
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Mobile GUI Testing Fragility: A Study on Open-Source Android Applications / Coppola, Riccardo; Morisio, Maurizio;
Torchiano, Marco. - In: IEEE TRANSACTIONS ON RELIABILITY. - ISSN 0018-9529. - ELETTRONICO. - 68:1(2019),
pp. 67-90. [10.1109/TR.2018.2869227]

Original

Mobile GUI Testing Fragility: A Study on Open-Source Android Applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TR.2018.2869227

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712643 since: 2019-05-07T17:10:09Z

IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Mobile GUI Testing Fragility: A Study on
Open-Source Android Applications

Riccardo Coppola, Maurizio Morisio, Marco Torchiano

Abstract—Android applications do not seem to be
tested as thoroughly as desktop ones. In particular,
GUI testing appears generally limited. Like web-
based applications, mobile apps suffer from GUI
test fragility, i.e. GUI test classes failing or needing
updates due to even minor modifications in the GUI
or in the Application Under Test.

The objective of our study is to estimate the adop-
tion of GUI testing frameworks among Android open-
source applications, the quantity of modifications
needed to keep test classes up to date, and the amount
of them due to GUI test fragility. We introduce a set
of 21 metrics to measure the adoption of testing tools,
the evolution of test classes and test methods, and to
estimate the fragility of test suites.

We computed our metrics for six GUI testing
frameworks, none of which achieved a significant
adoption among Android projects hosted on GitHub.
When present, GUI test methods associated with the
considered tools are modified often and a relevant
portion (70% on average) of those modifications is
induced by GUI-related fragilities. On average for
the projects considered, more than 7% of the total
modified lines of code between consecutive releases
belong to test classes developed with the analysed
testing frameworks. The measured percentage was
higher on average than the one required by other
generic test code, based on the JUnit testing frame-
work.

Fragility of GUI tests constitutes a relevant con-
cern, probably an obstacle for developers to adopt
test automation. This first evaluation of the fragility
of Android scripted GUI testing can constitute a
benchmark for developers and testers leveraging the
analysed test tools, and the basis for the definition
of a taxonomy of fragility causes and guidelines to
mitigate the issue.

Keywords—Mobile Computing, Software Engineer-
ing, Software Metrics, Software Maintenance, Software

The authors are with the Department of Computer Engineer-
ing and Automatics, Politecnico di Torino, Torino, Italy. e-mail:
first.last@polito.it

Manuscript received April 19, 2005; revised January 11,
2007.

Testing.

I. INTRODUCTION

As several market analyses underline, Android
has gained a very significant market share with
respect to other mobile operating systems, reaching
the 86.2% in the second quarter of 20161. Mobile
devices, nowadays, offer their users a very wide
range of different applications, that have reached a
complexity that just a few years ago was exclusive
of high-end desktop computers.

One of the points of strenght of the Android
operating system is the availability of several mar-
ketplaces, that allow developers to easily sell the
applications or release them for free. Because of
the huge amount of apps available on such plat-
forms, and the resulting competition, it is crucial
for developers to make sure that their software
works as promised to the users. In fact, applications
that crash unexpectedly during their normal execu-
tion, or that are hampered by bugs, are likely to be
quickly abandoned by their users for competitors
[1], and to gather very negative feedback [2].
Mobile applications must also comply to a series of
strict non-functional requirements, that are specific
to a mobile and context-aware environment [3].

In such a scenario, testing mobile apps becomes
a very crucial practice. In particular, it is funda-
mental to test the Graphical User Interfaces (GUIs)
of the apps, since most of the interaction with the
final user is performed through them.

There is evidence that relevant players of the
industry perform structured testing procedures of
their mobile applications, also leveraging the aid
of automated tools (for instance, Alegroth et al.
documented the long-term adoption of Visual GUI
testing practices at Spotify [4]). By contrast, it has
been proved by several studies that open-source

1https://www.statista.com/statistics/266136/global-market-
share-held-by-smartphone-operating-systems/

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

mobile developers rarely adopt automated testing
techniques in their projects. Kochar et al. [5] found
that, on the set of open-source projects (mined
from F-Droid2) they examined, just 14% of the
set featured any kind of scripted automated test
classes; Vásquez et al. [6] found that the majority
of an interviewed set of contributors to open-source
projects relied just on the execution of manual test
cases, even though a variety of automated testing
tools (open source or not) is available.

Performing proper testing of Android apps
presents a set of domain-specific challenges, prin-
cipally due to the very fast pace of evolution of
the operating system, and to the vast number of
possible configurations and features the apps must
be compatible with. In addition to that, the devel-
opment process for Android apps is typically very
quick, and the need for making the applications
available to the public as soon as possible may be a
deterrent for developers to perform complex forms
of testing. Muccini et al. [7] stress the differences
between traditional software and Android appli-
cations when it comes to testing them: the huge
quantity of context events, to which apps have to
react properly; the diversity of devices, to which
the apps must be compatible; the possible lack of
resources for some devices.

Similar to what happens for web applications
testing, automated GUI testing of Android apps
is also hampered by the fragility issue. For our
purposes, we define a GUI test case as fragile
if it requires interventions when the application
evolves (i.e., between subsequent releases) due to
modifications applied to the Application Under
Test. Being system level tests, GUI test cases are
affected by variations in the functionalities of the
application (as it happens for lower-level compo-
nent tests) but also from even small interventions
in the appearance, definition and arrangement of
the GUI presented to the user.

Fragility is a significant issue for Android ap-
plication testing, since a failing test may require
in-depth investigations to find out what are the
causes of the failures, and entire test suites may
need modifications due to even minor changes in
the GUIs and in their definition. If that happens,
developers may decide to not exercise any kind
of structured scripted testing. In our previous work
[8], we developed a small test suite (made of eleven

2https://f-droid.org/en/

test classes) for K9-Mail3 – a popular, large-sized
open source Android mail client – and tracked the
modifications that were needed by test classes to
be executable on different releases. We found out
that up to 75% of tests that we developed had to
be modified, because of modifications performed
on the GUI of the app. If scripted test cases
were obtained through the use of Capture&Replay
techniques, for some transitions between releases
the entirety of the test suite had to be rewritten.

In this work, we aimed at gathering information
about existing test suites featured by open-source
Android applications. We extended the context of
previous similar work (like the one by Kochar et al.
[5], who analysed a set of about 600 open-source
Android apps collected from F-Droid), considering
all the projects hosted on GitHub that contained
proper Android applications and that featured a
history of releases, for a total of 18,930 projects.
We identified six open-source Android GUI testing
tools cited in available literature and producing test
classes in Java, and we searched for the presence
of code written with those tools in the mined
Android projects. This way, we subdivided the
projects in six subsets, according to the testing
tool they featured. Then, change metrics about the
evolution of testing code produced with a given
testing tool were computed for each project and
averaged over the respective sets. In addition to
its evolution, we measured the relevance of testing
code with respect to the total production code for
each project, in terms of quantitative comparisons
of the respective amount of lines of code. To
estimate the fragility issue, we defined a set of
metrics that can be obtained for each project by
automated inspection of the source code. Thus, we
can give a characterization and a quantification of
the average fragility occurrence for each of the
testing tools considered.

The results of this paper provide a quantitative
analysis of automated test suites developed with
a selected set of GUI automation frameworks,
for open-source Android applications. Since many
GUI automation frameworks have been provided in
recent literature for mobile applications, this paper
does not provide a comprehensive evaluation of all
available alternatives for Android developers to test
their application. These metrics can be used as a
benchmark by Android developers adopting those

3https://github.com/k9mail/k-9

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

tools or similar ones, to evaluate the maintenance
effort needed by their scripted test suites, and
decide whether it is convenient to keep leveraging
automated testing. Based on this fragility evalua-
tion, it can be possible in the future to define a
taxonomy of fragility causes for scripted Android
GUI testing, and to give more in-depth actionable
guidelines for developers to circumvent some of
them. Finally, automated tools can be developed
to adapt test methods to the modifications that are
performed in the GUI source code and appearance.

The remainder of the manuscript is organized as
follows: section II gives background information
about Android apps and the components they are
made of; a taxonomy of automated GUI testing
tools for Android is provided, along with a brief
literature review of studies addressing the complex-
ity of Android GUI testing. Section III describes
the study we conducted; the research questions are
detailed and all the proposed metrics are described;
we also give insights about the data extraction
procedure we adopted, and about the testing tools
we selected for our investigations. Section IV gives
insights about the instruments and the procedure
we used to conduct our study. Section V collects all
the measures obtained for the considered projects,
and discusses the findings that can be based upon
them. Section VI lists all the possible threats to
the validity of the conclusions presented in this pa-
per. Section VII provides a conclusive higher-level
discussion about the fragility issue and anticipates
possible future work on the topic.

II. BACKGROUND AND RELATED WORK

This section provides an introduction to Android
programming and testing, and a survey of existing
literature about Android testing and its challenges.

A. Android applications
A definition of mobile apps is given by Muccini

et al. [7] as mobile software (i.e., applications that
run on electronic devices that may move) that in
addition to the user’s input is also context-aware,
i.e. it adapts and reacts to the context in which is
run (for instance, performing sensing of the phys-
ical environment, and context-triggered actions).

A first classification of mobile apps may be
made between native, web-based and hybrid ap-
plications. As explained by Kirubakaran et al. [9],

native apps are the ones designed to be run on
a particular mobile platform, following its design
patterns and guidelines. Web-based apps are pretty
similar in their nature to typical web applications,
and are based on web sites that are engineered
to be loaded by a browser on a mobile device.
Hybrid apps use native code for specific platforms,
to provide a client to the user and to access
functionalities of the device they run on, but still
their core logic is written as a web application, and
is loaded dynamically at run-time.

The Android development platform, as described
by Amalfitano et al. [10], is an infrastructure com-
posed by four layers: the final applications, at the
top of the stack; the Android Application Frame-
work, providing the components with which the
apps are built; the Static Library and the Android
Runtime (including the Dalvik Virtual Machine, on
which the apps are executed); the Linux kernel, in
charge of abstracting the underlying hardware.

The Android Application Framework provides
four basic components, that are the elements with
which applications are constructed. Activities build
the various components of the GUIs, defining their
elements and handling the reponses that need to
be triggered by different classes of user inputs
(e.g., tactile, or vocal). Services manage long-
running background operation, that need no in-
teraction by the user, like the management of
network connections. Broadcast Receivers listen to
events that are launched by the Android system
(e.g. incoming calls or low battery signal), and
manage the way the application responds to them.
Content Providers manage the data stored by the
application, and allow to share data with other
apps and access external data. Each component
is characterized by a specific life cycle, and each
transition between its states should be properly
tested, in order to guarantee that no crashes or un-
expected behaviours happen. Since the interactions
with the GUI and the graphic elements are entirely
managed by Activities, GUI testing for Android
apps is strictly tied to Activity testing.

B. Testing Android apps

As done by Gao et al. [11], Mobile Testing can
be defined as “testing activities for native and Web
applications on mobile devices using well-defined
software test methods and tools to ensure quality

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

in functions, behaviours, performance, and quality
of service”.

There are different levels of testing for Android
applications, in addition to the traditional unit test-
ing, integration testing, system testing and regres-
sion testing. Scopes that are specific to the mobile
scenario must be considered. Kaur et al. [12] list,
among the most prominent testing needs for mobile
apps, compatibility testing (i.e., to ensure that the
application works on different combinations of
handheld models and OS versions), performance
testing (i.e., to ensure that the application does
not exploit any of the resources available, since
they can be limited), and security testing (i.e.,
to ensure that no unauthorized use of data and
capabilities of the handheld device is performed by
the application). GUI testing is identified as a very
prominent testing need for all mobile applications,
since GUI malfunctions can hamper significantly
the user experience provided by an app.

GUI testing of Android apps can be performed in
various ways. The first and most immediate option
is to describe and execute manual test cases on
the GUI of the applications. Linares-Vásquez et al.
[13], who conducted an empirical study in the field
of performance testing, identified manual testing
as the option preferred by developers, along with
the examination of reports and feedbacks given
by the users. However, as discussed by Kropp
et al. [14], the manual execution of test cases –
in addition to requiring significative effort from
testers – is rarely exhaustive, error prone and not
easily reproducible. On the other hand, automated
GUI testing techniques may define sets of scripts to
exercise exhaustively – in a quick and repeatable
way- - all the main functionalities of a GUI. In
addition to that, automated test scripts can be also
used to test the presence of regressions, in the
transition between two consecutive releases of an
application.

Several approaches exist for automated GUI
testing of Android applications. Linares-Vásquez
et al. [15] give the following classificaton: Fuzzy
(or random) testing, systematic exploration-based
tesing, Capture & Replay, event-sequence genera-
tion, scripted testing. Most of those ways of testing
Android apps allow to generate repeatable test
scripts, in some cases without having the need
of accessing the source code (i.e., only the .apk
package of the application is needed). If the source

code is available to the tester, it is also possible
to perform script-based white box testing, as it is
made possible by the Android Testing Framework.

Random and fuzzy testing techniques provide
random sequences of inputs to the individual activ-
ities of the applications, in order to trigger potential
defects and crashes. In their simplest forms – as in
Monkey4, the random tester supported by Android
– no additional information about the AUT (i.e.,
Application Under Test) is required. More complex
random testers (like the ones proposed by Machiry
et al. [16], and Zhauniarovich et al. [17]) can
leverage a model of the GUI, to distribute inputs
in a more intelligent way, and create test cases that
resemble typical user interactions.

Model-based testing techniques leverage models
(typically, finite state machines, state charts or
UML diagrams) of the GUI of the apps under test,
that can be created manually or extracted automat-
ically through a process named GUI ripping. Such
models are therefore used to generate systematic
test cases traversing the GUI. The tools and studies
by Amalfitano et al. [18] [19] and Yang et al. [20]
can serve as examples of this approach.

Capture & Replay testing tools (examples are
presented in works by Kaasila et al. [21], Gomez
et al. [22] and Liu et al. [23]) record the operations
performed on the GUI to generate repeatable test
scripts. Image recognition techniques [24] can be
used to verify visual oracles for black-box test
cases. Event-sequence generation tools are based
on the construction of test cases as streams of
events: examples of this paradigm are provided in
works by Choi et al. [25] and Jensen et al [26].

Less coverage (examples are given in works by
Kropp et al. [14] and Singh et al. [27]) is present in
literature about white-box approaches and scripted
GUI Automation Frameworks, which require the
developer to manually select the sequences of
operations to be performed on the AUT, identifying
objects of the GUI through their definition and
properties, and write test code accordingly.

C. Challenges for testing Android apps
Several studies (like the ones by Muccini et

al. [7], Kirubakaran et al. [9] and Kaur et al.
[12]) are focused on the peculiarities of Android
apps that make testing them properly a complex

4https://developer.android.com/studio/test/monkey.html

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

challenge: limited energy, memory and bandwidth;
rapid changes of context and connectivity type;
constant interruptions caused by system and com-
munication events; the necessity to adapt the input
interface to a wide set of different devices; very
short time to market; very high amount of multi-
tasking and communication with other apps.

