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Abstract. Predicting the oncogenic potential of a gene fusion transcript
is an important and challenging task in the study of cancer development.
To this date, the available approaches mostly rely on protein domain
analysis to provide a probability score explaining the oncogenic potential
of a gene fusion. In this paper, a Convolutional Neural Network model is
proposed to discriminate gene fusions into oncogenic or non-oncogenic,
exploiting only the protein sequence without protein domain information.
Our proposed model obtained accuracy value close to 90% on a dataset
of fused sequences.

Keywords: Gene Fusions - Deep Learning - Convolutional Neural Net-
works.

1 Scientific Background

Nowadays, the increased availability of Next Generation Sequencing (NGS) data
enables new unforeseen insights into the relation between some genetic rearrange-
ments and cancer development. In this regard, a challenging area is represented
by the study of gene fusions, a genetic aberration where two separate DNA re-
gions (usually two distinct genes) join together into a hybrid gene. The genes
retained at 5p’ and 3p’ of the fused sequence are conventionally called 5p’ gene
and 3p’ gene, respectively. If the promoter region of at least one of the two genes
is retained in the fusion, the erroneous sequence is transcribed at the RNA level,
and the aberrated transcript can result into an abnormal protein [7].

Since the discovery of the first genetic rearrangement by Nowell and Hunger-
ford in 1960, a large number of gene fusions have been associated to cancer
development and used as cancer predictors [7]. However, gene fusions do not au-
tomatically relate to carcinogenic processes, as they can be found in large number
even in non-tumoral samples [2]. In light of the above, predicting whether an
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aberrated transcript will result into a functional protein or a cancer driver is a
very critical and challenging task in the study of cancer development.

To the best of our knowledge, all current approaches reconstruct the candi-
date fusion from original sequenced data and apply different types of machine
learning methods to perform protein domain analysis. For example, the tools
Oncofuse [10] and Pegasus [1] use respectively naive Bayes Network and deci-
sion tree classifiers to provide an oncogenic probability score for the fusion based
on protein domain data.

To this date, a large number of machine learning approaches have been pro-
posed to solve different types of DNA sequence classification problems, with an
increasing trend in the use of deep learning techniques [8,9]. More specifically,
Convolutional Neural Networks (CNNs), a class of deep, feed-forward neural net-
works originally designed for image classification problems, are now exploited
in many DNA sequence analysis tasks for their ability to automatically learn
the features from the training data, avoiding the design of handcrafted descrip-
tors. Among the many tasks, CNNs have been successfully applied to model the
properties and functions of DNA sequences, to the prediction of single-cell DNA
methylation states and microRNA targets, as well as to the recognition of splice
junction sites and promoter sequence regions [8].

In this work we exploit CNN to classify candidate gene fusions into cancer
driving and non-carcinogenic fusions, outputting a categorical class label instead
of a probability score. Unlike previous approaches, our model exploits human
reference sequences (and not original sequencing data), relying only on the fusion
sequence, with no additional input about conserved or lost protein domains.
By doing so, our aim is to avoid any possible bias that the prediction models
leveraged by protein domain analysis may introduce into the classification task,
as well as to improve the generalization capabilities and ease-of-retraining of
the classifier. This is a very important trait in a continuously-evolving field of
knowledge such as the study of cancer development.

To design a completely protein domain independent model, we provide the
real amino acid composition of the fused protein to the network, without any
other additional data interpretation.

2 Materials and Methods

As already mentioned, the purpose of our work is to discriminate between gene
fusions with functional oncogenic potential (referred to as Onco class) and fu-
sions that are not involved in a carcinogenic process (referred to as NotOnco
class), without any previous information on the protein domains retained or lost
in the fusion sequences. For this purpose, we exploit the ability of the CNN to
recognize local spatial patterns that are significant for the classification without
requiring any a priori feature description of the two classes.

Overall our dataset contains a total number 1741 reconstructed fused se-
quences, respectively 1005 for the Onco class and 736 for the NotOnco class. As
CNNs traditionally take images as input, we apply and compare three different
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encoding methods to transform fusion sequences into image-like data structures.
The process of data retrieval, encoding from sequence to images and CNN design
and training are described in the following.

2.1 Fusion data retrieval

Gene fusion data were retrieved from two different sources, respectively for the
Onco and the NotOnco class.

