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Toward an eBPF-based clone of iptables

Matteo Bertrone, Sebastiano Miano, Jianwen Pi, Fulvio Risso, Massimo Tumolo

Abstract

Iptables, which is currently the most common firewall on
Linux, has shown several limitations over the years, with scal-
ability as a big concern. This paper reports the first results of a
project that aims at creating a (partial) clone of iptables, using
the eBPF/XDP technology. This project assumes unmodified
Linux kernel and guarantees the full compatibility (in terms of
semantics and synxtax) with current iptables.
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Introduction
Many Linux servers exploit iptables, which is part of the
netfilter [5] kernel subsystem, to protect the server from
threats coming from the external network. Although widely
used, iptables has been criticized in many aspects, such as for
its antiquate matching algorithm (linear search); its syntax,
not always intuitive; its old code base, which is difficult to
understand and maintain.

Over the years, this triggered the creation of several al-
ternative firewall projects trying to address some of the
above mentioned limitations. For example, ufw [6] focused
on a simpler user interface, although the components be-
hind the hood are still the one used by iptables. Instead,
nftables [2] proposed an extensible virtual machine that
interprets code dynamically generated and loaded from user
space, simplifying the kernel source code base and facilitating
the possibility to add new features or support new protocols.
However, the foregoing projects failed so far to replace ipta-
bles in real world deployment, hence leaving it as one of the
most used software nowadays.

Recent activities in the Linux networking community are
currently investigating whether iptables can be replaced with
an eBPF-based clone, which led to the creation of the bp-
filter [1] prototype. So far, this work has been focusing on
the performance side, showing the advantages of intercept-
ing (hence filtering) packets early in the kernel, even on the
smartNICs, and on the user interaction, i.e., how to intercept
iptables firewall rules for their emulation in the eBPF frame-
work.

This paper starts from the above activities and
presents an eBPF-based (partial) clone of iptables, called

bpf-iptables, which emulates the iptables filtering
semantic and exploits a more efficient matching algorithm.

It presents four additional challenges that need to be tack-
led in order to obtain a fully-compatible clone of iptables,
such as (i) how to preserve the semantic of iptables rules when
operating with the eBPF hooks; (ii) how to choose and imple-
ment a fast matching algorithm in eBPF; (iii) how to support
rules based on connection tracking; and finally (iv) how to
guarantee the compatibility with the iptables syntax.

A positive answer to the above challenges will enable bpf-
iptables to accept vanilla iptables commands without letting
a normal user to notice any difference. Iptables rules will
be emulated through the proper set of eBPF programs, hence
leading to a cleaner and more future proof architecture, and
a (possible) increase in processing speed particularly when a
high number of rules is involved, without requiring custom
kernels or invasive software frameworks (e.g., DPDK) that
could not be allowed in some scenarios (e.g., servers in large
datacenters).

Prototypal architecture
This Section presents the architecture of the bpf-iptables pro-
totype, derived from the necessity to solve the four main chal-
lenges listed in the Introduction.

Preserving iptables semantic
Iptables enables to filter traffic in three different locations,
which are called INPUT, FORWARD and OUTPUT chains, as
defined by the netfilter framework and shown in Figure 1. As
suggested by the names, the first chain applies to traffic that is
terminated on the host itself; the second can handle traffic that
traverses the host (e.g., when Linux is asked to act as a router
and forward IP traffic between multiple interfaces), while the
third operates on traffic exiting from the host and directed to
the Internet. It is important to notice that the FORWARD chain
is used also when the traffic traverses the Linux kernel coming
from (or directed to) non-root network namespaces, which
is becoming a common case in many virtualized deployment
(e.g., Kubernetes).

On the other hand, eBPF hook points are different and are
located before the traffic control (TC) module, which is ear-
lier than the above filtering points for incoming traffic, and
later for outgoing traffic, as shown in Figure 1. The differ-
ent position of the filtering hooks in netfilter and eBPF poses
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non-negligible challenges in preserving the semantic of the
iptables rules, which, when enforced in an eBPF program,
operate on a different set of traffic compared to the one that
would cross the chain they are attached to. As an example,
rule “iptables -A INPUT -j DROP” drops all the in-
coming traffic directed to the current host, but it does not af-
fect the traffic that is being forwarded by the host itself. A
similar “drop all” rule, applied in the eBPF TC INGRESS
hook point, will instead drop all the incoming traffic, also in-
cluding the one that would be forwarded by the host itself.

This behavior suggests the necessity to introduce a classi-
fication logic in the eBPF hook points that predicts the set of
traffic that would reach each individual iptables chain. This
would enable bpf-iptables to emulate the same behavior of
iptables although operating in a different hook point. A pos-
sible solution is the architecture depicted in Figure 2, which
features an initial Chain Selector module in charge of predict-
ing which path would be taken by the traffic, followed by the
actual filtering block that is configured with exactly the same
rules operating in the original iptables chain.