Kochar et al. [5] underline the difference be-
tween mobile apps and typical desktop applica-
tions, and give a summary of the reasons why
developers neglect testing: they find that time con-
straints, compatibility issues, complexity and lack
of documentation of available tools are among
the most relevant challenges experienced by the
interviewed developers.

Vásquez et al., as a result of a set of interviews
to contributors to open-source projects [6], found
other relevant reasons that make mobile developers
prefer manual to automated testing: costs in terms
of money and time to maintain automated testing
artifacts; time-related issues towards customers and
project management decisions; general difficulties
related to the usability of tools; size and maturity
of open-source apps, that can be not big enough to
justify the adoption of automated testing.

D. Fragility measurements
Testing fragility can be a problem for different

kinds of software. In general, a test case is said
to be fragile when it fails or needs maintenance
due to the natural evolution of the AUT, while
the specific functionalities it tests have not been
altered. Investigations have been made in the field
of web application testing, with effort from Leotta
et al. aimed at comparing the robustness of capture-
replay vs. programmable test cases [28], and of
tests written using different locators for the com-
ponents of the AUT [29]. A list of the possible
causes of fragilities specific to GUI testing of
mobile applications was proposed in our previous
work [8]: identifier and text changes inside the
visual hierarchy of activities; deletion or relocation
of the elements of the GUI; usage of physical
buttons; changes in the layout and graphic ap-
pearance, especially if visual recognition tools are
used to provide oracles to test cases; adaptation to
different hardware and device models; activity flow
variations; execution time variability.

Modifications performed on test cases may be
due to different reasons. Yusifoglu et al. [30]

classify the modifications of test code under four
categories: perfective maintenance, when test code
is refactored to enhance its quality (e.g., to increase
coverage or to adopt well-known test patterns);
adaptive maintenance, to make the test code evolve
according to the evolution of the production code;
preventive maintenance, to change aspects of the
code that may require intervention in future re-
leases; corrective maintenance, to perform bug
fixes. According to our definition of GUI testing
fragility, we are interested in cases of adaptive
maintenance.

To implement the classification of tests as fragile
or not in an automated tool, we first assume – as it
is commonly done for tests based on JUnit – that
each test case is described by an individual test
method, and we call a collection of test methods
in a single Java file a test class. We consider any
modified method inside a GUI test class as fragile.
When a test class is modified, we consider it as
non-fragile if there are no modified methods inside
it; for instance, the modifications may involve only
import statements and test constructors, or test
methods may have been added or removed but not
modified. We suppose, in fact, that the addition of a
new method should reflect the introduction of new
functionalities or new use cases to be tested in the
application, and not the modification of existing
elements of the already tested activities. On the
other hand, if some lines of code inside a single
test method had to be changed or added, it is more
likely that tests had to be modified due to minor
changes in the application and possibly in its GUI
(e.g. modifications in the screen hierarchy and in
the transitions between activities).

III. STUDY DESIGN

We can describe the goals of this work as:
(i) analyzing the adoption and usage of a set
of popular GUI testing tools among open source
Android applications; (ii) quantifying the amount
of modifications that are performed on production
code and on test code during the history of Android
open source projects; (iii) giving a characterization
of the fragility issue, and an estimation of its oc-
currence in a typical Android open-source project.

Based on these three goals, we can formulate the
following research questions:

RQ1 Adoption: What is the level of adoption
of a given set of automated testing tools,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

among open-source Android projects?
RQ2 Evolution: How much are GUI test

classes associated with the analysed
set of tools modified through consecu-
tive releases of an open-source Android
project?

RQ3 Fragility: How fragile are GUI test
classes associated with the analysed set
of tools to modifications performed on
open-source Android projects and their
graphical appearance?

The first step of our research has been an es-
timation of the adoption of a set Android GUI
testing frameworks among open-source Android
projects. To do so, we mined from GitHub a set
of Android applications (i.e., we identified projects
characterized by the use of the ”Android” keyword
and by the typical structure of an Android project)
featuring a history of releases, and cloned all of
them locally. Then, we selected six testing tools
used for GUI testing among the ones frequently
cited in available literature, and perfomed code
searches on the extracted set of projects, in order to
detect and quantify their usage. The selected testing
tools are described in section III.B, and the metrics
used to answer RQ1 are defined in section III.A.1
as “Adoption and size” metrics.

Then, we studied the evolution of applications
throughout their release history, both for the pro-
duction code as a whole, and for the code pertain-
ing to the six testing tools that we selected. We
performed this study of modifications by means
of automated file-by-file comparisons between con-
secutive releases. We tracked also the modifications
of individual test classes and test methods, to
compute a set of change indicators. These metrics,
that allow us to answer RQ2 and RQ3, are defined
respectively in section III.A.2 as “Test evolution”
metrics and in section III.A.3 as “Fragility of
test classes and methods” metrics. The procedure
adopted to compute them is explained in detail in
section IV.B and IV.C.

A. Metrics definition
To count and classify the modifications in test

code, some change metrics have already been given
in literature. For instance, Tang et al. [31] define a
set of eighteen metrics, with the aim of describing
bug-fixing change histories in source files. Tang et
al. describe three different categories of metrics:

size (e.g., added or removed lines of code, number
of modified classes, files or methods); atomic (e.g.,
boolean values indicating whether a class features
added methods); semantic (e.g., number of added
or removed dependencies inside a file).

With this paper we introduce a set of 21 met-
rics, to give a characterization of the adoption
of individual tools among Android open-source
repositories, and to quantify the amount of modifi-
cations performed on the test cases featured by the
projects. To the set of absolute metrics provided by
Tang et al., our ones add the possibility – according
to our definitions – of performing investigations
about volatility and fragility of test classes and test
methods, since they aim at capturing the weight
that each individual modification in test classes
or methods has if compared to the whole amount
of test code of the application. Most of the met-
rics are normalized, to allow comparisons across
projects of different sizes; they are normalized with
respect to the size of the test suite, to the lifespan
of individual test classes, or to the amount of
changes performed to production code. The metrics
we defined, as detailed later in the computation
procedure, assume test classes and methods written
in Java, so that a comparison between test code
and production code is possible. Hence, the metrics
are not applicable to quantify the amount of code
and modifications of testing tools that produce test
scripts or descriptions of the AUT to test using
different languages.

The metrics we introduced can be defined as
compound metrics based on change metrics that
already exist in literature. For instance, consider-
ing again the metrics and nomenclature given by
Tang et al., Tdiff, the amount of added, deleted or
modified lines of code of files related to a specific
testing tool, can be computed as the sum of LA (i.e.,
Lines of code Added) and LD (i.e., Lines of code
Deleted) for the files that contain scripts written
in that given tool; as well, Pdiff, the amount of
added, deleted or modified lines of code on which
we base several of our metrics, can be computed
as the sum of LA, and LD for all the files of the
release. Finally, our MRTL (i.e., Modified Relative
Test LOCs) metric can be computed as the ratio
between the two aforementioned sums.

The metrics can be subdivided in three groups,
each one answering one of the research questions
we formulated. Table I shows all the definitions of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

TABLE I: Metrics definition

Group Name Explanation Type Range

Adoption and
size
(RQ1)

TA Tool Adoption Real (0, 1)
NTR Number of Tagged Releases Integer [2, ∞)
NTC Number of Tool Classes Integer [1, ∞)
TTL Total Tool LOCs Integer [1, ∞)

Test evolution
(RQ2)

TLR Tool LOCs Ratio Real (0, 1]
MTLR Modified Tool LOCs Ratio Real [0, ∞)
MRTL Modified Relative Tool LOCs Real [0, 1]
TMR Tool Modification Relevance Ratio Real [0, ∞)
MRR Modified Releases Ratio Real [0, 1]
TCV Tool Class Volatility Real [0, 1]
TSV Tool Suite Volatility Real [0, 1]
TJR Tool Code to JUnit code Ratio Real [0, ∞)

MTJR Modifications of Tool code to JUnit code Ratio Real [0, ∞)

Fragility
(RQ3)

MCR Modified Tool Classes Ratio Real [0, 1]
MMR Modified Tool Methods Ratio Real [0, 1]
FCR Fragile Classes Ratio Real [0, 1]

RFCR Relative Fragile Classes Ratio Real [0, 1]
FRR Fragile Releases Ratio Real [0, 1]

ADRR Releases with Added-Deleted Methods Ratio Real [0, 1]
TCFF Tool Class Fragility Frequence Real [0, 1]
TSF Tool Suite Fragility Real [0, 1]

the metrics, their type and the ranges they belong
to. The metrics are explained in much detail in the
following.

1) Adoption and size (RQ1): To estimate the
adoption of Android automated GUI testing tools
among open-source projects and the size of test
suites using them, we defined the following met-
rics:
TA (Tool Adoption) is defined as the percentage,

among a set of projects, of those featuring test
code written with a given testing tool. In the
context of our experiment this ratio, expressed
as a percentage, gives the percentage of An-
droid applications whose GUI is automatically
tested with the six analysed frameworks.

NTR (Number of Tagged Releases) is the number
of tagged releases of a project (i.e., the ones
that are listed by using the command git tag
on the GIT repository).
In the context of our experiment, this metric
can give an idea of which kinds of appli-
cations (whether small apps developed for
immediate release and then abandoned, or
long-lived projects) are most likely to have
their GUIs tested with the six analysed GUI
automation frameworks, and is used to iden-

tify the projects provided with a history of
releases to be studied with the other metrics.

NTC (Number of Tool Classes) is the number of
classes featured by a release of a project,
featuring code relative to a specific tool. As
discussed in section IV.A, in our experiment
classes are associated with a given testing tool
if they contain imports or method calls that are
specific to the tool.

TTL (Total Tool LOCs) is the number of lines
of code belonging to classes that can be
attributed to a specific testing tool in a release
of a project.
In the context of our experiment this metric,
along with the previous one, allows us to
quantify, inside Android projects, the absolute
quantity of code that can be associated with a
set of relevant testing frameworks that can be
used for GUI testing.

2) Test evolution (RQ2): The metrics answering
RQ2 aim to describe the evolution of open-source
projects and of the respective test suites; they have
been computed for each release, or for each couple
of consecutive tagged releases.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

TLR (Tool LOCs Ratio) defined as

TLRi = TTLi/Plocsi

where Plocsi is the total amount of produc-
tion LOCs for release i. This metric, lying
in the [0, 1] interval, allows to quantify the
relevance of the testing code associated with
a specific tool.

MTLR (Modified Tool LOCs Ratio) defined as:

MTLRi =
Tdiffi

Tlocsi−1
,

where Tdiffi is the amount of added, deleted
or modified LOCs in classes that can be
associated with a specific tool, between tagged
releases i−1 and i. This quantifies the amount
of changes performed on existing LOCs that
can be associated with a given tool, for a
specific release of a project. A value higher
than 1 of this metric means that more lines are
added, modified, or removed in test classes in
the transition between two consecutive tagged
releases, than the number of lines already
featured by them.

MRTL (Modified Relative Tool LOCs) defined as:

MRTLi =
Tdiffi
Pdiffi

where Tdiffi and Pdiffi are respectively the
amount of added, deleted or modified tool and
production LOCs, in the transition between
release i − 1 and i. It is computed only for
releases featuring code associated with a given
testing tool (i.e., TRLi > 0). This metric lies
in the [0, 1] range, and values close to 1 imply
that a significant portion of the total code
churn during the evolution of the application
is needed to keep the test cases written with
a specific tool up to date.

TMR (Tool Modification Relevance Ratio) de-
fined as:

TMRi =
MRTLi

TLRi−i

This ratio can be used as an indicator of
the portion of code churn needed to adapt
classes relative to a given testing tool during
the evolution of the application. It is computed
only when TLRi−1 > 0. We consider a value

greater than 1 of this metric as an index of
greater effort needed in modifying the test
code than the actual relevance of testing code,
with respect to the modification of application
code. On the other hand, we consider lower
values of this indicator as an evidence of
easier adaptability of code associated with a
given testing tool to changes in the AUT.

MRR (Modified Releases Ratio), computed as the
ratio between the number of tagged releases
in which at least a class associated with a
specific testing tool has been modified, and
the total amount of tagged releases featuring
classes associated with that tool. This metric
lies in the range [0, 1] and bigger values
indicate a minor adaptability of the test suite
(i.e., the set of test classes associated with a
given testing tool) to changes in the AUT.

TCV (Tool Class Volatility), can be computed for
each class associated with a given tool as

TCVj = Modsj/Lifespanj ,

where Modsj is the amount of releases in
which the class j is modified, and Lifespanj
is the number of releases of the application
featuring the class j.

TSV (Tool Suite Volatility), is defined for each
project as the ratio between the number of
classes associated with a given tool that are
modified at least once in their lifespan, and
the total number of classes associated with
that tool in the project history.

TJR (Tool Code to JUnit code Ratio), can be
computed for each release of a project as:

TJRi =
Tlocsi
Jlocsi

,

where Tlocsi is the number of lines of code
associated with the considered tool in release
i, and Jlocsi is the number of lines of code
associated with other JUnit tests in release i.
The metric is not defined when Jlocsi = 0,
i.e. no JUnit test code is featured by release
i. A high value for this metric implies that
release i contains more code associated with
the given tool than other generic testing code
leveraging the JUnit framework.

MTJR (Modifications of Tool code to JUnit code
Ratio), can be computed for each release of a
project as:

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Fig. 1: Modified test LOCs for class NotesScreen-
Test.java of project nhaarman/Triad

MTJRi =
Tdiffi
Jdiffi

,

where Tdiffi is the amount of added, deleted
or modified code associated with a given tool
between tagged releases i−1 and i, and Jdiffi
is the amount of added, deleted or modified
lines of code associated with other JUnit tests
between tagged releases i−1 and i. The metric
is not defined when Jdiffi = 0, i.e. no lines
of code in classes associated with JUnit are
modified in the transition from release i − 1
and i. A high value for this metric means that
between releases i−1 and i more interventions
were performed on code associated to the
given tool than on other test code leveraging
the JUnit framework.

As an example of the computation of TCV,
figure 1 shows the number of LOCs modified
in test class NotesScreenTest.java of the project
nhaarman/Triad5 (featuring the GUI testing tool
Espresso), for each tagged release that features
it. The test class is introduced in release 0.2.0
(number 2 in the history of the project) and is
present until the master release (number 46 in the
history). Hence, the lifespan of the class is 45.
From the bar plot in Figure 1 it is evident that
the test class has been modified five times during
its lifespan. Thus, the volatility of the test class can
be computed as TCV = 5

45 = 0.11.
The same reasoning can be repeated for all

the test classes of the project featuring Espresso,
obtaining the values shown in table II (for the
sake of simplicity, we did not write the full path
names of the classes in the first column). The
final TCV value for the project, 0.07, is computed
as the average of the volatilities of all the test
classes. It is common that different test classes have
the same number of modifications throughout their

5https://github.com/nhaarman/Triad

TABLE II: Volatility for individual classes of
project Nhaarman/Triad

First Last
Class n. Release release # Mods Lifespan Volatility

1 1 6 1 6 0.1667
2 1 46 4 46 0.0869
3 2 46 5 45 0.1111
4 2 46 5 45 0.1111
5 2 46 5 45 0.1111
6 2 2 0 1 0
7 3 46 5 44 0.1135
8 28 46 0 19 0
9 28 46 0 19 0
10 28 46 0 19 0
11 28 46 1 19 0.0527

lifespans (and, as a consequence, the same value
for the volatility metric): this is due to the fact
that the same modifications in the AUT production
code may lead to multiple test classes needing
modifications in the same release.

