case there
is no bitstream available for the required soft-core, or all
the bitstreams associated with the requested soft-core involve
faulty reconfigurable slots, the software request is refused.
Otherwise, it is pushed into a waiting list. The waiting list
is a list ordered according to the arrival time of the requests.
It contains all the requests that have already been accepted but
that have not been sent by the dispatcher yet. Every time a new
request arrives or a request completes, the scheduler checks if a

new request can be dispatched. When a request is processed by
the dispatcher, it is then moved to the executing list. When the
committer is notified that the computation related to a request
finishes, the request is moved to the done list. Eventually, the
RTM sends a message to the application to notify that the
hardware task execution is complete.

From the reliability standpoint, the static area represents
a critical element of the proposed architecture. Fault tolerant
techniques such as Triple Modular Redundancy (TMR) must
be implemented to protect this area.

B. System simulator

To analyze the performance of the proposed reconfig-
urable heterogeneous system architecture for a given set of
applications, a system simulator has been developed. Using
the simulator, the system can be stressed by profiled and
synthetic software requests. For synthetic software requests
several parameters can be chosen: the number of requests
sent to the RTM; the time period between two requests; the
number of implemented soft-cores; the number of possible
configurations per soft-core; the number of reconfigurable slots
per each configuration of every soft-core; the execution time
per each configuration of every soft-core; and the number of
faulty slots.

All parameters can be fixed or distributed according to a
uniform or a Gaussian probability density function. For the
reconfigurable architecture, the number of reconfigurable slots
and the reconfiguration time of each slot can be configured.

e o\
CPU
N
Scheduler
RTM
HW Dispatcher
(thread)
/
N /

Fig. 3. The proposed system simulator

The simulator runs on the CPU only (Figure 3). Operations
on the FPGA are emulated via software. More specifically,
the reconfiguration process managed by the dispatcher consists
of making the dispatcher sleep for a time equal to the one
required by the configuration manager of the FPGA to load
the proper bitstream. Instead, the execution of the hardware
tasks is implemented by the creation of a new software thread
executing a sleep for an amount of time equal to its execution
time. As soon as an emulated hardware task is over, it notifies
its end to the committer.

To evaluate the performance of the system, the simula-
tor is able to provide information about the percentage of
refused/accepted client requests, the load of the FPGA, that is
the average ratio between the number of reconfigurable slots
involved in the requested computation and the total number of

reconfigurable slots in a unit of time, the furnaround time, that
is the global time to complete a client request, the waiting time,
that is the time a client request spends waiting before being
executed, including the time needed for its configuration, and
the scheduling time, that is the time employed by the scheduler.
Time measurement have an uncertainty of 1 micro second.

III. EXPERIMENTAL RESULTS

The proposed Run-Time Manager is implemented as a
multi-threaded user application in a Linux environment. We
tested the performance of the proposed reconfigurable hetero-
geneous system framework by means of the simulator pre-
sented in section II under different scenarios. The performed
analysis focuses on the impact of the effect of permanent faults
on the performance of the system. In order to reproduce a real-
world scenario, we run the simulation on top of the Xilinx
ZYNQ™-7020 SoC. This SoC is composed of a dual-core
ARM Cortex-A9 MPCore microprocessor whose maximum
clock frequency is 667 MHz. The simulator was configured
reflecting the parameters of the FPGA of this SoC.

For each experiment, we generated 100 synthetic client
requests separated by a time interval of 1 ms. We considered
a target FPGA composed of 100 reconfigurable slots. The
reconfiguration time required by a single slot was set equal
to 3ms. We hypothesized 100 different soft-cores available
to satisfy client requests. Each soft-core implementation was
characterized by a number of reconfigurable slots according
to a Gaussian distribution with mean and standard deviation
respectively equal to 8 and 2. In this way we are able to model
the area required by every soft-core. The execution time of
each soft-core was assumed as uniformly distributed between
3 and 40 ms.

To evaluate the trade-off between reliability and perfor-
mance, we run several simulations changing the number of
faulty slots (i.e., slots affected by at least a permanent fault)
from O to 50 and the number of available configurations per
soft-core from 1 to 100. For each combination of number
of faulty slots and number of available configurations per
soft-core, we repeated the simulation 10 times for statistical
significance. We evaluated the average value of: the load of
the FPGA, the turnaround time, the waiting time and the
number of accepted client requests. Statistics about rejected
client requests are omitted from these measurement. Results
are shown in the form of heatmaps, where the x axis is the
number of available configurations per soft-core and the y axis
is the number of faulty tiles. In the reminder of this section, the
points of each heatmap are referred through their coordinates

(x,y)-

A. The load

Results reporting the load of the reconfigurable slots are
presented in Figure 4. The first thing that can be noticed is
that there is not a linear relation among the load, the number
of faulty slots and the number of available configurations. In
fact, there is a yellow line, indicating high loads, ranging from
(20,0) to (81,13).