According to this architecture, TC/XDP ingress hooks are
used to emulate the filtering behavior of the iptables INPUT
and FORWARD chains. Instead, the TC EGRESS hook emu-
lates only the OUTPUT chain; the associated Chain Selector
module detects the traffic forwarded by the host and sends it
directly in output, since that traffic has already been filtered
by FORWARD emulation module attached to the TC/XDP
ingress hooks.

The Chain Selector block is a simple filter that classifies
traffic based on the IP address of the traversed packets, par-

ticularly based on the Destination IP address for the Ingress
Chain Selector, and Source IP address in case of the Egress
Chain Selector. The idea is that traffic would cross the INPUT
chain only if it is directed to a local IP address, visible from
the host root namespace; similarly, a packet would traverse
the OUTPUT chain only if has been generated locally. This is
achieved in our prototype with an additional control logic that
(i) lists all the IP addresses visible from the root namespace
and configures them in the Chain Selector when the systems
starts; and (ii) attaches to the appropriate NETLINK mes-
sages in order to detect any change in the set of local ad-
dresses (e.g., an updated IP address, a network device turned
on/off) and realign the content of the Chain Selector with the
proper state of the system.

While this simple solution suffices for most common pro-
cessing case, it would not be able to support the several pro-
cessing processing paths allowed by the netfilter framework,
e.g., when the Linux host is configured to bridge the pack-
ets between two interfaces (this option is not shown in Fig-
ure 2) for the sake of simplicity. As a consequence, the em-
ulation of the filtering behavior of iptables in eBPF may be-
come rather complicated in case a 100% compatibility with
iptables is required. In that case, a more effective solution
would be to extend the netfilter framework with additional
eBPF hook points, which would allow to intercept packets
exactly in the desired position of network stack. This would
greatly simplify the integration of eBPF-based components
with the existing kernel native modules.

Matching algorithm
Iptables uses a linear search algorithm for matching traffic,
which is the main responsible for its poor performance par-
ticularly in presence of a high number of firewall rules. How-
ever, the selection and implementation of a better matching
algorithm prove to be a challenging choice due to the intrin-
sic limitation of the eBPF environment [4]. In fact, although
better matching algorithms are well-known in the literature
(e.g., cross-producting, decision-tree approaches, etc.), they
require either sophisticated data structures that are not cur-
rently available in eBPF or an unpredictable amount of mem-
ory, which is not desirable for a kernel module.

Given the above constraints, the current prototype of bpf-
iptables exploits the Bit Vector Linear Search [3] (LBVS) al-
gorithm, which proves to be reasonably fast while being fea-
sible with current Linux kernels (and available eBPF maps).
This algorithm follows the divide-and-conquer paradigm: it
splits filtering rules into multiple classification steps, based
on the number of protocol fields present in the rule set; inter-
mediate results are combined to obtain the final solution.

In fact, LBVS creates a specific (logical) bi-dimensional
table for each field on which packets may match, such as
the three fields (IP destination address, transport protocol,
TCP/UDP destination port) shown in the example of Fig-
ure 3. Each table contains the list of unique values for that
field present in the given ruleset, plus a wildcard for rules
that do not care for any specific value. Each value in the table
is associated with a bitvector of length N equal to the num-
ber of rules, which keeps the list of rules that are satisfied
when the field assumes the given value. Filtering rules, and



the corresponding bits in the above bitvector, are ordered with
highest priority rule first; hence, rule #1 corresponds to the
most significant bit in the bitvector. As an example on how
the bitvectors are created, rule #5 simply checks the IP des-
tination address and ignores the value of other fields; hence,
the 5th bit in each bitvector is true when the IP destina-
tion address is in range 10.0.0.0/8, for whatever value of
transport protocol and TCP/UDP port (hence, the 5th bit is
always 1 for all values in the other two tables).

This matching process is repeated for each field we are
operating with, such as the three fields shown in Figure 3.
The final matching rule can be obtained by performing a
bitwise AND operation on all the intermediate bitvectors
returned in the previous steps; the resulting rule corresponds
to the most significant bit with a value equal to ‘1’ in the re-
sulting bitvector, which represents the matched rule with the
highest priority. In the example in Figure 3, it corresponds to
the rule #1.

Each processing step is independent, hence each map can
be implemented in a different way, based on the field char-
acteristics (e.g., longest prefix match in case of IP addresses
and ranges; hash tables for TCP/UDP ports). Per-CPU maps
are used whenever possible to avoid cache pollution among
different CPU cores and increase the effectiveness of parallel
processing of multiple packets on different CPU cores. Then,
the entire set of rules is split into these tables and the clas-
sification is carried out in different steps whose results (as
bitvectors that maintain the list of matching rules for each
field) are combined to obtain the final solution, as shown in
Figure 3. In each matching step, if a lookup fails, the algo-
rithm can infer that no match has been found and it can apply
the default action, skipping the rest of the pipeline.