3) Fragility of test classes and methods (RQ3):
With an automated inspection of test code, infor-
mation about modified methods and classes can be
obtained. Based on such data, the metrics answer-
ing RQ3 aim to give an approximated characteri-
zation of the fragility of test suites.

The number of modified classes with modified
methods can be different from the total number
of modified classes in three different cases (and
their combinations): (i) when the modifications per-
formed to the classes involve insignificant portions
of code like comments, imports, declarations; (ii)
when the modifications performed to the classes in-
volve only additions of test methods; (iii) when the
modifications performed to the classes involve only
removal of test methods. Additions and removals
of test methods are considered the consequence
of a new functionality or a new use case of the
application, hence they are not considered as an
evidence of fragility of test classes. On the other
hand, modified test methods may reflect changes in
features of the application or in its GUI definition,
and hence make the test class that contain them as
fragile according to our definition.
MCR (Modified tool Classes Ratio) defined as

MCRi = MCi/NTCi−1,

where MCi is the number of classes associated
with a given testing tool that are modified in
the transition between release i−1 and i, and
NTCi−1 the number of classes associated with

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

the tool in release i − 1 (the metric is not
defined when NTCi−1 = 0). The metric lies
in the [0, 1] range: the larger the values of
MCR, the less the classes are stable during
the evolution of the app.

MMR (Modified tool Methods Ratio) defined as

MMRi = MMi/TMi−1,

where MMi is the number of methods in
classes associated with a given tool that are
modified between releases i − 1 and i, and
TMi−1 is the total number of methods in
classes associated with the tool in release i−1
(the metric is not defined when TMi−1 = 0).
The metric lies in the [0, 1] range: the larger
the values of MMR, the less the methods are
stable during the evolution of the app they test.

FCR (Fragile Classes Ratio) defined as

FCRi = MCMMi/NTCi−1,

where MCMMi is the number of classes as-
sociated with a given testing tool that are
modified, and that feature at least one mod-
ified method between releases i − 1 and 1.
This metric represents an estimate of the
percentage of fragile classes associated with
the tool, upon the entire set of test classes
featured by a tagged release of the project.
The metric is upper-bounded by MCR, since
by its definition MCRi = MCi/TCi, and
MCMMi ≤ MCi.

RFCR (Relative Fragile Classes Ratio) defined as

RFCRi = MCMMi/MCi,

where MCMMi and MCi are defined as
above.

FRR (Fragile Releases Ratio), computed as the
ratio between the number of tagged releases
featuring at least a fragile class among the
ones associated with a given tool, and the
total amount of tagged releases featuring test
classes associated with such tool. This metric
lies in the range [0, 1] and is upper-bounded
by MRR.

ADRR (Releases with Added-Deleted Methods
Ratio), computed as the ratio between the
number of tagged releases in which at least a
method has been added or removed in classes
associated with a given testing tool, and the
total amount of tagged releases featuring test

classes associated with the tool. This metric
lies in the range [0, 1], and according to our
hypothesis higher values imply more frequent
changes in application functionalities and de-
fined use cases to be tested.

TCFF (i.e., Tool Class Fragility Frequence) de-
fined as:

TCFFj = FRj/Lifespanj ,

where FRj is the the amount of releases in
which the class j, associated with a given
testing tool, contains modified methods, and
Lifespanj is the number of releases of the
application featuring the class j. This metric
is upper bounded by TCV , since by construc-
tion MRj (the number of releases in which
the class is modified) is higher or equal to
FRj .

TSF (Tool Suite Fragility), is defined for each
project as the ratio between the number of
classes associated with a given tool that fea-
ture fragilities at least once in their lifespan,
and the total number of test classes associated
with the tool in the project history.

For instance, in figure 2 the output of the Git Diff
command for the test class TheFullScreenBarcode-
Activity.java of the repository ligi/PassAndroid6,
featuring Espresso), between releases 3.2.0 and
3.2.1, is shown. The class is modified, but there
are no modifications inside test methods. In fact,
the only two lines modified are among import state-
ments. Hence, this class counts as a modified class
(thus counting for MC) but, since the MM metric
for the class is equal to 0, it is not considered as a
fragile class. Thus, it does not count for MCMM.

The sample in figure 3 is the diff for the test
class ThePassEditActivity.java. In the class there
are four rows modified inside three different test
methods. In this case, the class counts for MC
and also for MCMM , since MM = 3.

The third case that has to be considered is when
methods are not modified, but instead added or
removed. In such case the class still counts for MC,
but not for MCMM.

In the case of the transition between release 3.2.0
and release 3.2.1, just three modified classes out
of eight feature modified methods. Thus RFCR =
MCMM/MC = 0.375. Comparing the number of

6https://github.com/ligi/passandroid

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

Fig. 2: Diff for test class TheFullScreenBarcode-
Activity.java of ligi/passandroid (releases 3.2.0 -
3.2.1)

@@ -2,7 +2,7 @@ package org.ligi.passandroid;

import android.graphics.Bitmap;
import android.graphics.drawable.BitmapDrawable

;
-import

android.test.sitebuilder.annotation.MediumTest;
+import android.suport.test.filters.MediumTest;
import android.widget.ImageView;
import butterknife.ButterKnife;
import com.squareup.spoon.Spoon;

Fig. 3: Diff for test class ThePassEditActivity.java
of ligi/passandroid (releases 3.2.0 - 3.2.1)

@@ -1,7 +1,7 @@
package org.ligi.passandroid;

import android.annotation.TargetApi;
-import android.test.suitebuilder.annotation;
.MediumTest;
+import android.support.test.filters.MediumTest;
import com.squareup.spoon.Spoon;
import javax.inject.Inject;
import org.ligi.passandroid.model.PassStore;

@@ -43,6 +43,7 @@ public class The
PassEditActivity extends BaseIntegration<
PassEditActivity> {

onView(withId(R.id.categoryView)).perform(click
());

+onView(wihText(R.string)
.select_category_dialog_title).perform(click());

@@ -53,6 +54,7 @@ public class The
PassEditActivity extends BaseIntegration<
PassEditActivity> {

public void testSetToCouponWorks() {
onView(withId(R.id.categoryView)).perform(click

());
+onView(withText(R.string)
.select_category_dialog_title).perform(click());

onView(withText(R.string.category_coupon)).
perform(click());

assertThat(passStore.getCurrentPass().getType()
).isEqualTo(PassType.COUPON);

@@ -73,7 +75,7 @@ public class The
PassEditActivity extends BaseIntegration<
PassEditActivity> {

public void testColorWheelIsThere() {
onView(withId(R.id.categoryView)).perform(click

());
-onView(withText(R.string)
.button_text_change_color).perform(click());
+onView(withText(R.string)
.change_color_dialog_title).perform(click());

onView(withId(R.id.colorPicker)).check(matches(
isDisplayed()));

classes found as fragile to the total number of
classes, we can obtain FCR = MCMM/TC = 3/10
= 0.3. Counting the total amount of methods that
have been modified among all classes allow to
obtain the MMR metric.

B. Selected Testing Tools
Since our objective was to document the evolu-

tion of testing code of Android open-source appli-
cations, we focused our study on a set of GUI Au-
tomation frameworks, that allow to write GUI-level
tests through hand-written code. GUI Automation
frameworks typically identify the elements of the
GUI through their properties or the definition of the
screens of the app (e.g., the Layout files in Android
programming) and offer to the developers a set of
functions that allow to perform actions on GUI
components, in addition to assertion statements to
verify the current state of the app.

We selected a set of open-source GUI Automa-
tion frameworks that have been cited in available
literature. A selection criterion for the tools was
the ability of producing test scripts in Java, since
our metrics considered code comparison with pro-
duction code of Android apps.

The resulting set of tools can be based on the
review of existing Android testing tools provided
by Linares-Vasquez et al. [32]: from the variety of
GUI Automation Frameworks that are presented in
such review, we kept the five ones that complied
to our selection criterion, and added Selendroid
to the set, since it is the adaptation of Selenium,
a very widely used testing framework for web-
applications.

The six selected tools cover together the prin-
cipal peculiarities that can be attributed to GUI
Automation frameworks, hence the results and dis-
cussion about each of them can be representative
of other GUI Automation Frameworks with similar
characteristics.

Table III summarizes the features provided by
the selected tools. These characteristics partly re-
flect the ones listed by Linares-Vasquez et al. in
their description of GUI testing frameworks [32], to
which we added the support to image recognition.
In the table, the columns are dedicated respectively
to: the nature (black-box, or white-box) of test
scripts produced; the ability to exercise non-native
apps or hybrid apps in addition to native ones; the
possibility of writing test cases spanning multiple

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

TABLE III: Characteristics of the selected GUI Testing Frameworks

Framework Black Box Non-native app testing Multi-app C&R Multi-OS Level Image Recognition

Espresso No Partial No No No GUI-Level No
UIAutomator Supported Partial Supported No No GUI-Level No
Robolectric No No No No No Unit-Level No
Robotium Yes Supported No Supported No Unit-Level No
Selendroid Yes Supported No No No GUI-Level No
Appium Yes Supported No Supported Yes GUI-Level Supported

applications or the GUI of the operating system;
the support to the creation of test scripts through
capture and replay, in addition to full manual
scripting; the support to operating systems other
than Android; the applicability to unit testing or to
GUI testing only; the support to image recognition
to identify elements of the interface, as done by
novel Visual GUI Testing approaches [24].

The selected frameworks, along with their most
relevant aspects and literature proposing evalua-
tions or other tools based on them, are better
detailed in the following.

• Espresso: an automation framework that al-
lows to test the GUI of a single app, lever-
aging a grey-box approach (i.e., the devel-
oper has to know the internal disposition of
elements inside the view tree of the app,
to write scripts exercising them). Espresso
tests are developed inside the app project, so
with full access to the code of the Activities,
giving higher control of the tested function-
alities with respect to tests only accessing the
graphical elements exposed to the final users.
The framework is designed specifically to
test one activity at a time, and it is not pos-
sible to interact to the GUI of the underlying
operating system. It could originally test
only native applications, but support is given
to the test of hybrid applications through
the EspressoWeb extension7. Espresso has
an internal synchronization mechanism that
manages the GUI, thus allowing tests to
be written without the need for polling or
waiting mechanisms [33]. It is part of the
official Android Instrumentation Framework,
as the suggested way to test the GUI of
an app in isolation from the GUI of the

7https://developer.android.com/training/testing/espresso/web.html

operating system8. Several tools proposed in
literature, like RacerDriver [34] or Barista
[35] leverage the Espresso framework for
GUI automation.

• UIAutomator: it is available only since An-
droid API 16, and adds to Espresso the
possibility to check the device status and
performance, to perform testing on multiple
applications at the same time, to perform
operations on the system GUI and on the
device (e.g., turning on WiFi or changing
display settings). It can be used to test na-
tive and hybrid apps through a support for
WebView testing. As opposed to Espresso,
tests written in UIAutomator are not based
on the application implementation but on the
GUI objects that are exposed by the app,
hence they enable black-box testing of app
GUIs. UIAutomator is part of the official
Android Instrumentation Framework, as the
suggested way to test the GUI of multiple
apps9. Some tools proposed in literature, like
T+ [15] or Fusion [36], use the APIs exposed
by UIAutomator as a basis to develop more
sophisticated approaches to Android GUI
testing.

• Selendroid: a testing framework based on
Selenium, that allows to test the GUI of na-
tive, hybrid and web-based applications [37];
the tool allows to retrieve elements of the
application and to inspect the current state of
the app’s GUI without having access to its
source code, hence enabling the execution of
black box tests, and to execute test cases on
multiple devices at the same time. It is based
on the Android Instrumentation Framework

8https://developer.android.com/training/testing/ui-
testing/espresso-testing.html

9https://developer.android.com/training/testing/ui-
testing/uiautomator-testing.html

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

to instrument the application to test. Having
full integration with the Selenium WebDriver
10 framework, it can be used also to test
web apps. Testing multiple application at
the same time is not possible, since each
application to test requires a running instance
of the Selendroid server. Segen [38] is an
example of testing tool leveraging Selendroid
for test creation.

• Appium: it leverages WebDriver and Selen-
droid for the creation of black-box test meth-
ods that can be run on multiple platforms
(e.g., Android and iOS) [39]. Test cases can
be created either through manual scripting or
via an inspector that enables basic functions
of recording and playback. Integrations with
image recognition libraries (e.g., SikuliX11)
are possible to perform Visual GUI testing
through image recognition. It can be used
to test native apps, hybrid apps and web-
based applications accessed through a mobile
browser. Test scripts can be data-driven and
can be written in multiple scripting lan-
guages (e.g., Python or C#) in addition to
Java. Several studies on Android testing are
performed using this tool, like it is done by
Shah et al. [40] and Singh et al. [27].

• Robolectric: cited, among others, by Amal-
fitano et al. [41], Milano et al. [42], and
Mirzaei et al. [43], it is an example of unit
testing tool for Android, that can be used to
perform testing directly on the Java Virtual
Machine, without the use of a real device or
an emulator. Robolectric does not render the
GUI, and all assertions are at code-level, so
it can be used only for white-box tests that
are not testing the actual appearance of the
app, as it is shown to the user. Emulation is
mandatory if the functionalities to be tested
pertain the interaction of the application with
the full Android environment. Robolectric
can be considered an enabler of Test-Driven
Development for Android applications, since
the instrumentation of Android emulators is
significantly slower than the direct execution
of test cases on JVM. Several studies on An-
droid testing are performed using Robolec-
tric, like it is done by Sadeh et al. [44] and

10http://www.seleniumhq.org/projects/webdriver/
11http://sikulix.com/

Allevato et al. [45].
• Robotium: an extension of JUnit for the test-

ing of Android apps, that has been one of the
prominent testing tools since the inception
of Android programming [46][47]. It can be
used to write black-box test scripts or func-
tion tests (if the source code is available) of
both native and web-based apps. Record and
playback functionalities are made available
by the Robotium Recorder extension. Being
the test code coupled to the package of the
application under test – as with Espresso –
Robotium allows to test a single application
at a time. Robotium is used as an automation
frameworks by Amalfitano et al. for A2T2
[48] and AndroidRipper [41], and by Liu et
al. [23].

Several alternative closed-source and/or com-
mercial GUI Instrumentation Frameworks are
available, with characteristics that can be con-
sidered similar to the ones exposed by the dis-
cussed six tools. Ranorex12 is a cross-platform
test automation framework for black-box testing
of desktop, web and mobile applications; similar
to Appium, it leverages an inspector that allows to
create object-based test cases, creating test scripts
in C# or VB.NET. Quantum Automation Frame-
work13 extends the capabilities of the tools of
the Android Instrumentation Framework with the
possibility of a cloud-based execution of test cases
on multiple devices at the same time. At a similar
level of abstraction of the tools of the Android
Instrumentation Framework, Calabash14 focuses on
the definition of test scripts for Android and iOS
apps through the simulation of interactions with
emulated devices and the evaluation of assertions
about the appearance of the application and its
contents; test scripts can be written using natural
language with Cucumber, or in Ruby.