To better understand the impact of the number of faulty
slots and the number of available configurations per soft-core
we can analyze them independently. Figure 5 reports the load

Number of faulty reconfigurable slots

1
20 40 60 a0 100

Number of configuration per soft-core

Fig. 4. The load of the reconfigurable slots.

of each row normalized with respect to the case in which
there is only one configuration available per soft-core (first
column). This plot highlights how the load of the FPGA
improves increasing the number of available configurations
(moving horizontally from left to right). However, this is not
always true. Below 15 faulty slots, the highest load (for a
fixed number of faulty slots) is in between 20 and 80 number
of configurations. Moreover, in this particular region, the load
increases with the number of faulty slots (moving vertically).
This behavior is the result of the used scheduling policy, which
is not able to fully load the FPGA even if there is a large
number of configurations available. Further explanations about
this hypothesis are provided in the following subsection.

Figure 5 also reveals a dramatic break down close to 26
faulty slots. This means that the improvements due to higher
number of configurations in terms of load are not relevant
above this threshold since the load is kept very low (Figure
4). This break down is also evident in Figure 6, where the load
of each column is normalized with respect to the load of the
case in which there are no faults (first row).

g g g 0 0
20 40 60 a0 100

Number of faulty reconfigurable slots

Number of configuration per soft-core

Fig. 5. The load of the reconfigurable slots with results normalized with
respect to the case there is only one configuration available per soft-core.

Number of faulty reconfigurable slots

Number of configuration per soft-core

Fig. 6. The load of the reconfigurable slots with results normalized with
respect to the case there are not any faulty reconfigurable slots.

Figure 6 reveals that, in most of the cases, the load
decreases as the number of faulty slots increases (moving
vertically), apart from the rectangular region described by the
two points with coordinates (26,1) and (82,13). This anomaly
is caused by the adopted scheduling policy as well. Finally,
looking at the heatmap horizontally, from left to right, it can be
noticed that the degradation due to the increase of the number
of faulty slots in terms of load is similar regardless the number
of configurations available per soft-core, with the exception of
the case in which only a configuration is available.

B. Timing performance

When evaluating the timing performance of a reconfig-
urable heterogeneous system, we are mainly concerned by
three parameters: the furnaround time, the waiting time and the
scheduling time of the client requests. We found that schedul-
ing time is negligible with respect to the other two timing
metrics, regardless the number of available configurations and
the number of faulty slots. For this reason, results concerning
scheduling time are omitted.

50
40-] 4aM
30| 3m
20 2m
10+ ™
0-!] g g 0
20 40 60 a0 100

Number of configuration per soft-core

Number of faulty reconfigurable slots

Fig. 7. The average turnaround time (ms).

The average turnaround time of client requests for each
experiment is reported in the heatmap of Figure 7. The
region with the highest turnaround time is also the region
with the highest load (Figure 4). This gives more strength
to the hypothesis that the scheduling policy is responsible
for such a strange behavior. In fact, in this specific case,
the order in which the hardware tasks are scheduled depends
on two factors: the available reconfigurable slots and the
available configurations for the soft-cores. We believe that for
experiments with high load and high turnaround time, large
and long tasks are executed before small and short ones, thus
resulting in high occupancy of the FPGA and high waiting time
for small and short client requests. In fact, when analyzing the
average waiting time normalized with respect to the average
execution time (Figure 8), these experiments are characterized
by high waiting time.

501
7

40-

30|

20

10+

0- - g - 1 I I i

20 40 60 L

100

Number of faulty reconfigurable slots

Number of configuration per soft-core

Fig. 8. The average waiting time normalized with respect to the average
execution time

The average waiting time is proportional to the probability
that the same reconfigurable slot is required by more than
a hardware task. As the number of available configurations
per soft-core increases, this probability and the waiting time
decrease. The opposite scenario happens when the number
of faulty slots grows: this probability and the waiting time
increase accordingly. This trend is respected until 16 faulty
slots. After this threshold, the waiting time drops since only a
small fraction of client requests can be accepted, as reported
in the following subsection.

C. Accepted client request ratio

Next questions to be answered are about the impact of
the number of faulty reconfigurable slots and the number of
configurations per soft-core on the acceptance of the client
requests. First, Figure 9 highlights the fact that increasing the
number of faulty slots reduces the number of accepted requests.
The reduction is not linear. All client requests are accepted
when there are no faulty slots, half of the requests are accepted
for about 10 faulty slots and just about a quarter for 15 faulty
slots. As anticipated in the previous subsection, we observed
a break down in the region between 14 and 16 faulty slots, in
which the client requests are almost halved.

50+
40|
30
20}
10-]

0-

0 v ' ' '
20 40 60 80 100

Number of faulty reconfigurable slots

Number of configuration per soft-core

Fig. 9. The number of accepted client requests (100 client requests in total).

The advantages introduced by increasing the number of
configurations per soft-core in terms of accepted client requests
are presented in Figure 10, in which results of each row
are normalized with respect to the case in which there is
only one configuration available per soft-core (first column).
This heatmap highlights two distinct behaviors depending
on the region taken into account. More specifically, below
the aforementioned break down at about 16 faulty slots, the
benefits of having more configurations per soft-core are limited
and a maximum improvement equal to 1.79 is achieved for 100
configurations and 14 faulty slots. Conversely, above the break
down, the improvements increase linearly with respect to both
the number of faulty reconfigurable slots and the number of
available configurations per soft-core.