The above logical pipeline has been implemented by means
of a cascade of eBPF programs as shown in Figure 4, calling
each other by means of tail calls. A first module is dedi-
cated to the extraction of the packet headers in order to fa-
cilitate the processing of the following blocks. Each match-
ing step, which operates on a single field, is translated into a
dedicated eBPF program that integrates the required process-
ing code with the most appropriate bi-dimensional per-CPU
map, which keeps the couples value-bitvector associ-
ated to the given field. In each field matching step, the ex-
tracted bitvector is compared with the one already obtained
at the previous step and stored in a shared per-CPU array,
which will be used by the following blocks in the pipeline.
Finally, the last block scans the final bitvector looking for the
most significant bit at 1; when this is found, it implements the
action associated to the rule (drop / accept) and it updates the
structure that keeps the counters associated to each rule.

Thanks to the dynamic code injection of eBPF, we cre-
ated a matching pipeline that contains the minimum number
of processing blocks required to handle exactly the fields re-
quired by the current ruleset, avoiding unnecessary process-
ing for unused fields. For instance, if the TCP flags field is
not used by any rule, that processing block is avoided in the
pipeline; new processing blocks can be added at run-time if
the matching against a new field is required, with the property
of running always the optimal number of eBPF programs.
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Connection tracking
Netfilter tracks the state of TCP/UDP/ICMP connections and
stores them in a session (or connection) table (conntrack).
This table can be used by iptables to specify filtering rules
that accept/drop packets based on the characteristic of the
connection they belong to. For instance, iptables may have
a rule that allows only packets belonging to a new or estab-
lished connections, e.g., enabling the host to generate traffic
toward the Internet (and to receive return packets), while con-
nections initiated from the outside world may be forbidden.

In addition of being associated to a connection, each packet
can also trigger a state change in a connection; for example, a
TCP SYN triggers the creation of a new entry in the connec-
tion table, while a RST packet (which represents the termina-
tion of an established connection) flushes an existing entry.

Given the impossibility to exploit the connection tracking
facility of the Linux kernel, our bpf-iptables prototype imple-
ments its own connection tracking module as a set of eBPF
programs. However, due to the well known limitation e.g., in
terms of code complexity allowed by this technology, we sup-
port basic connection tracking for stateful filtering of UDP,
TCP, ICMP traffic that detects when a connection starts/ends,
while we do not recognize additional states in the protocol
state machines as well as we do not support advanced features
such as related connections (e.g., when a SIP control session
triggers the establishment of voice/video RTP sessions), nor
we support IP reassembly. A possible more complete solu-
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tion for connection tracking in eBPF could consist in adding
a proper eBPF helper in the kernel that enables to access to
conntrack table; this idea has been proposed recently on the
netfilter developers mailing list1.

The resulting architecture for connection tracking in bpf-
iptables is shown in Figure 5 and it consists of two eBPF pro-
grams. The first program receives the traffic before any chain
and (i) detects if the incoming packet triggers any change in
the conntrack table (e.g., a TCP SYN packet that starts a new
connection) and (ii) associates the given packet to a session
entry, which may be used by the following modules to filter
the packet itself based on the above condition. The second
program operates at the end of the chain and it stores perma-
nently the state that has been possibly updated by the current
packet in the conntrack table. In fact, the new state of the
connection (or, in case of a new connection, the associated
new entry) is stored in the conntrack table only if the packet
survives the filtering; hence, no change occur if the packet is
dropped.

The connection tracking module introduces an additional
hidden overhead due to the necessity to intercept traffic in
both directions (i.e., host to Internet and viceversa), which is
needed in order to follow the protocol state machine, e.g., to
recognize the three way handshake (SYN, SYN/ACK, ACK)
sequence in order to declare a new TCP connection as “estab-
lished”. In other words, even if the user installs a set of ipt-
ables rules that operate only on the INPUT chain, a minimal
eBPF processing pipeline that encompasses only the connec-
tion tracking modules is enabled anyway on the TC EGRESS
hook.

An additional problem found in the implementation of the
bpf-iptables conntrack module was the difficulty in cleaning
up the connection table, e.g., to purge zombie sessions. In
fact, since eBPF programs are event-driven, the natural place
to put such a function would be the control plane, with a
thread dedicated only to clean expired entries. However, this
solution may lead to race conditions, as there is no locking
mechanism that allow to define a critical section shared be-
tween kernel eBPF programs and userspace programs; this re-

1https://www.mail-archive.com/
netfilter-devel@vger.kernel.org/msg11139.html

sults in the possibility that an entry is deleted by the userspace
while the eBPF program is actually making use of the content
of that entry.