C. Instruments

This section describes the tools and scripts that
have been used to extract the set of projects on
which we conducted our study, and to collect
statistics about them.

12https://www.ranorex.com/
13http://projectquantum.io/
14http://calaba.sh/

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

1) Data extraction from GitHub: We decided to
perform a scripted search on the GitHub database,
leveraging the GitHub APIs.

To know how many Android projects are avail-
able on the GitHub database, a repository search
can be made using the GitHub Repository Search
API: it allows to extract all projects containing
a certain word (that would be “Android” in our
case, case-insensitive) in their names, readme files
or descriptions. It is also possible (by setting the
“language” parameter) to limit the search of the
keyword inside files of a certain type. To use the
GitHub API we have used the bash cURL function,
inside a bash script. The output, that is obtained in
the form of a Json file, has been examined using
the jsawk tool15.

The “created” parameter allows to filter out the
results of the GitHub Repository Search, select-
ing only the projects that have been created in
a certain time interval. This parameter comes in
handy because the query returns the details of up
to 1000 projects. Therefore, date ranges have to be
provided in order to limit, under 1000 units, the
results of every single search performed.

2) Git Code Search: The GitHub Code Search
API allows to search for particular keywords inside
a given project. The search can be parametrized
using the “filename” parameter, which constrains
the search only in files named as indicated (if
the parameter is omitted, the keyword is searched
in all the files of the repository). The “filename”
parameter can also be leveraged to search for the
presence of files named in a specific way inside a
repository, regardless of the code they contain. The
“repo” parameter is used to specify the repository
in which the search has to be performed.

Some limitations apply to the GitHub Code
Search API, as explained in the Git Documenta-
tion: (i) only the default branch (in most cases the
master branch) is considered for the code search;
thus, if tests are present in older releases but are
removed in the master branch, the project will not
be extracted; (ii) only files smaller than 384kb are
searchable; (iii) only repositories with fewer than
500,000 files are searchable. The second and third
issues may be not very relevant in our context,
since the size of projects and files considered is
typically not so big (with the exception of projects

15https://github.com/micha/jsawk

containing whole firmwares, or clones of the An-
droid Operating System).

3) Count of lines of code: We used the open-
source cloc16 tool to count the total lines of code
inside a repository (or, in general, a set of files).

To compute the number of modifications per-
formed to files of a GitHub project, the git diff
command is used, to obtain all the modified, added
and removed lines of code between the two releases
considered. By default, the diff command shows
the modifications performed to the whole reposi-
tory; as an alternative, it is possible to specify the
full paths of a file for both the releases, to obtain
the modifications that were performed only on it.

The -M parameter allows to identify files that
have been renamed or moved in the transition
between the releases, without considering such
operation as the combination of a deletion and an
addition of a file. The git diff command takes into
account also blank lines and rows of comments
inside files.

4) Java class parser: We developed an auto-
mated Java class examiner, in order to track the
modifications not only in whole files, but also in
individual test methods. We based our examiner
on JavaParser, an open source tool (available on
GitHub17) that can be used to explore the structure
of any Java application. We developed a console
tool that, given two releases of the same test class
as parameters: (i) extracts all methods declared
in both the releases; (ii) identifies all methods
that have been removed in the transition between
releases; (iii) identifies all methods that have been
added in the transition between releases; (iv) in-
spects the diff file computed for the release transi-
tion, and for each modified line checks whether it
belongs to an existing method, to state -according
to the heuristic explained in section II.D- if the
class is fragile or not. The examiner cycles on all
the tagged releases of any Git Repository. The list
of tagged releases can be obtained using the git
tag command, inside the Git folder in which the
project has been cloned.

A final integrated script has been developed,
using the instruments detailed in the previous para-
graph, in order to: (i) cycle over all the projects
of the context, and over all the tagged releases
for each project; (ii) compute the modifications

16http://cloc.sourceforge.net/
17https://github.com/javaparser/javaparser

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

and fragility metrics for each release; (iii) obtain
averaged results for each project and for the entire
sets.

IV. ADOPTED PROCEDURE

The following paragraphs describe the opera-
tions that have been performed, with the aid of
the instruments described in the previous section,
to obtain the results presented in this paper.

A. Test Code Search (RQ1)
The first operation performed to conduct our

study was a definition of our context, i.e. the
set of projects that were used for the subsequent
investigations. We performed three different steps
to extract the set of projects used as our context,
the first one being a search for the word “Android”
in descriptions, readme files and names of Java
projects hosted on GitHub. GitHub Search API has
been leveraged to this purpose, using the following
search string:

curl -x, -u $USER:$PASSWORD -H ’Accept:
application/vnd.github.v3.text-match+
json’ ’https://api.github.com/search/
repositories?q=android+language:java+
created:"’$CURR_DATE_RANGE’"&sort=
stars&order=desc&page=’$CURRENT_PAGE’’

This way, we gathered a total of 280,447 GitHub
repositories.

We then applied a filter to cut out from the
context all the projects that have no tagged releases.
This is done because the aim of the study is to
track the evolution of the considered projects, and
– as it is detailed later – differences between tagged
releases are computed. Considering that, projects
without at least one tagged release (which allows
for a single comparison, made between itself and
the master release) are not of interest. To find how
many tagged releases are featured by a project, the
git tag command is used. This way, we obtained
a set of 20,638 Android projects with a history of
tagged releases.

Looking only for the keyword “Android” would
have included in the results also libraries, utili-
ties and applications for other systems that are
engineered to interact with Android counterparts.
Therefore, a method was needed to filter out those
spurious results from the selected context. As it is
done by Das et al. [49], we considered the presence

(or absence) of Manifest files as a discriminant
between true Android projects and false positives
of the search procedure. As it is explained in
the official Android developer’s guide18, in fact,
it is mandatory for any Android app to have
an AndroidManifest.xml file in the root directory
of each of its builds. The Manifest file provides
essential information about the app to the Android
system, and the system needs it before running
any of the app’s code. Projects that do not contain
any Manifest file are cut out from our context,
since they are not likely to contain Android apps.
The presence of multiple Manifest files in a single
GitHub project may imply the fact that the project
contains actually a set of Android apps and/or that
multiple alternative builds are provided for a single
Android app. Since the metrics are defined on
GitHub projects and not strictly on individual apps,
these cases are still considered as single projects in
the following.

To search for Manifest files we leveraged the
GitHub Code Search API on the projects that
were still part of the context, providing “Android-
Manifest.xml” as “filename” parameter, as in the
following search string:

curl -x, -u $USER:$PASSWORD -H ’Accept:
application/vnd.github.v3.text-match+
json’ ’https://api.github.com/search/
code?q=manifest+filename:
AndroidManifest.xml+repo:ligi/
passandroid’ | jsawk ’return this.
items’ | jsawk ’return this.path’

This way, we obtained a final set of 18,930
Android projects with tagged releases and Manifest
files. The mentioned limitations of the GitHub
code search API about the maximum total number
of files (500.000) and the maximum size of a
searchable file (384 kilobytes) proved to be not a
real concern for our study. We counted the number
of total files and the size of all Java classes in
the mined Android projects, and found – as it was
expected, being projects for Android apps typically
not very large-sized – that no project had more
than 500.000 files. Only 31 projects featured Java
classes whose size exceeded the size threshold for
the code search API. The projects of the studied
contetx featured on average 419 files, and Java
classes had an average size of 10.13 kilobytes.

18https://developer.android.com/guide/topics/manifest/manifest-
intro.html

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

To search for any of the testing tools considered,
a GIT Code Search has been performed on the
repositories that are part of the context. The names
of the tools themselves are evidence of their usage,
since they are part of include statements that are
needed to make them work. An exception has
been made for Espresso, for which the presence of
“test.espresso” among include statements has been
searched for (being the term “espresso” a common
word found in a number of applications having no
connection at all with app testing). Projects were
then divided into six sets, based on to the tools they
featured. For each of the tools, its adoption has
been estimated computing the TA (Tool Adoption)
metric. Sets of projects featuring different tools
are not necessarily disjoint: it is possible that a
repository features more than just one scripted GUI
testing tool.

Any Java class featuring a keyword related to
a given testing tool in its code is considered
as a class associated with the tool (for instance,
a class featuring the statement “import static
android.support.test.espresso.Espresso.onView” is
considered as a class featuring Espresso). If a Java
class contains code related to more than just a
single testing tool, it is considered as associated
with each of them; the projects is then inserted
in all the sets pertaining the testing tools with
which the class is associated. For each test class
the lines of code are counted with the use of the
cloc Bash tool, and contribute to the computation
of the Size metrics defined to answer RQ1. TTL
(Total Tool LOCs) and NTC (Number of Tool
Classes) have been computed for each project, on
the master release. As discussed earlier, the use of
the git tag command also allows to obtain the NTR
(Number of Tagged Releases) metric for any of the
considered projects.

A search was also made on projects for the pres-
ence of JUnit test code. JUnit is a test automation
framework that, most typically, is used to perform
unit testing of Java applications. However, it can be
used also as an engine for various testing tools and
testing levels, ranging from integration to system
level testing (for instance, the testing frameworks
of the Android Instrumentation Framework are
themselves based on the JUnit engine). Being JUnit
among the most widespread testing tools for Java
applications, the presence of generic JUnit test
classes can serve as a first comparison for the

adoption and code churn exposed by the studied
testing frameworks.

Recent releases of the Android Studio IDE add
by default a file called “ExampleUnitTest.java” to
new projects, so as a consequence the amount of
projects containing JUnit classes increased remak-
ably in newer projects even though they did not
contain actual test code written by the developers.
Since those projects are clearly not significant to
our purposes – the presence of that particular class
is not an evidence of a testing process – the context
has been pruned of all the projects featuring only
that single test class. Even though some of the
chosen tools are based on JUnit, the searches for
the individual keywords and the “junit” keyword
have been conducted independently. Obviously, if a
tool is based on JUnit, the set of projects featuring
JUnit will be a superset of the set of projects
featuring that specific tool.

For further investigations, subsets of the com-
plete set of projects were extracted. In particular,
we focused on four different subsets of the whole
context: apps with more than a thousand LOCs,
apps that have more than five tagged releases and
feature at least 10% of testing code code, apps that
are released on Play Store, and apps that have been
modified during last year. The first two sets can be
obtained by simply examining the values extracted
for any project during the computation of basic
metrics. To find which apps were actually released
on the Play Store, a manual search was performed
for the names of the applications on the Play Store
search19.

Finally, to see which of the considered projects
were modified recently, the GitHub Stats API has
been used. In particular, the request “GET /re-
pos/:owner/:repo/stats/commit activity” returns the
commit activity of last year, giving the number of
total commits per week; summing the values over
the year gives as result the total number of commits
performed during last year (different time intervals
could also be considered by taking into account
only the values for a number of most recent weeks).
Thus, projects with a value different from 0 were
tagged as part of the subsets of “alive” projects.

The data extraction procedure from GitHub has
been completed between September and December
2016.

19https://play.google.com/store/search

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 17

B. Test LOCs analysis (RQ2)

In the exploration of the history of Android
repositories, the versions that have been considered
for tracking the evolution of test classes are the
tagged points of release histories. In addition to
those, that can be extracted using the git tag
command, the current master branches of projects
have been considered, as the last updates of the
repositories with which the last code comparisons
are performed.

To answer RQ2, for each pair of consecutive
versions of the selected projects, the git diff com-
mand has been executed on the whole repository
to obtain the total amount of Java LOCs changed
with respect to the previous release. Then, the git
diff command has been used again to obtain the
number of LOCs added, removed or modified for
each .java file previously associated with a testing
framework. The values extracted this way allowed
us to compute TLR (Tool LOCs Ratio), MTLR
(Modified Tool LOCs Ratio), MRTL (Modified
Relative Tool LOCs) and TMR (Tool Modification
Relevance Ratio) for each test tagged release of any
project.

Then, global average values have been com-
puted on the whole lifespans of the projects, using
the formulas TLR = Avgi{TLRi}, MTLR =
Avgi{MTLRi}, MRTL = Avgi{MRTLi},
TMR = Avgi{TMRi} with i ∈ [1, NTR] being
NTR the number of tagged releases featured by
the project.

To compute the amount of LOCs and modifica-
tions of other test code based on JUnit inside each
project, the files featuring the “junit” keyword only
(and not the ones containing keywords relative to
the current testing tool under inspection, to avoid
considering the same classes if the tool is based
on the JUnit framework) have been considered as
JUnit test files, and the git diff command has been
used to track also their evolution. This way, the
TJR (Tool Code to JUnit Code Ratio) and MTJR
(Modifications of Tool code to JUnit code Ratio)
metrics could be computed for each tagged release.
Finally, averaged values have been computed for
them as TJR = Avgi{TJRi} and MTJR =
Avgi{MTJRi}.

For each project, the lifespan and volatility
(TCVj) have been computed for each test class,
and an overall average has been computed as
TCV = Avgj{TCVj} with j ∈ [1, NTC], being

NTC the number of test classes of the project.
Throughout all our study, we have considered
moved or renamed files as different test classes.
The analysis of the test classes for whom TCV
is not equal to zero allows to compute TSV (Test
Suite Volatility) for any project.

C. Test classes history tracking, Fragility (RQ3)
We have finally tracked the evolution of single

test classes and methods, taking into account the
tagged releases in which each test class and test
method has been added, modified or deleted.

Then, for each tagged release we have obtained
the number of modified classes and methods,
i.e. MCR (Modified Classes Ratio) and MMR
(Modified Methods Ratio), and the derived met-
rics RFCR (Relative Fragile Classes Ratio) and
FCR (Fragile Classes Ratio). Also in this case,
at the end of the exploration averages have been
computed as MCR = Avgi{MCRi}, MMR =
Avgi{MMRi}, FCR = Avgi{FCRi}, with i ∈
[1, NTR].

Since RFCR makes sense only when modi-
fications are actually present, RFCR has been
computed as an average of RFCR only for release
transitions in which test classes have been modified
(i.e., MCR 6= 0).

At the end of the exploration of the tagged
releases of each project, FRR (Fragile Releases
Ratio) and ADRR (Releases with Added-Deleted
Methods Ratio) have been computed to quantify
the percentage of them featuring, respectively, frag-
ile and non-fragile modifications.

Based on the recognition of classes affected by
fragilities, the TSF (Test Suite Fragility) overall
value has been computed for each project.

Finally, a manual inspection of a set of modi-
fied test classes with modified methods has been
conducted, in order to identify the reasons behind
fragilities in test classes and methods, quantified
by MMR and FCR, and link them to modifications
in the GUI appearance and/or definition.

V. RESULTS AND DISCUSSION

In the following paragraphs, we report the results
we obtained by applying the described procedure.
Each of the following subsections concerns one of
the three research questions we defined. The results
measured for the metrics defined in section III.A

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 18

TABLE IV: Number of projects and TA per testing tool.