50 3
40
30
20 !
104} !
0 i 1 1 1 1

20 20 60 20 100

Number of configuration per soft-core

Number of faulty reconfigurable slots

Fig. 10. The number of accepted client requests normalized with respect to
the case there is only one configuration available per soft-core.

IV. CONCLUSION

This works addressed the design of an RTM for gen-
eral purpose FPGA based heterogenous systems. Thanks to
its server/client architecture, it introduces the possibility of
accelerating tasks coming from other systems opening new
scenarios to distributed computing. Alongside illustrating a

new RTM, this paper also provides an efficient tool for the
estimation of the performance of reconfigurable systems. In
fact the simulator is able to reproduce a huge variety of
scenarios by tuning some parameters.

Future works can address the study of new scheduling
algorithms in a multi-fpga scenario, exploiting the possibility
to have concurrent reconfiguration. Moreover further inves-
tigation can be devoted to the employment of the simulator
during the design phase. Consequently the designed systems
achieve best possible performance and the costs of unexploited
reconfigurable hardware resources are reduced.

REFERENCES

[11 M. Weinhardt, A. Krieger, and T. Kinder, “A framework for pc applica-
tions with portable and scalable fpga accelerators,” in 2013 International
Conference on Reconfigurable Computing and FPGAs (ReConFig), Dec
2013, pp. 1-6.

[2] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized fpga accelerators
for efficient cloud computing,” in 2015 IEEE 7th International Confer-
ence on Cloud Computing Technology and Science (CloudCom), Nov
2015, pp. 430-435.

[3] Intel, “Intel® programmable acceleration card with intel arria® 10 gx
fpga,” [Online] https://www.altera.com/pac, 2017.

[4] L. Cassano, D. Cozzi, S. Korf, J. Hagemeyer, M. Porrmann, and L. Ster-
pone, “On-line testing of permanent radiation effects in reconfigurable
systems,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2013, March 2013, pp. 717-720.

[5] M. E. Imhof, M. A. Kochte, E. Schneider, H. Zhang, J. Henkel, and
H.-J. Wunderlich, “Test strategies for reliable runtime reconfigurable
architectures,” IEEE Transactions on Computers, vol. 62, no. 8, 2013.

[6] C. Bolchini, A. Miele, and C. Sandionigi, “Autonomous fault-tolerant
systems onto sram-based fpga platforms,” Journal of Electronic Testing,
vol. 29, no. 6, pp. 779-793, 2013.

[7] ——, “Increasing autonomous fault-tolerant fpga-based systems’ life-
time,” in Test Symposium (ETS), 2012 17th IEEE European, May 2012,
pp. 1-6.

[8] S. D. Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta, and
A. Vallero, “A novel methodology to increase fault tolerance in au-
tonomous fpga-based systems,” in 2014 IEEE 20th International On-
Line Testing Symposium (IOLTS), July 2014, pp. 87-92.

[9] S. D. Carlo, A. Miele, P. Prinetto, and A. Trapanese, “Microprocessor
fault-tolerance via on-the-fly partial reconfiguration,” in 2010 15th IEEE
European Test Symposium, May 2010, pp. 201-206.

[10] S. D. Carlo, P. Prinetto, and A. Scionti, “A fpga-based reconfigurable
software architecture for highly dependable systems,” in 2009 Asian
Test Symposium, Nov 2009, pp. 125-130.

[11] K. Compton and S. Hauck, “Reconfigurable computing: A survey
of systems and software,” ACM Comput. Surv., vol. 34, no. 2, pp.
171-210, Jun. 2002. [Online]. Available: http://doi.acm.org/10.1145/
508352.508353

[12] J. Burns, A. Donlin, J. Hogg, S. Singh, and M. De Wit, “A dynamic
reconfiguration run-time system,” in Field-Programmable Custom Com-
puting Machines, 1997. Proceedings., The 5th Annual IEEE Symposium
on. IEEE, 1997, pp. 66-75.

[13] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “Online task schedul-
ing for the FPGA-based partially reconfigurable systems,” in Reconfig-
urable Computing: Architectures, Tools and Applications. Springer,
2009, pp. 216-230.

[14] G. Mariani, V. M. Sima, G. Palermo, V. Zaccaria, C. Silvano, and
K. Bertels, “Using multi-objective design space exploration to enable
run-time resource management for reconfigurable architectures.” in
DATE, W. Rosenstiel and L. Thiele, Eds. IEEE, 2012, pp. 1379-1384.

[15] G. Durelli, C. Pilato, A. Cazzaniga, D. Sciuto, and M. Santambrogio,
“Automatic run-time manager generation for reconfigurable MPSoC
architectures,” in Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), 2012 7th International Workshop on. 1EEE, 2012,
pp. 1-8.