The current implementation circumvent this problem by
implementing the conntrack table with an LRU map, so that
old entries are automatically recycled and assigned to new
connections. In addition, it stores in each entry a timestamp
representing the last time that entry was used; this enables to
detect a possible access to an old entry, not yet purged by the
LRU algorithm. This is not the optimal solution, but it repre-
sents the best compromise given the possibilities offered by
the current eBPF technology.

Preserving iptables syntax
The compatibility with the iptables syntax is another must
for this prototype. This enables potential users to exploit the
same tools/scripts they currently use for controlling iptables
to interact also with bpf-iptables, providing a smooth migra-
tion experience. However, since a full clone of iptables may
not be feasible in the short term, we would like to guarantee
users they will always obtain exactly the result they expect,
even if the current bpf-iptables may not be able to support all
issued commands.

Our solution to the above problems was to create two exe-
cutables, iptables and bpf-iptables, which are avail-
able at the same time in the system, the former controlling
the traditional filtering based on netfilter, the second emulat-
ing iptables by means of the eBPF clone. Ideally, both tools
should support the same syntax; in practice the latter sup-
ports only a subset of commands compared to the former due
to the scarce maturity of our solution. This allow users to
either call iptables or bpf-iptables, using the same
syntax; in case a command is not supported by the latter, the
user can always switch back to the original iptables and obtain
the network behavior he needs. This solution is very simple
and leaves the responsibility to choose the right executable to
the user; while more sophisticated solution can be envisioned,
this may be acceptable in the short term.

Technically, this has been achieved by a lightweight set
of modifications to the iptables source code, which has been
cloned and renamed as bpf-iptables, and to the underlying
libiptc library. Our modifications simply change the way
iptables and libiptc push commands in the kernel, replac-
ing netlink messages with an equivalent command line
that is passed to an intermediate shell script in charge of
calling the bpf-iptablesd daemon, which implements
the actual eBPF-based iptables clone. This daemon has a
REST interface waiting for JSON commands that ask to
add/remove filtering rules, read the state of the system (e.g.,
statistics/counters) and more; the above commands are trans-
lated in eBPF-compatible primitives that are sent to the ker-
nel, e.g., to generate a new set of eBPF programs2, to read
data in a map, and more.

This approach has the advantage of introducing no addi-
tional cost cost for parameter parsing and validation, already

2Due to the LBVS internals and the way we create eBPF pro-
grams, we have to generate a new set of eBPF programs each time
there is a change in the filtering rule dataset.
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performed by iptables, as well as limiting the number of bugs,
as we reuse already existing and well tested code for the fron-
tend. An overview of the overall architecture is depicted in
Figure 6.

Conclusions
This paper presents a preliminary architecture for a possible
replacement of iptables with an equivalent software based on
the eBPF technology.

While proven to be feasible, the prototype highlighted also
the complexity of creating a full clone of iptables, in partic-
ular considering that this paper addressed only a subset of
the features available in that software. For instance, iptables
is often used to handle both filtering and natting functions,
with the latter not been considered in this paper, as well as
the features available in ebtables and arptables, and the addi-
tional packet paths in netfilter when bridging (instead of IP
forwarding) is enabled.

Starting from the above observation, we can envision two
possible direction for our future work.

First, instead of trying to substitute iptables with a full
eBPF clone, it would be worth exploring the possibility of
offloading a subset of the filtering rules in an eBPF program,
running at high speed (e.g., in XDP). This may be the case for
long lists of homogeneous rules (e.g., operating on IP desti-
nation address) that are used to discard traffic from malicious
sources; instead of matching each incoming packet against
that set of rules, which are processed with the linear search
available in iptables, those could be moved to a processing
module that implements a more efficient algorithm and runs
earlier in the network stack, as long as the semantic of the
rules is preserved. This results in having malicious packets
dropped earlier, with the consequent reduced resource (CPU)
consumption.

Second, having a more extensive set of hook points op-
erating in netfilter could add more flexibility in integrating
eBPF programs in Linux, as it would enable the selective re-
placement of a single component while keeping the others
unchanged (e.g., replace only the firewall, but keep the Linux
IP forwarding). This flexibility is not available with the cur-
rent eBPF hooks; for instance, if the filtering is implemented
with eBPF, the NAT has to be re-implemented in eBPF as
well in order to preserve the semantic of the rules. In fact, if
we take the INPUT chain as example and assuming that the

filtering is done in eBPF, the current NAT would operate on
packets exiting from the filtering components, while in the
original iptables the NAT is traversed before packets arrive to
the filtering block.
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