Tool Total W. releases W. Manifest(s) TA

Android 280,447 20,638 18,930 -

Espresso 2,617 426 423 2.23%
UI Automator 846 154 107 0.57%
Selendroid 56 9 6 0.03%
Robotium 1,643 163 150 0.79%
Robolectric 3,767 875 842 4.44%
Appium 276 29 18 0.09%

JUnit 22,939 4,253 3,669 19.38%

TABLE V: NTR, NTC, TTL, TLR per testing tool: average and median (in parentheses) values for master
release.

Tool NTR NTC TTL TLR

Espresso 15 (6) 5 (2) 588 (190) 8.8% (4.1%)
UIAutomator 60 (25) 12 (3) 3,155 (1,134) 8.6% (0.6%)
Selendroid 46 (17) 76 (1) 8,627 (126) 19.4% (0.2%)
Robotium 44 (7) 5 (1) 873 (227) 8.7% (3.3%)
Robolectric 22 (6) 11 (3) 1,448 (399) 16.4% (11.4%)
Appium 27 (15) 38 (4) 4,469 (1,096) 37.3% (6.0%)

Average 25 9 1,338 13.3%

TABLE VI: Number of released projects, projects with more than 1000 LOCs, and projects active during
last year

Espresso UIAutomator Selendroid Robotium Robolectric Appium

Apps on Play Store 116 (27.42%) 16 (14.95%) 3 (50.00%) 32 (23.19%) 128 (15.20%) 8 (44.44%)
Apps with 1000+ LOCs 368 (89.10%) 105 (98.13%) 6 (100.00%) 138 (92.00%) 720 (85.51%) 15 (98.13%)
Apps modified last year 290 (68.56%) 55 (51.40%) 5 (83.33%) 55 (36.42%) 490 (58.19%) 12 (66.67%)

are detailed, along with the conclusions we can
base on them.

The detailed measurements extracted for all the
examined projects have been published as a dataset
hosted on FigShare20. For each testing tool, we
have created two different .csv files, one pertain-
ing all releases of each project (containing their
amount of production code, test code and modified
lines, classes and methods) and one pertaining
all classes of each project, and their evolution
throughout the release history. The average values
that are computed – as explained in the Procedure
section – are based on this raw data.

TABLE VII: Metrics pertaining RQ1

Name Explanation

TA Tool Adoption
NTR Number of Tagged Releases
NTC Number of Tool Classes
TTL Total Tool LOCs

A. RQ1: Adoption

We initially gathered a total of 280,447 GitHub
repositories featuring the term Android in their
names, descriptions or readme files. Then, a signifi-
cant amount of projects were pruned because of the
lack of tagged releases (so they had no history to be
investigated), and because of the lack of Manifest
files. A final set of 18,930 Android projects was

20https://figshare.com/articles/Testing Fragility data/4595362

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 19

obtained.
In tables IV and V the measures answering the

metrics pertaining RQ1 are shown. A summary of
the definitions of the metrics is given in table VII.
The columns of table IV show, respectively: the
total number of projects featuring each of the six
tools considered; the number of projects featuring
at least one tagged release; the projects featuring
at least a Manifest file; finally, the Tool Adoption
(i.e., TA) metric, computed for each of the selected
GUI testing frameworks as the ratio between the
amount of projects featuring it and provided with
manifest file(s), and the total amount of projects
of the context provided with manifest file(s). Ta-
ble V shows the average and median values for
Number of Tagged Releases (NTR), Number of
Tool Classes (NTC), Total Tool LOCs (TTL) and
Tool LOCs Ratio (TLR), computed on the sets of
projects featuring each testing tool, for their master
release. The last row in table V shows average
values for all the considered projects, weighted by
the number of projects for each set.

Considering the overestimation due to possible
overlaps (since a single project can feature multiple
testing tools, hence the sets for the individual
tools are not necessarily disjoint) about 8.5% of
the projects feature tests belonging to one of the
six selected tools. None of the testing frameworks
reached by itself an important level of adoption in
the considered set of Android open-source projects.
In particular, the absolute number of projects fea-
turing Selendroid and Appium test cases, respec-
tively 6 and 18, is practically irrelevant. A higher
number (the 4.44% of the total) of projects featur-
ing Robolectric has been found, but the tool has
been available for a longer time with respect to
other ones (especially Espresso and UI Automator)
and is often used also for Unit Testing.

As a comparison for the adoption of the se-
lected GUI testing frameworks, we counted also
the number of projects featuring the JUnit testing
framework, which can be used for unit/component
testing as well as an enabling engine for other
forms of testing. We counted 3,669 projects (with
tagged releases and manifest files) featuring JU-
nit, among the total set of open-source Android
projects we extracted (the 19.38%). Even though
this percentage is higher than the ones obtained
for the individual testing frameworks, it shows
that also the JUnit test automation framework has

a limited adoption among Android open source
projects hosted on GitHub, being featured by about
one fifth of the set.

Even though the total number of Android
projects extracted can take into account some
projects that are not likely to feature test classes
(e.g. experiments, duplicates, exercises, prototypes,
projects that are abandoned at very early stages)
the measures computed for the metric TA give
evidence of the lack of an extensive usage of
scripted automated GUI testing on open-source
Android projects. Anyhow, it is worth highlighting
that the study we performed is limited to the
testing tools we considered, i.e. it is possible that
different scripted testing tools are used by some
other projects of the context.

The average and median number of test classes
in the sets of projects can be quite small (e.g., just
5 and 2, respectively, in the case of Espresso) due
to the typical coding patterns for Android appli-
cations, in which – usually – one GUI test class
is written specifically for each Activity featured
by the application. Most applications – especially
in the case of small and even experimental open-
source projects – do not feature many screens
to be shown to their users, and therefore they
do not feature many activities to be tested. The
projects of the mined context featured an average
of 19 Activities defined in their Manifest files, with
averages on the individual sets ranging from 10 (for
the set of projects featuring Robolectric) to 116 (for
the set of projects featuring UIAutomator).

Average TTL and TLR values are very large for
the sets of projects featuring both Selendroid and
Appium; however, such result is heavily influenced
by the small size of the sets (respectively, 6 and 18
projects) and by the presence of the full Selendroid
framework for Android21, counting 47,436 tool
LOCs, and of a very big set of Appium API de-
mos22, counting 48,868 tool LOCs. The influence
of those individual projects on the average values
is confirmed by the largely smaller corresponding
median values.

The fact that the set of projects featuring
Espresso has the lowest average TTL can be
explained with the following reasons: (i) using a
white-box testing technique allows to exercise the
functionalities of the application with little coding

21https://github.com/selendroid/selendroid
22https://github.com/appium/android-apidemos

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 20

effort; (ii) the framework is quite accessible even
to non-experienced developers, and its usage is
encouraged by Android, leading it to be used also
in very small projects, in tryouts, and even for
experimental and partial coverage of applications
use cases. On the other hand, the mean TTL
for projects featuring UI Automator is very high,
and also significantly higher with respect to the
sets featuring Robotium, Robolectric and Espresso.
This may reflect an higher complexity in scripting
with the UIAutomator testing framework, but can
also be due to the cross-application features of
UI Automator, which make it suitable for the
testing of whole firmwares and application bases,
which are typically very big projects requiring
a higher number of test cases. An evidence of
the bigger size of projects featuring UIAutomator
can be deduced from the selected data in terms
of the average amount of Production LOCs per
project: the set of projects with code associated
with UIAutomator feature an average of 489,768
total LOCs, a number nearly ten times as big as
the average computed on the master releases of all
the projects of the context, amounting at 61,050.

The different size of the projects in which
Espresso and UIAutomator are typically used is
confirmed by the close average TLR values the
sets of projects have, while the respective average
TTL values are very different (with the TTL
computed for UIAutomator nearly six times as
big as the one computed for Espresso). Slightly
bigger test suites, with respect to those developed
with Espresso, are developed on average with
Robotium and Robolectric. The projects featuring
Robolectric have an average TLR value that is
almost double than the one relative to the projects
featuring Espresso: this can be due to an intrinsic
additional complexity of the testing tool, or to the
fact that it is not exclusively used for GUI testing.

The considered GUI testing frameworks reach,
individually, a level of adoption that is always
lower than 4.5%. Projects that have their GUI
tested with the studied testing frameworks fea-
ture on average 9 test classes, with an average
total number of of 1,338 LOCs associated with
the considered testing frameworks (13.3% of the
whole project code).

We also extracted some subsets of the complete

context of open-source Android projects hosted
on GitHub: we counted how many of them were
uploaded on the Play Store to be purchased (or
downloaded for free) by the final users, how many
featured a relevant (more than 1000) amount of
lines of code, how many underwent modifications
during last year (the research has been conducted
at April 2017). The numbers of projects satisfying
those requirements are shown in table VI.

The number of projects that have been pub-
lished on the Play Store gives an indication about
how much the considered context of open-source
GitHub projects is representative of actually re-
leased Android apps. Without considering the sets
of projects featuring Appium and Selendroid (since
they are particularly small), the sets of projects
featuring Espresso and Robotium are the ones
with most appearances on the Play Store. This
can be justified by the nature of the Espresso
and Robotium scripted testing frameworks, that
are specifically designed for testing single activ-
ities and actual screens of individual applications;
hence, they are more suitable for testing real,
finalized apps that are ready for being released to
the users. The percentage is lower for the projects
featuring UIAutomator and Robolectric. For the
former ones, the fact can be justified by the cross-
application testing features of UIAutomator: most
of the projects featuring UIAutomator are whole
firmwares or sets of applications, and hence they
are not likely to be found on the Play Store;
for what concerns Robolectric, the instrumentation
characteristics of the tool make it particularly suit-
able for testing low level SDKs, graphic libraries
and projects providing widgets to be used in other
applications.

However, it must be considered that there are
cases of full and non-trivial native applications
that are uploaded to alternative markets to the
official Play Store (e.g., F-Droid), specifically de-
signed to host open-source applications only. Some
other applications (e.g., the GitHub repository
medic/medic-gateway) are full and working appli-
cations, but are not released on any market and are
made available through APK download only.

For what concerns the study of applications
having a significant amount of lines of code, it
can be seen that most of the projects featured
more than 1000 LOCs. Only the sets featuring
Espresso and Robolectric have less than 90% of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 21

the applications featuring more than 1000 LOCs
(this is another confirmation of the smaller size of
projects typically tested with those two tools, with
respect, for instance, to UIAutomator).

In general, the majority of applications have
been modified in the last 12 months. The only
exception is given by the set of projects featuring
Robotium: it can be justified by the switch of the
community to newer testing tools, like Espresso
and UIAutomator, that are part of the official
Android Testing Framework.

B. RQ2 - Evolution
Table VIII shows the statistics collected about

the average evolution of test code, for the six
selected testing frameworks. A summary of the
definitions of the metrics is given in table IX. For
every set, TLR, MTLR, MRTL, TMR, MMR,
TCV and TSV have been averaged on all the
projects. The values in last row are obtained as
averages of the six values above, weighted by the
size of the six sets.

The values reported for average Tool LOCs
Ratio (TLR) show that – when present – the
amount of testing code associated with the selected
testing frameworks can be an important portion of
the project during its lifecycle, if compared to the
number of LOCs of production code. The boxplots
in Figure 4 show the distribution of TLR values
for the six sets of projects. The average values
range from about 7.3% (for the set of Espresso
projects) to 31.9% (for the set of Appium projects).
For the biggest set of projects considered (those
featuring Robolectric) the mean TLR is 13.4%.
The TLR averaged over the releases of applica-
tions is typically smaller than the TLR computed
for master releases (see table V): this may be
attributable to the graduality of the construction of
test suites, which may be very small or absent in
intial releases.

Average Modified Tool LOCs Ratio (MTLR)
measures show that typically around 2.8% of test
code is modified between consecutive releases of
the projects featuring the six analysed GUI automa-
tion frameworks. Very small MTLR values were
obtained for the projects featuring UIAutomator. In
general, this should be considered as a consequence
of bigger test suites, in terms of absolute LOCs,
with respect to the ones written with other test-
ing frameworks. Hence, the influence of a similar

appium

espresso

robolectric

robotium

selendroid

uiautomator

0% 25% 50% 75% 100%
Test LOC Ratio (TLR)

To
ol

Fig. 4: Distribution of TLR

appium

espresso

robolectric

robotium

selendroid

uiautomator

0% 25% 50% 75% 100%
Releases with test modification (MRR)

To
ol

Fig. 5: Distribution of MRR

amount of absolute modified LOCs would result
in a lower MTLR value. The highest value was
found for the set of projects featuring Selendroid:
this can be explained with the very high percentage
of total LOCs in classes associated with Selendroid
for these repositories. However, the set of projects
featuring Appium, which also was characterized
by a high average TLR, did not exhibit the same
trend, having a lower MTLR: this should mean
that, even though the important ratio of testing
code above project code, few modifications (in
both production and test code) were made between
subsequent releases on test code associated with
Appium.

The measures about Modified Relative Tool
LOCs (MRTL) show that, on average, when the
six selected testing frameworks are used, the 7.4%
of the modified LOCs belong to classes containing
code associated with those frameworks. With this
metric, however, we are still unable to discriminate

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 22

TABLE VIII: Measures of RQ2 - evolution of test code (averages on the sets of repositories)

Tool TLR MTLR MRTL TMR MRR TCV TSV TJR MTJR

Espresso 7.3% 2.6% 4.7% 0.68 22.2% 8.6% 28.6% 2.75 1.25
UI Automator 9.9% 1.4% 3.5% 1.17 16.5% 6.4% 35.9% 1.55 0.78
Selendroid 19.4% 4.3% 11.5% 0.15 39.6% 11.5% 33.7% 0.56 0.24
Robotium 7.8% 3.8% 5.3% 0.56 22.1% 9.9% 36.3% 2.29 3.76
Robolectric 13.4% 2.9% 9.5% 0.79 28.2% 8.6% 30.4% 6.28 5.31
Appium 31.9% 1.8% 16.6% 0.27 27.3% 10.3% 36.2% 2.65 1.17

Average 11.2% 2.8% 7,4% 0.76 25.2% 8.6% 30.9% 4.53 3.67

TABLE IX: Metrics pertaining RQ2

Name Explanation

TLR Tool LOCs Ratio
MTLR Modified Tool LOCs Ratio
MRTL Modified Relative Tool LOCs
TMR Tool Modification Relevance Ratio
MRR Modified Releases Ratio
TCV Tool Class Volatility
TSV Tool Suite Volatility
TJR Tool Code to JUnit code Ratio

MTJR Modifications of Tool code to JUnit code Ratio

what is the reason behind the modifications to
be performed on test classes. The higher MRTL
values for the sets of projects featuring Appium
and Selendroid can be justified by the small size
of the two sets, and by the nature of the projects
examined. For instance, the Selendroid framework,
on GitHub as selendroid/selendroid, is subject to
heavy modifications, but in this particular case
classes that are actually the code of the testing
tool should be mistakenly recognised as test code.
While the three sets of projects featuring code as-
sociated with Espresso, Robotium and Robolectric
exhibit close average MTLR values, the average
MRTL on the set of projects featuring Robolectric
is way bigger than the other two. In general, a
higher MRTL should mean a minor adaptability
of a testing tool to modifications performed on the
production code, with more changes needed by test
code as a consequence of changes in the production
code.

