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Abstract 

Cast in situ reinforced concrete frame is one of the most common options for 

civil buildings. Although earliest common usages of this solution date back to 

second half of 19th century, research activity is constantly developing to investigate 

several aspects, especially about nonlinear behaviour of reinforced concrete 

structures. 

Structural robustness of buildings is actually one of the key issues faced by the 

international scientific community. This expression is used to indicate a desirable 

property of a structure that allows it to withstand an accidental event, preventing 

progressive and/or disproportionate collapse. 

Interest in this topic has been growing rapidly after the collapse of Ronan Point 

Apartment Tower in Newham, East London, in 1968, when a gas explosion 

destroyed a loadbearing concrete panel causing the collapse of an entire corner of 

the building and killing four peoples. 

Although the issue of progressive collapse of multi-storey frames has been 

widely studied in the last decades, according to the literature review, the actual 

structural response following a localised failure has not yet been fully understood. 

Besides, many design guidelines for preventing progressive collapse denote a lack 

of adequate theoretical supports. 

Several technics have been developed to evaluate the response after an 

accidental situation. In Europe, EN1991-1-7 has introduced the notional removal 



  

 
design strategy. This approach establishes that a building should be checked to 

ensure that upon the notional removal of each column or each beam supporting a 

column, or any nominal section of load-bearing wall, one at a time in each storey 

of the building, the structure remains stable exhibiting only localised failure.  

Currently one of the main solutions to ensure robustness consists in tying 

together structural members by using continuous reinforcement. In this context, the 

designer is required to evaluate the global structural response, then the role played 

by the floor-system becomes crucial. Unfortunately, to consider the contribution of 

the floor system in the post-failure behaviour involves longer times for modelling 

and analyses. 

The study here presented is articulated through several points. The initial intent 

is to develop simplified models of the floor-system able to simulate its behaviour, 

to obtain accurate results through a more efficient modelling. Different numerical 

models will be presented. These will focus on distinct simplification levels, 

depending on the finite elements adopted. The codes used for nonlinear numerical 

analyses have been previously tested and validated on experimental tests on 2D and 

3D specimens and both static and dynamic analyses. 

The second aim is to evaluate the effectiveness of different floor-system 

typologies on the global behaviour of reinforced concrete frames. Two typical 

reinforced concrete solutions are tested: the first exploits a bidirectional slab, while 

the second adopts monodirectional joists and a collaborating slab. 

To compare the results, a structure with features common to most of the 

reinforced concrete buildings has been chosen as reference test. The considered 

scenarios involve the removal of four distinct columns: two internal ones with 

different boundary conditions, an edge element and a corner one, all the columns 

are placed at the ground floor level. 



  

 
The third aim is to evaluate the influence of several parameters on global 

response, to identify their possible influence on the phenomenon and to highlight 

which among these have a determining impact on the structural response. The 

factors investigated are: primary beams depth, columns depth, presence of bracing 

systems, continuous reinforcement amount and seismic detailing. 

The achieved results provide precise information on the overall structural 

behaviour, highlighting the key role played by certain factors such as the percentage 

of continuous reinforcement in the beams and the importance of seismic detailing. 

At the same time the analyses have highlighted the marginal influence exerted by 

other parameters like the stiffening contribution given by a bracing system or stiffer 

columns, whose effects may be considered negligible. 
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Chapter 1 

Introduction 

1.1 Background 

Cast in situ reinforced concrete frame is one of the most common options for 
civil buildings with spans between 4m and 12m. Since the first patents and initial 
applications, this material has undergone a deep evolution becoming one of the 
most widely used in the world for the construction of a wide range of structures. By 
combining the excellent tensile behaviour of steel bars and the compressive one of 
concrete, a high-performance material is obtained, the use of which represents in 
many cases the most cost-effective solution. The vertical elements (column) and 
the horizontal ones (beams) transfer both the horizontal and vertical loads to the 
foundations. In these structures, generally also the floor system is built by using 
cast in situ reinforced concrete elements, exploiting unidirectional solutions (e.g. 
joists with collaborating slab), or a bidirectional one (e.g. bidirectional slab). 

In the early development of reinforced concrete frames, only the gravity and 
wind loads were considered while the abnormal loads such as those caused by an 
explosion or impact were rarely included in the design. Therefore, most of the 
structures do not have any specific provisions to withstand accidental actions. 

In civil engineering, the expression structural robustness is used to indicate a 
desirable property of a structure that allows it to resist against an accidental event, 
preventing a progressive and/or disproportionate collapse. Although these terms are 
sometimes improperly used as synonyms, the former can be defined as one that 







  

 

 

Figure 2: Alfred P. Murrah Building collapse 

 

 

Figure 3: World Trade Center collapse 
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Chapter 2 

Literature Review 

2.1 Introduction 

In this chapter is presented a review about progressive and disproportionate 
collapse, structural robustness, experimental and numerical analyses of the 
progressive collapse resistance of reinforced concrete structures. Paragraph 2.2 
contains a brief description of RC frame structures. Section 2.3 reports the 
definition of progressive collapse and the factors that affect structural robustness. 
Paragraph 2.4 reports current provisions for structural robustness, focusing on 
European and American standards. Through experimental and FE studies 
conducted in the last decade, the efficiency of the current tie force method is 
discussed in section 2.5. While the most recent experimental and FE studies on 
progressive collapse in RC structures with extensive discussion are presented in 
sections 2.6 and 2.7, respectively. A review of analytical approach to define 
progressive collapse resistance of RC structure is discussed in section 2.8. Finally, 
section 2.9 reports a summary of the literature review. 

2.2 Reinforced concrete framed structures 

Concrete frame structures represent one of the most common structural 
typologies in the world. This type of building consists of a frame in which the 
horizontal members are called beams, and vertical members are called columns. 
The floor system is generally represented by a bidirectional solution realised with 
a concrete slab, or a monodirectional system formed by RC joists and a 
collaborating slab. The loads acting on the slab are transferred to the beams and 
then to the columns that transmit the actions to the foundations. Column are the 
primary load-bearing element of the building: the failure of a beam or slab in fact 
usually affects only one floor, while if a column collapses the damage can generally 
interest a larger portion of the structure. 















  

 

 

Figure 6: Categorization of consequences classes (Way, 2011) 

Figure 7 summarizes the solution strategies for each class. 
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Figure 7: Building classes and solution strategies (CEN, 2006) 
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4. If the notional removal of any supporting element would result in the 

collapse of an area greater than the admissible local damage that 
element should be designed as a key element. 

5. If the notional removal of any supporting element would result in the 
building being unstable that element should be designed as a key 
element. 

 

Figure 9: Recommended limit of admissible damage (Way, 2011) 

The designer is required to determine the amount of structural damage after 
the notional removal. For the case of a column being notionally removed, all 
the beams supported by the column are assumed to collapse and all the floor 
slabs supported by the collapsed beams are assumed to collapse. To ensure the 
damage does not spread down the building, the floor below the damaged area 
should be checked to ensure that it does not collapse due to the debris. At the 
same time, to ensure the damage does not spread up the building, the floors 
above the removed column should be checked to determine whether they can 
bridge over the damaged area. 

2.4.2 American Society of Civil Engineering (ASCE 7-05) 

The American Society of Civil Engineering mainly focuses on a threat-
independent approach. To withstand progressive collapse the designer is addressed 
to enhance the redundancy and the development of alternate load paths. ASCE 7-
05 defines two possible methods: 












































































































































































































































































































































