The mean values of Tool Modification Rele-
vance Ratio (TMR) stayed in the range between
0.56 and 1.17 for big-sized sets of projects, with
lower values for the sets featuring Selendroid and
Appium. In general, those values imply that the
amount of churn needed for the code associated
with a specific testing framework is not linear

with the relative amount (with respect to total
production LOCs) of such code inside the ap-
plication: in our case, on average, the ratio be-
tween the intervention on test code and the in-
tervention on all production code is about 3/4 of
the ratio between test and all production code.
The higher TMR value for UIAutomator is due
to some projects (e.g. Lanchon/android-platform-
tools-base) in which TLR is rather small, and
where in some releases all modified LOCs belong
to test classes (thus leading to MRTL values very
close to 1).

The Modified Releases Ratio (MRR) metric
gives an indication about how often the develop-
ers had to modify any of the classes associated
with the considered testing frameworks when they
published new releases of their projects. Boxplots
in figure 5 show the distribution of MRR for the
projects of the considered context. On average,
25.2% of releases needed modifications in any
of the test classes (with a maximum of 39.6%
for the set of projects featuring Selendroid, and a
minimum of 16.5% for the set of projects featuring
UIAutomator). Since releases may be frequent and
numerous for GitHub projects, this result explains
that the need for updating test classes is frequent
for Android developers that are leveraging the
analysed testing frameworks.

The 8.6% average value for the Tool Class
Volatility (TCV) metric, which characterizes the
phenomenon of volatility from the point of view
of the individual classes associated with a given
testing framework, highlights the fact that each test
class has to be modified, on average, every ten
tagged releases in which it appears. The computed
averages are similar for all the considered sets
of projects, with the lower value – also in this
case – obtained for UIAutomator, meaning a major
stability of individual test classes.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 23

TABLE X: Espresso - Evolution metrics for different subsets of projects

TLR MTLR MRTL TMR MRR TCV TSV TJR MTJR

Full set 7.3% 2.6% 4.7% 0.25 22.2% 8.6% 28.6% 2.75 1.25
Projects on Play Store 3.9% 2.7% 3.7% 0.72 21.2% 8.3% 32.1% 2.96 2.02
Projects with 1000+ LOCs 5.7% 2.6% 4.7% 0.69 22.7% 8.8% 30.0% 2.71 1.27

The average 30.6% value for the Test Suite
Volatility (TSV) metric, which characterizes the
phenomenon of volatility from the point of view
of whole collections of classes containing code as-
sociated with a given testing framework, indicates
that about one third of test classes require at least
one modification during their lifespan.

The results for the Tool Code to JUnit code Ratio
(TJR) metric show that typically, when both are
present, the code associated with the six selected
testing tool weighs more, in terms of LOCs, than
other code associated with the JUnit testing frame-
work (which can be related to unit testing, or to
other levels of testing leveraging JUnit as a testing
engine). Only the code associated with Selendroid
was, on average, less prominent than the code
associated with JUnit; on the contrary, the TJR
value is particularly high for the set of projects
featuring Robolectric. This may be considered as
an evidence of a major complexity in writing test
classes using such tool, and in maintaining them.
If the hypothesis that JUnit is mostly used for unit
testing of Java code applies, this finding is in ac-
cordance with our expectations: GUI testing code,
typically traversing multiple widgets of the GUI to
recreate a full user scenario, is likely to be more
complex than unit testing code exercising small
components of the application code in isolation.
Those results are also in accordance with the other
evolution metrics, which see the projects featuring
Robolectric as the ones (without considering the
small sets of projects featuring Selendroid and
Appium) in need of more interventions in test
classes throughout their history of releases (e.g.,
the average MRTL is nearly two times as big as
the one computed for Espresso).

The average results gathered for the Modifica-
tions of Tool code to JUnit code ratio (MTJR)
go from 0.24 (for the set of projects featuring
Selendroid) to 5.31 (for the set of projects featuring
Robolectric), meaning that the amount of modifica-
tions to perform on test classes associated with the

considered frameworks used for GUI-level testing
can be five times bigger than the one needed to
perform on classes associated with the JUnit testing
framework. With the exception of Selendroid and
UIAutomator, the considered frameworks feature a
mean MTJR higher than 1, confirming that on
average the code associated with them is more
expensive to keep up to date with the application
than code based on the JUnit framework. The result
is in accordance with our expectations, since –
being at a higher level than unit tests – GUI-related
test code is likely to be influenced by modifications
in every layer of the application, from individual
low-level components to the presentation of the
GUI itself. Hence, as confirmed by the findings,
more maintenance – in the form of measurable
code churn – has to be put on GUI-level test code
during the evolution of a project featuring different
levels of testing based on JUnit (not necessarily
limited to the unit level).

It is however worth underlining that those two
comparison metrics cannot serve as a precise
estimation of the relative importance and needed
effort for different typologies of testing: as
discussed in more detail in the Threats to Validity
section, an exact comparison between two testing
frameworks is never possible even if they are
based on the same coding language, and this
especially applies for JUnit which can be used at
several levels of testing abstraction.

On average, near 3% of the code associated
with the selected testing frameworks is modified
between consecutive tagged releases. 7.4% of the
overall project LOCs modified between consec-
utive tagged releases belong to code in classes
associated with the frameworks. On average, one
fourth of tagged releases feature modifications in
the set of classes associated with the frameworks,
and one third of those classes needs modifications
during the project history.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 24

We computed a set of evolution metrics on
different subsets of the full context of applications
(the ones reported in table VI). In table X we
report, as an example, the detailed results that we
obtained for the projects featuring Espresso.

Projects with at least 1000 LOCs of code asso-
ciated with Espresso tend to have a smaller TLR
value with respect to the full set of projects. This
can be an evidence of the fact that there is no
linear link between the total amount of production
and test code, meaning that test suites tend to
be smaller, if compared to production code, for
larger projects. This trend is confirmed by all the
other five sets of projects. Furthermore, low TLR
values may suggest that the testing code in the
selected projects provides only partial coverage of
the production code: in such case, it is reasonable
that there is not an exact mapping between the
amount of production code and test code, with a
divergency that becomes bigger with the size of
the application. No relevant differences are found
for the other evolution metrics (with the obvious
exception of TMR, which depends on the TLR
value).

Also for the set of projects released on the Play
Store there is a difference in the TLR metric,
arguably for the same reason of the minor TLR
obtainable from applications with more than 1000
LOCs - i.e., small and/or experimental applications,
that are less likely to be released on the Play
Store, may have bigger test suites with respect to
the total amount of production code. In general,
we suppose that every testing framework brings a
constant overhead of LOCs, that makes the TLR
metric bigger for small projects.

While there is no relevant difference in the
measured MTJR for the projects with 1000+ test
LOCs (with respect to the complete set) those
values are almost doubled for projects released
on the Play Store. Two reasons may justify this
finding. First, it is reasonable that when the ap-
plications are eventually released to a public more
emphasis and attention is paid in exercising user
scenarios and performing system testing traversing
the GUIs, hence it is likely that testers perform
adjustments in the automated GUI testing code
more frequently. Second, it can also be supposed
that the applications that are released to a pub-
lic feature more complex GUIs than open-source
projects not exposed on the Play Store: such GUIs

may be subject to more frequent modifications,
with a resulting higher amount of interventions
needed in GUI test code to keep it aligned with
the evolution of the application.

This can serve as a confirmation of our hypoth-
esis: for applications that are eventually released
to a public, test code associated with GUI-related
testing frameworks becomes more crucial than unit
testing or other forms of testing based on the JUnit
framework, and thus requires a bigger (in this case,
double) amount of modifications to be aligned to
the evolution of the app.

C. RQ3 - Fragility
As possible estimations of fragility, we have

considered (as detailed in the metrics section): the
average percentage of modified classes and meth-
ods containing code associated with a given testing
framework (respectively, MCR and MMR); the
ratio of fragile classes upon the total number of
classes associated with a given tool, and with
respect to the total number of modified test classes
(respectively, FCR and RFCR); the percentage
of releases featuring fragile classes, and of releases
featuring added or removed methods inside classes
associated with a tool (respectively, FRR and
ADRR); the average possibility for a class to be
fragile during its lidespan, and the percentage of
classes in each test suite experiencing fragilities
(respectively, TCFF and TSF). A summary of
the definitions of the metrics is given in table XII.
Averages on the whole sets of projects are shown
in table XI. The values in last row are obtained as
averages of the six values above, weighted by the
size of the six sets.

The first column about the Modified Classes
Ratio (MCR) metric shows that, on average,
14.8% of test classes associated with the selected
testing frameworks are modified between consec-
utive tagged releases in the mined set of Android
open-source projects. The only value significantly
different from the average is the one obtained for
the set of projects featuring UIAutomator (9%), but
it can be justified with the bigger amount of test
classes that they feature on average (see table V).

The 3.6% average value found for the Modified
Methods Ratio (MMR) metric highlights that the
percentage of methods associated with the selected
tools that are modified is -as expected- smaller
than the percentage of modified classes: this is

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 25

TABLE XI: Measures for RQ3 - estimations of fragility (averages on the sets of repositories)

Tool MCR MMR FCR RFCR FRR ADRR TCFF TSF

Espresso 15.2% 3.5% 8.3% 59.7% 14.4% 17.7% 4.6% 18.8%
UI Automator 9.0% 1.8% 4.6% 54.4% 10.2% 8.2% 3.1% 16.6%
Selendroid 16.5% 2.7% 4.9% 42.2% 28.2% 23.2% 3.4% 11.9%
Robotium 16.4% 3.5% 9.3% 53.1% 15.2% 21.2% 5.7% 22.8%
Robolectric 15.1% 3.8% 8.5% 60.7% 20.6% 25.8% 4.9% 19.4%
Appium 15.2% 4.6% 7.7% 48.2% 17.1% 23.5% 5.1% 19.6%

Average 14.8% 3.6% 8.2% 59.0% 17.6% 21.9% 4.8% 19.3%

TABLE XII: Metrics pertaining RQ3

Name Explanation

MCR Modified Tool Classes Ratio
MMR Modified Tool Methods Ratio
FCR Fragile Classes Ratio

RFCR Relative Fragile Classes Ratio
FRR Fragile Releases Ratio

ADRR Releases with Added-Deleted Methods Ratio
TCFF Tool Class Fragility Frequence
TSF Tool Suite Fragility

obviously due to the fact that typically multiple
test methods are contained in single test classes.

Not all modified test classes associated with
a given testing framework could be defined as
fragile classes. The Relative Fragile Classes Ratio
(RFCR) metric gives a statistic about the pos-
sibility of a modified class to contain modified
methods. The results collected show that more than
half of the classes having modified lines featured
modifications inside the code of test methods as
well, hence they could be defined as fragile ac-
cording to the heuristic definition given in section
2.4. The Fragile Classes Ratio (FCR) metric gives
the ratio between the classes that we define fragile
upon all the classes associated with a given testing
framework contained by each project. On average,
8.2% of the classes were fragile in the transition
between consecutive releases of the same project.

The Fragile Releases Ratio (FRR) metric gives
an indication of how many releases of the consid-
ered project contain test classes associated with a
given testing framework that we identify as fragile.
The value is upper-bounded by MRR, which is
the frequence of releases featuring any kind of
modification in those classes. The average value for
FRR is 17.7%, meaning that about one every five
releases features fragile test methods associated
with a given testing framework. The Releases with

●

●

●

●

●

●Appium

Espresso

Robolectric

Robotium

Selendroid

UI Automator

0% 10% 20% 30%
To

ol

variable ● FRR ADRR

Fig. 6: FRR and ADRR average values for different
tools.

Added-Deleted Methods Ratio (ADRR) metric
quantifies the probability that there is the need
– between two subsequent releases – to add or
delete test methods inside existing test classes.
In general (with the only exception of the set of
projects featuring UIAutomator) ADRR is higher
than FRR. This result is in accordance with the
findings by Pinto et al. [50], who observed – in the
context of traditional desktop applications – that
the sum of test deletions and additions is higher,
on average, than the number of test modifications.
Figure 6 reports the average FRR and ADRR
measures for the six sets of projects. We can
observe that the two values are generally close
to each other: during the evolution of the classes
associated with a given testing framework the need
for modifications in already existing test methods
(FRR) occurs roughly as often as the definition
of new test methods (ADRR). According to our
interpretation of the addition of test methods – that
we consider as the symptom of new features or new

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 26

TABLE XIII: Percentage of projects without mod-
ifications in test suites, classes and methods

Unmodified Unmodified Unmodified
Tool suites classes methods

Espresso 24.6% 57.0% 65.8%
UIAutomator 16.0% 40.0% 55.0%
Selendroid 60.0% 60.0% 80.0%
Robotium 16.6% 44.1% 60.0%
Robolectric 15.8% 45.3% 53.3%
Appium 27.3% 54.5% 72.7%

use cases to be tested – these values testify that
the introduction of new elements that need testing
is quite a frequent event during the lifecycle of an
open-source Android project featuring the analysed
testing frameworks, but just slightly more frequent
than the modification of already existing methods.

Upper-bounded by TCV (the overall volatility
for test classes), the average Test Class Fragility
Frequence (TCFF) provides information about
the frequency of modifications that test classes
must undergo because of fragile methods. The av-
erage value of 4.8% tells that an average test class
developed with the analysed testing frameworks
must have some modification in its methods every
20 releases in which it appears.

Upper-bounded by TSV (the overall volatility
for test suites), the average value for Test Suite
Fragility (TSF) provides information about the
amount of test classes, in each project, that contain
fragile methods. The average value of 20.2% tells
that one fifth of the classes in test suites face at
least a fragility during its entire lifespan.

In general, 14.8% of test classes and 3.6% of
test methods associated with the analysed testing
tools are modified between consecutive releases.
About 20% of the test classes inside test suites
contain fragile methods at least once in their
lifespan.
Overall the changes induced by fragility require
an amount of code churn comparable to the
definition of new tests: 18% releases undergo
fragility induced changes, and 22% of releases
have test cases added or removed from the test
suite.

It must also be considered that the averages re-
ported above are heavily lowered by those projects
in which classes and methods associated with the

Fig. 7: Descending MRR Measure for the whole
context of Android open-source projects

Fig. 8: Descending FRR Measure for the whole
context of Android open-source projects

espresso robolectric robotium uiautomator

0%

25%

50%

75%

100%

LL&T Not LL&T LL&T Not LL&T LL&T Not LL&T LL&T Not LL&T
Long−Lived and Tested projects (TLR>10% & NR>5)

R
el

ea
se

s
w

ith
 fr

ag
ili

ty
 (

F
R

R
)

Fig. 9: Distribution of FRR metric for long-lived
and highly tested projects

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 27

TABLE XIV: Measures for fragility for long-lived and tested projects

Tool MCR MMR FCR RFCR FRR ADRR TCFF

Espresso 21.2% 4.5% 12.5% 57.8% 26.6% 30.6% 9.0%
UI Automator 10.0% 0.9% 4.9% 55.9% 11.7% 8.8% 8.1%
Robotium 25.7% 5.2% 13.8% 46.0% 29.0% 36.1% 18.3%
Robolectric 30.0% 5.3% 12.5% 63.5% 36.0% 41.5% 14.7%

TABLE XV: Espresso - Fragility metrics for different subsets of projects

MCR MMR FCR RFCR FRR ADRR TCFF TSF

Full set 15.2% 3.5% 8.3% 59.7% 14.4% 17.7% 4.6% 18.8%
Projects on Play Store 13.6% 3.1% 7.7% 61.7% 14.1% 13.9% 4.5% 20.3%
Projects with 1000+ LOCs 15.0% 3.2% 8.2% 60.0% 14.8% 17.7% 4.6% 19.7%

analysed testing frameworks are inserted – at the
beginning or at some point in their history – but
are never modified later. In table XIII we show:
the percentage of projects whose suites of classes
associated with a given testing framework are never
modified; the percentage of projects with no mod-
ifications in classes associated with a given testing
framework (i.e., only additions and modifications
of test classes are performed); the percentage of
projects with no modifications in methods associ-
ated with a given testing framework (i.e., only addi-
tions and modifications of methods are performed,
and no fragility is detected). For instance, in the
case of the set of projects featuring Espresso, 181
out of the 423 projects (the 42.8% of the total) have
modified test classes between consecutive tagged
releases. Only 34% of the projects have modified
test methods between consecutive tagged releases.
Graphs in fig. 7 and 8 show, respectively, the
descending MRR and FRR measures for all the
projects of the context (regardless of the specific
testing tools they feature). It is evident from the
graph that almost half of the test suites are never
modified during the lifespan of the project they
belong to; this supports our assumptions that test
classes are often not utilized or abandoned. These
results may suggest that the test code associated
with the studied testing frameworks is subject to a
certain level of aging [51]. With the static analysis
of code that we have performed in this work, how-
ever, we cannot discriminate between test classes
and methods that are not modified because they do
not need to, and those that are not modified because
they are no longer utilised by the developers, but

are not removed from the project.
In table XIV we show the results that have

been gathered only for those projects that feature
a relevant percentage of code associated with the
considered testing frameworks among product code
(more than 10%) and more than five tagged re-
leases. We show our results for the four biggest
sets of projects considered, being the ones featuring
Selendroid and Appium not relevant for such a
comparison because they are significantly smaller.
Our hypothesis, in fact, is that projects that have
a longer history and bigger test suites, are more
inclined to have test classes and methods modified
than shorter-lived projects in which the amount
of testing is negligible. The metrics we computed
confirm our supposition: with the only exception of
the set of projects featuring UIautomator, average
FRR is nearly doubled for all sets (comparative
boxplots are shown in figure 9). Also the average
TCFF is largely increased if only applications
with relevant test code percentage and release
history are considered. On the other hand, no
modifications in the average RFCR are found: the
probability that classes with modified LOCs are
also fragile seems to be not related to the size of
projects and to the amount of testing inside them.
We aim at investigating further such differences
and the relative causes in future works.

As we have done for the evolution metrics, we
computed the fragility metrics on other subsets of
the whole context of Android applications. The
results reported in table XV show – limited to the
Espresso testing framework, as an example – the
metrics computed for the whole set of projects, for

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 28

TABLE XVI: Samples selected for the evaluating fragility causes

Project Name Class Versions Testing Tool

1 andrew-boiley/classy-apps MainActivityTest.java classy apps.1.12 - classy apps-1.2 Espresso
2 appium/unlock apk Unlock.java v0.0.1 - v0.1.0 Appium
3 EyeSeeTea/malariapp SurveyScoresEspressoTest.java v0.9 - v1.0 Espresso
4 FabriceMK/android-mycv NavigationViewTest.java v1.04 - v1.05 Espresso
5 jivimberg/PracticePronunciation EspressoTest.java v1.2 - v1.3 Espresso
6 karumbi/Android-Ci-Demo CharacterDetails.java v1.1.0 - v2.0.0 Espresso
7 pylapp/SmoothClicker StandaloneActivity.java v1.10.0 pre4 - v1.10.0 pre5 Espresso
8 alosdev/amu-roboguice RoboguiceAndRobotium.java startPoint - withRoboguice Robotium
9 arnastofnun/Ordabanki for android ResultScreenActivity.java v1.1.0 - v1.2.0 Robotium
10 blockchain/My-Wallet-V3-Android ApplicationTest.java 6.1.20 - 6.1.21 Robotium
11 leapcode/bitmask android testDashboard.java 0.5.3 - 0.5.4 Robotium
12 mamewotoko/podplayer PodcastListPreferences.java v0.87 - 0.90 Robotium
13 univmobile/unm-android Scenarios001.java v0.0.4 - v0.0.5 Appium
14 raatiniemi/worker NewProjectPresenter.java v0.8.0 - v0.9.0 Robolectric
15 kidozen/kido-android KidoApplicationTest.java v1.2.0 - v1.2.1 Robolectric
16 hello/anime-android-go-99 MultiAnimatorTests.java v0.4.1 - v1.2.0 Robolectric
17 dan-zx/tedroid GameboardView.java v0.2 - v1.2.0 Robolectric
18 bergvandenp/Sabber ContextHelperTest.java v1.1.2 - v1.1.3 Robolectric
19 passy/absshadow-sample ShadowSherlockActivity.java v0.9 - v1.2.0 Robolectric
20 tomohiro-ihara/android-flowlayout FlowLayoutOrientationTests.java v1.10 - master Robolectric
21 blood1093/RxAndroid ReactiveX AppObservableTest.java v0.24 - v0.25 Robolectric
22 st1hy/Count-Them-Calories OverviewActivityTest.java v1.0.2 - v1.1.0 Espresso
23 AoDevBlue/DotDash IOActivityTest.java 1.0 - master Espresso
24 zsolt/paperwork MainActivityTest.java v1.2.4 - v1.2.7 Espresso
25 rasmussaks/aken-ajalukku ApplicationTest.java iteration-3 - iteration-4 UIAutomator
26 AdamFresko/brickator ExampleBrickatorTest.java v1.0.1 - master UIAutomator
27 ngageoint/anti-piracy-android-app PhoneTest.java 1.0.0-RC1 - 1.0.0-RC2 UIAutomator
28 arquillian/arquillian-droidium InstrumentationPerformer.java 1.0.0.Alpha1 - 1.0.0.Alpha2 Selendroid
29 androidannotations/androidannotations ViewsInjecteActivityTest.java 2.1.2 - 2.2 Robolectric
30 tipsi/tipsi-dropdown-android DropdownTests.java v0.2 - v0.3 Espresso

the projects released on the Play Store, and for the
projects featuring at least 1000 LOCs.

We notice that fragility metrics are very close
for all the subsets, meaning that there is no evident
correlation between the size of the GitHub project
or the fact that the app is released on the Play Store,
and the amount of fragility that it experiences
during its lifespan. The finding corresponds to what
is measured for MTRL and MRTL metrics, re-
garding the general evolution of test code. Smaller
values for MCR are shown by released applica-
tions, meaning that on real published applications
the Activities undergo less modifications than the
average of the total set of Android projects. It can
also be seen that, while FRR is very close to the
value for the whole context of Android projects,
ADRR is lower for released apps: this can be
an index of minor probability of variations in the
main functionalities of released apps, and hence in
a minor need for the addition or deletion of use
cases to be tested by new methods.

To give a preliminary estimation of the amount

TABLE XVII: Reasons of the modifications in test
methods

Class n. #m v1 #m v2 #mm Bug/RF S/F NG G

1 4 4 2 0 0 0 2
2 1 2 1 0 0 0 1
3 16 16 1 0 0 0 1
4 4 4 3 3 0 0 0
5 10 14 4 0 0 0 4
6 10 10 2 0 1 0 1
7 9 9 2 0 0 2 0
8 2 2 1 1 0 0 0
9 13 13 1 0 0 1 0
10 3 3 1 1 0 0 0
11 6 10 1 0 0 0 1
12 13 17 7 1 0 0 6
13 4 4 1 0 0 1 0
14 3 8 3 0 0 0 3
15 4 3 2 0 0 1 0
16 9 14 1 0 0 0 1
17 2 4 2 0 0 2 0
18 11 11 7 0 0 0 7
19 2 2 1 0 0 0 1
20 4 4 4 0 0 0 4
21 9 8 2 2 0 0 0
22 15 16 2 0 0 0 2
23 7 7 1 0 0 0 1
24 10 11 3 0 0 0 3
25 7 7 4 1 0 0 3
26 2 2 1 0 0 0 1
27 9 9 1 0 0 0 1
28 4 4 2 0 0 2 0
29 5 6 1 0 0 0 1
30 6 6 1 0 0 0 1

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 29

of fragilities induced in code associated with GUI
testing frameworks by modifications in the GUI
itself, we selected a sample set of 30 classes iden-
tified as fragile from the studied projects. Details
about the selected samples (i.e., the names of the
repositories, individual classes selected and pairs of
versions between which the modifications in the
classes had place, along with the testing tool to
which the classes are associated) are given in table
XVI.

In the 30 selected fragile classes, 64 individual
methods are modified and thus considered fragile
according to our definition.

Using a similar categorization to the one pro-
posed by Yusifoglu et al. [30], we have considered
different classes of modifications for the test meth-
ods:
• bug fixing and refactoring (Bug/RF);
• syntactical correction and formatting (S/F);
• adaptation to product code not related to GUI

(NG);
• adaptation to product code related to GUI

(G).
For each test class selected, we subdivided the

contained modified methods in the categories de-
fined above, after manual inspections of the git
diff files that allowed us to identify the reasons
behind the changes in test code. For instance,
changed lines in the diff files containing details
of the GUI arrangement (e.g., IDs of the wid-
gets, type of widgets interacted, text contained by
textboxes shown to the users) led us to define
the respective test methods as hampered by GUI
related fragility. Changed lines in diff files related
to internal functionalities of the application (e.g.,
declaration of Intents for launching other Activi-
ties, or registrations of BroadcastReceivers) led us
to define the respective test methods as hampered
by not-GUI related fragility. More insights about
the kinds of modifications performed are shown
in table XVII, whose columns show, in order: the
number of methods before the release transition;
the number of methods after the release transition;
the number of modified methods in the release
transition; finally, the number of methods that are
marked as fragile due to modifications that are not
related to GUI, and the number of methods that
are marked as fragile due to modifications related
to GUI.

We found that about 70% of the modifications

in test methods are induced by modifications in
the arrangement, definition or appearance of the
application GUI. Hence, we can consider that
modifications in the GUI of the AUT are involved
in the majority of the modifications performed on
test methods associated with the six considered
testing frameworks. This result was indeed ex-
pected, since tests created with the use of GUI
automation frameworks aim to exercise the overall
features of the application from the user perspec-
tive. Hence, they are supposed to be impacted
mostly by changes of the user interface only.
However, being system-level tests, they are in any
case impacted by modifications in lower level of
abstractions of the application code, e.g. production
code refactorings or changes in the data definition.
The impact of those categories of modifications to
the apps proved to be quite low on the set of test
cases considered in our manual inspection.

VI. THREATS TO VALIDITY

Threats to internal validity. We have identified
the following threats to the validity of our conclu-
sions:
• The test class identification process is based

on some keywords specific to each testing
tool: any file containing one of such key-
words is considered as a test file without
further inspection. This procedure may miss
some test classes, or consider a file as a test
file mistakenly.

• The number of tagged releases is used as a
criterion to identify a project as worth to be
considered for our investigations; it is not as-
sured that this check is the most dependable
one for pruning negligible projects.

• The metrics we defined have not been tested
outside the scope of this study, hence we can-
not ensure the correctness of the assumptions
we based on them.

• Our evaluations are based only on files that
contain pure Java code. Hence, code in other
languages, that may be part of test suites
as well as of production code of Android
applications, does not contribute to the com-
putations we performed. This may add biases
to the presented results.

• Java files containing keywords pertaining to
each tool were entirely associated with the
tool, and all their lines were counted for

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 30

the defined metrics. In addition to that, no
discrimination has been made about the use
that was made of the individual tools, while
some of the considered testing frameworks
can be used to perform not only GUI testing.
Both threats may add biases to the results,
if multiple different testing frameworks are
used in the same Java classes, and if the
testing tool to which the code is associated is
not used to perform GUI testing. Similarly,
it is not assured that the Java files automat-
ically associated with JUnit were used for
unit testing only or instead as a basis for
other – even GUI – testing tools. The latter
issue may invalidate part of the reasoning
based on the TJR and MTJR metrics.

• Structure, provided coverage and quality of
the developed test cases have not been con-
trolled and taken into account by the auto-
mated procedure for computing the metrics.
Hence, the effects that low-quality tests have
on maintenance effort are not taken into
consideration in the discussion we provide.

• The performed study was purely static, i.e.
test methods were not executed to understand
whether they were actually working even
though they were not subject to modifica-
tions. This threat may add biases to the
amount of fragile test classes and methods
that we provided as results, since they do not
consider test code which should be modified
because of changes in the AUT or its GUI
(and hence is fragile by our definition) but
is abandoned by developers.

Threats to external validity. We identify the fol-
lowing threats to the generalizability of our work:
• Testing tools and techniques adopted by rel-

evant industrial practitioners may vary sig-
nificantly from the ones discussed in this
work, and by the related ones discussed in
earlier sections. It is not assured that our
findings, based on a very large repository
of open-source projects, can be applicable to
the development of commercial projects.

• Our findings are based only on the GitHub
open-source project repository. Even though
it is a very large repository, it is not assured
that such findings can be generalized to
closed-source Android applications, neither
to those taken from different repositories.

• We have collected measures for just six
scripted GUI automated testing tools. It is
not certain that such selection of tools is
representative of other categories of testing
tools or even different tools of the same
category, which may exhibit different trends
and fragilities throughout the history of their
AUT.

• The metrics we defined apply only to testing
tools who produce scripts in Java. Other tools
producing test scripts in other languages can-
not be evaluated using the provided metrics,
neither the results of the application of sim-
ilar metrics on them can be compared to the
results we provide in the paper.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we aimed at taking a snapshot of
the usage of automated GUI testing frameworks
among Android open-source projects. We quanti-
fied the use of a set of six tools that can be used for
GUI testing and that are cited in available literature
– Espresso, UI Automator, Selendroid, Robotium,
Robolectric, and Appium – in the projects hosted
by the GitHub portal.

We found that the level of adoption of the
considered GUI testing frameworks among An-
droid projects hosted on GitHub is very scarce,
even for those tools that are part of the Android
Instrumentation Framework. The whole adoption
of all the six testing tools considered is about 8%
of all projects that have a release history. This
value can be compared to the 20% adoption of
the JUnit framework. For what concerns individual
projects, on average, when present, the testing code
related to the six selected framework represent
13% of all the production code. This result is
slightly lower than those obtained by Kochhar et
al. [5] regarding the projects hosted on the F-
Droid repository, where only 14% apps contained
executable test classes.

Concerning the evolution of test code, on av-
erage near 10% of the total changed lines, be-
tween consecutive releases of the same project,
belong to the code associated with the selected
test frameworks. Such percentage is quite low if it
is considered that code churn is inevitable during
the evolution of an application, and tests must
adapt to changing requirements or any kind of
change in the AUT. However, the average amount

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 31

of changed lines may also reflect a relatively small
coverage provided by test suites developed with the
studied tools, as it may be suggested by the average
relevance of testing code among total production
code. Albeit a linear correlation between code
churn and man hours in updating code is difficult
to be proven, this ratio can be considered as a
preliminary indication of the amount of effort that
developers must spend to keep their test classes up
to date with modifications that are performed on
production code.

In addition to that, when test code associated
with both the popular JUnit testing framework and
the considered six testing frameworks is present,
most of the times more code churn is needed
in keeping up to date the latter (with a ratio of
even 5 to 1 for some of the considered tools).
A higher maintenance cost for code related to
GUI testing was expected: GUI testing frameworks
allow to perform system level testing interacting
with the AUT from the level of abstraction of the
GUI presented to the user, and are affected by
modifications performed on any level of abstraction
of the application functionalities. On the other
hand, other levels of testing (including unit testing,
for which JUnit is commonly used in addition
to serving as an enabling engine for other tools
and levels of testing) are not influenced by any
modification in the GUI arrangement or definition,
and in the graphical appearance of the AUT. Hence,
it is reasonable that GUI tests require more main-
tenance during the normal evolution of a mobile
application, which is – by nature – typically subject
to rapid evolution of its GUI. Future work may
aim at refining the implemented test code parser, to
discriminate between the actual usage made of the
JUnit testing framework (e.g., unit, integration or
system testing) and better delimit the comparisons
performed to evaluate the amount and churn of
GUI testing code.

These results, however, confirm that – as it is
deduced by existing surveys among open-source
developers [32] – maintaining a GUI test suite is a
rather complex and time-consuming task, that can
make open-source developers neglect GUI testing
at all, or abandon test code – without making it
evolve with the application – after it has been
written.

Further empirical studies in this field may di-
rectly observe open-source as well as industry

practitioners, in order to quantitatively measure
their effort in keeping test code aligned with the
evolution of the apps and their GUIs, e.g. in terms
of man-hours per release. Future work may also
seek for correlation between modified LOCs or
classes (e.g., the MRTL, MMR or MCR metrics
proposed in this manuscript) and actual developer
effort, or take into account better predictors as
suggested from existing literature [52]. Further-
more, dynamic evaluations can be performed to
quantify the amount of non-working test code kept
by developers in their project without performing
maintainance on it, and to evaluate the way devel-
opers cope with aging test code.

The fragility of the tests can be estimated with
two metrics based on the raw count of classes
and methods modified. Overall we can estimate
the fragility of the analyzed test classes around
8% (meaning that there is such probability that
a test class associated with one of the studied
frameworks may include a modified test method,
between two consecutive releases). Throughout all
the lifespan of the projects, almost one test class
every five experiences any kind of fragility-induced
modifications. On average, around 15% of releases
need intervention in test classes to keep them
aligned with the production code. On a sample set
of modified classes, that were manually examined
to understand the causes underlying the fragility
issue, it has been found that around 70% of the
fragilities in GUI test methods were related to
modifications performed in the definition and ar-
rangement of the GUI itself, and not to other layers
of the AUT. These results show that developers
contributing to open-source Android projects need
rather frequently to adapt their GUI scripted testing
suites to the evolution of the application, and
suggest that state of the art tools may profit of
additional features reducing the amount of effort
needed by testers to keep their scripts up and run-
ning. The results can also be used as a benchmark
by practitioners and developers themselves, to un-
derstand whether the amount of fragility happening
to their testing code is in line with the typical one
for the tools they are using.

Based on these evaluations, we plan in the imme-
diate future to provide a definition of a taxonomy
of causes of fragilities through the application of
the grounded theory approach to Git diff files,
guidelines to help developers to avoid them, and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 32

finally the development of automated tools capable
of adapting the test cases to modificatons made in
the GUIs, or at least of signaling the developers of
the possible occurrence of fragility for specific test
classes. We plan to add a dynamic evaluation of test
cases to our static analysis, i.e. we aim at executing
modified and unmodified test cases to understand
whether they were actually made unusable by
fragilities, they were still working even though they
featured modifications, or they still presented flak-
iness [53] regardless of adjustments performed. An
extension of the study to other databases of open-
source projects, to different testing frameworks or
types, to other sotware platforms (like iOS), and
to commercial closed-source applications is also
planned.

ACKNOWLEDGMENT

This work was supported by a fellowship from
TIM.

REFERENCES

[1] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas,
C. Vendome, and D. Poshyvanyk, “Automatically dis-
covering, reporting and reproducing android application
crashes,” in Software Testing, Verification and Validation
(ICST), 2016 IEEE International Conference on. IEEE,
2016, pp. 33–44.

[2] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan,
“What do mobile app users complain about?” IEEE
Software, vol. 32, no. 3, pp. 70–77, 2015.

[3] A. I. Wasserman, “Software engineering issues for mo-
bile application development,” in Proceedings of the
FSE/SDP workshop on Future of software engineering
research. ACM, 2010, pp. 397–400.

[4] E. Alégroth and R. Feldt, “On the long-term use of visual
gui testing in industrial practice: a case study,” Empirical
Software Engineering, vol. 22, no. 6, pp. 2937–2971,
2017.

[5] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann,
and D. Lo, “Understanding the test automation culture
of app developers,” in Software Testing, Verification and
Validation (ICST), 2015 IEEE 8th International Confer-
ence on. IEEE, 2015, pp. 1–10.

[6] M. Linares-Vásquez, C. Bernal-Cárdenas, K. Moran, and
D. Poshyvanyk, “How do developers test android applica-
tions?” in Software Maintenance and Evolution (ICSME),
2017 IEEE International Conference on. IEEE, 2017,
pp. 613–622.

[7] H. Muccini, A. Di Francesco, and P. Esposito, “Software
testing of mobile applications: Challenges and future re-
search directions,” in Proceedings of the 7th International
Workshop on Automation of Software Test. IEEE Press,
2012, pp. 29–35.

[8] R. Coppola, E. Raffero, and M. Torchiano, “Automated
mobile ui test fragility: an exploratory assessment study
on android,” in Proceedings of the 2nd International
Workshop on User Interface Test Automation. ACM,
2016, pp. 11–20.

[9] B. Kirubakaran and V. Karthikeyani, “Mobile application
testingchallenges and solution approach through automa-
tion,” in Pattern Recognition, Informatics and Mobile
Engineering (PRIME), 2013 International Conference
on. IEEE, 2013, pp. 79–84.

[10] D. Amalfitano, A. R. Fasolino, P. Tramontana, and
B. Robbins, “Testing android mobile applications: Chal-
lenges, strategies, and approaches,” in Advances in Com-
puters. Elsevier, 2013, vol. 89, pp. 1–52.

[11] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Mobile
application testing: a tutorial,” Computer, vol. 47, no. 2,
pp. 46–55, 2014.

[12] A. Kaur, “Review of mobile applications testing with au-
tomated techniques,” International Journal of Advanced
Research in Computer and Communication Engineering,
vol. 4, no. 10, pp. 503–507, 2015.

[13] M. Linares-Vasquez, C. Vendome, Q. Luo, and D. Poshy-
vanyk, “How developers detect and fix performance bot-
tlenecks in android apps,” in Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference
on. IEEE, 2015, pp. 352–361.

[14] M. Kropp and P. Morales, “Automated gui testing on the
android platform,” Testing Software and Systems, p. 67,
2010.

[15] M. Linares-Vásquez, “Enabling testing of android apps,”
in Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, vol. 2. IEEE, 2015,
pp. 763–765.

[16] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An
input generation system for android apps,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ACM, 2013, pp. 224–234.

[17] Y. Zhauniarovich, A. Philippov, O. Gadyatskaya,
B. Crispo, and F. Massacci, “Towards black box testing
of android apps,” in Availability, Reliability and Security
(ARES), 2015 10th International Conference on. IEEE,
2015, pp. 501–510.

[18] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta,
and A. M. Memon, “Mobiguitar: Automated model-based
testing of mobile apps,” IEEE software, vol. 32, no. 5,
pp. 53–59, 2015.

[19] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and A. M. Memon, “Using gui
ripping for automated testing of android applications,”
in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM,
2012, pp. 258–261.

[20] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach
for automated gui-model generation of mobile appli-
cations,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2013,
pp. 250–265.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 33

[21] J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala, “Test-
droid: automated remote ui testing on android,” in Pro-
ceedings of the 11th International Conference on Mobile
and Ubiquitous Multimedia. ACM, 2012, p. 28.

[22] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran:
Timing-and touch-sensitive record and replay for an-
droid,” in Software Engineering (ICSE), 2013 35th In-
ternational Conference on. IEEE, 2013, pp. 72–81.

[23] C.-H. Liu, C.-Y. Lu, S.-J. Cheng, K.-Y. Chang, Y.-C.
Hsiao, and W.-M. Chu, “Capture-replay testing for an-
droid applications,” in Computer, Consumer and Control
(IS3C), 2014 International Symposium on. IEEE, 2014,
pp. 1129–1132.

[24] E. Alégroth, R. Feldt, and L. Ryrholm, “Visual gui
testing in practice: challenges, problemsand limitations,”
Empirical Software Engineering, vol. 20, no. 3, pp. 694–
744, 2015.

[25] W. Choi, G. Necula, and K. Sen, “Guided gui testing
of android apps with minimal restart and approximate
learning,” in Acm Sigplan Notices, vol. 48, no. 10. ACM,
2013, pp. 623–640.

[26] C. S. Jensen, M. R. Prasad, and A. Møller, “Auto-
mated testing with targeted event sequence generation,”
in Proceedings of the 2013 International Symposium on
Software Testing and Analysis. ACM, 2013, pp. 67–77.

[27] S. Singh, R. Gadgil, and A. Chudgor, “Automated testing
of mobile applications using scripting technique: A study
on appium,” International Journal of Current Engineer-
ing and Technology (IJCET), vol. 4, no. 5, pp. 3627–
3630, 2014.

[28] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-
replay vs. programmable web testing: An empirical as-
sessment during test case evolution,” in Reverse Engi-
neering (WCRE), 2013 20th Working Conference on.
IEEE, 2013, pp. 272–281.

[29] ——, “Visual vs. dom-based web locators: An empirical
study,” in International Conference on Web Engineering.
Springer, 2014, pp. 322–340.

[30] V. G. Yusifoğlu, Y. Amannejad, and A. B. Can, “Software
test-code engineering: A systematic mapping,” Informa-
tion and Software Technology, vol. 58, pp. 123–147,
2015.

[31] X. Tang, S. Wang, and K. Mao, “Will this bug-fixing
change break regression testing?” in Empirical Software
Engineering and Measurement (ESEM), 2015 ACM/IEEE
International Symposium on. IEEE, 2015, pp. 1–10.

[32] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk,
“Continuous, evolutionary and large-scale: A new per-
spective for automated mobile app testing,” in Software
Maintenance and Evolution (ICSME), 2017 IEEE Inter-
national Conference on. IEEE, 2017, pp. 399–410.

[33] T. W. Knych and A. Baliga, “Android application devel-
opment and testability,” in Proceedings of the 1st Interna-
tional Conference on Mobile Software Engineering and
Systems. ACM, 2014, pp. 37–40.

[34] H. Tang, G. Wu, J. Wei, and H. Zhong, “Generating test
cases to expose concurrency bugs in android applica-

tions,” in Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering.
ACM, 2016, pp. 648–653.

[35] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and
A. Orso, “Barista: A technique for recording, encoding,
and running platform independent android tests,” in Soft-
ware Testing, Verification and Validation (ICST), 2017
IEEE International Conference on. IEEE, 2017, pp.
149–160.

[36] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and
D. Poshyvanyk, “Fusion: A tool for facilitating and
augmenting android bug reporting,” in Software Engi-
neering Companion (ICSE-C), IEEE/ACM International
Conference on. IEEE, 2016, pp. 609–612.

[37] M. TAN and P. CHENG, “Research and implementation
of automated testing framework based on android,” In-
formation Technology, vol. 5, p. 035, 2016.

[38] N. M. L. Neto, P. Vilain, and R. d. S. Mello, “Segen:
generation of test cases for selenium and selendroid,”
in Proceedings of the 18th International Conference on
Information Integration and Web-based Applications and
Services. ACM, 2016, pp. 433–442.

[39] M. Hans, Appium Essentials. Packt Publishing Ltd,
2015.

[40] G. Shah, P. Shah, and R. Muchhala, “Software testing au-
tomation using appium,” International Journal of Current
Engi neering and Technology, vol. 4, no. 5, pp. 3528–
3531, 2014.

[41] D. Amalfitano, A. R. Fasolino, P. Tramontana,
S. De Carmine, and G. Imparato, “A toolset for
gui testing of android applications,” in Software
Maintenance (ICSM), 2012 28th IEEE International
Conference on. IEEE, 2012, pp. 650–653.

[42] D. T. Milano, Android application testing guide. Packt
Publishing Ltd, 2011.

[43] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and
R. Mahmood, “Testing android apps through symbolic
execution,” ACM SIGSOFT Software Engineering Notes,
vol. 37, no. 6, pp. 1–5, 2012.

[44] B. Sadeh, K. Ørbekk, M. M. Eide, N. C. Gjerde,
T. A. Tønnesland, and S. Gopalakrishnan, “Towards
unit testing of user interface code for android mobile
applications,” in International Conference on Software
Engineering and Computer Systems. Springer, 2011,
pp. 163–175.

[45] A. Allevato and S. H. Edwards, “Robolift: engaging cs2
students with testable, automatically evaluated android
applications,” in Proceedings of the 43rd ACM technical
symposium on Computer Science Education. ACM,
2012, pp. 547–552.

[46] H. Zadgaonkar, Robotium Automated Testing for Android.
Packt Publishing Ltd, 2013.

[47] R. Grgurina, G. Brestovac, and T. G. Grbac, “Develop-
ment environment for android application development:
An experience report,” in MIPRO, 2011 Proceedings of
the 34th International Convention. IEEE, 2011, pp.
1693–1698.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 34

[48] D. Amalfitano, A. R. Fasolino, and P. Tramontana, “A gui
crawling-based technique for android mobile application
testing,” in Software testing, verification and validation
workshops (icstw), 2011 ieee fourth international confer-
ence on. IEEE, 2011, pp. 252–261.

[49] T. Das, M. Di Penta, and I. Malavolta, “A quantitative and
qualitative investigation of performance-related commits
in android apps,” in Software Maintenance and Evolu-
tion (ICSME), 2016 IEEE International Conference on.
IEEE, 2016, pp. 443–447.

[50] L. S. Pinto, S. Sinha, and A. Orso, “Understanding myths
and realities of test-suite evolution,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, 2012,
p. 33.

[51] R. Feldt, “Do system test cases grow old?” in Software
Testing, Verification and Validation (ICST), 2014 IEEE
Seventh International Conference on. IEEE, 2014, pp.
343–352.

[52] E. Shihab, Y. Kamei, B. Adams, and A. E. Hassan, “Is
lines of code a good measure of effort in effort-aware
models?” Information and Software Technology, vol. 55,
no. 11, pp. 1981–1993, 2013.

[53] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung,
and D. Marinov, “Deflaker: Automatically detecting flaky
tests,” 2018.