Cosmic, a catalogue for somatic mutations in cancer [6], was used for the
Onco class. This catalogue provides per each fusion the transcript name of both
5p’ and 3p’ genes, as well as breakpoint information on the retained transcripts
considering UTR regions. For our work we selected only the coding sequence
(CDS) retained in the fusion. As this sequence translates into a protein which
may or may not be involved in an oncogenic process, it is the only information
that is significant for our classification task. For consistency with the NotOnco
class data, we reconstructed a total number of 1011 fusion sequences from the
GRCh37 version of the catalogue.

Data for the NotOnco class were reconstructed based on Babicenau at al.
work on recurrent chimeric fusion RNAs in non-cancer tissues and cells [2].
In this work, SOAPfuse (a tool for gene fusion analysis) was applied on 171
non-neoplastic tissue samples from 27 different tissues, identifying 291 recurrent
fusions (i.e. fusions that are detected in more than one sample) involving 238
gene pairs. Per each of these fusions authors report the breakpoint position on
human reference genome hgl9 of both fused genes. As no information is provided
about which part of the transcript is retained in the fusion, we assumed the most
common configuration, where the fused sequence is the result of the region near
the promoter for the 5p’ gene, and of the ending region for the 3p’ gene. This
assumption is biologically consistent, since a fused transcript needs a promoter
region to be translated into protein, and has no impact to our classification task.
As a matter of fact, we observed that 91% of the Onco class fused transcripts
included the region near the promoter for 5p’ gene and the ending region for
the 3p’ gene. On top of that, when selecting the proper CDS region according
to the above mentioned configuration, the same CDS region may be involved in
more than one trascript. Therefore, we decided to consider as NotOnco class all
the fusion sequences resulting from all possible combinations of transcripts at
5p’ gene with transcripts at 3p’ gene. In order to avoid any biases, we discarded
all the cases where the intron can be retained in the fusion trascripts. This led
to obtain for the NotOnco class a total number of 741 fusions which involve 524
transcripts.

Three transcripts are present in both the Onco class and the NotOnco class.

2.2 Encoding: from sequences to images

Once all the fused sequences had been reconstructed, they were translated into
protein sequences following the Amino Acid Translational Table. The translation
process is in-frame, because transcripts were taken from the beginning of the
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coding sequence identifiable by the ATG triplet, (a.k.a. initiation codon). As
CNN are inherently designed to take images as input, the fused amino acid
sequence needs to be converted into a N x M x C data structure, where N
and M are length and width of the image and C' the number of channels. For
our purposes, N was set to 3000. Hence, we discarded longer sequences and
padded the shorter ones using a fake amino acid. By doing so, we obtained a
total number of 1741 strings (1005 for the Onco class and 736 for the NotOnco
class, respectively) of 22 different letters, each corresponding to one amino acid
(21 real amino acids plus the fake one).

Popular methods for string encoding are ordinal encoding and one-hot en-
coding, eventually with some variations.

Ordinal encoding substitutes the i*" letter in a fusion with a fixed value
corresponding to a unique amino acid. Hence, the resulting image will have min-
imal dimensions N = 3000 x M =1 x C' = 1, with memory saving advantages
compared to other techniques. On the other hand, the incremental values as-
signed to the amino acids establish an artificial ordering which may bias the
representation [5].

One-hot encoding assigns to the s, letter a vector of length L, where each
Jen element corresponds to a feature. In standard one-hot encoding features are
the amino acids: hence, the i, letter is encoded by a vector of all zeros, except
for the j*" element associated to the amino acid, which is set to 1.

In our work we explored yet another encoding solution, with features cor-
responding to 28 real amino acid properties (i.e. hydrophobicity, ionic, mass,
polarity, etc.) taken from Bulka’s work [3]. Hence, in the following we will refer
to this strategy as Bulka’s encoding. In case of on/off properties, the j;j, element
is set to 0 or to 1, based on the fact that the amino acid has or does not have
that specific property. For the other ones that are not on/off (i.e. number of H
bonds, isoelectric point and hydrophobicity) it is set to the normalized value of
that property. For both one-hot and Bulka’s encoding strategies, the size of the
obtained images is N =3000 x M =1 x C = L.

As the CNN model will inherently assume spatial correlations between ad-
jacent pixels, the data structure was arranged so that the amino acid features
constitute the third dimension (i.e. channels) of the image.

Overall the encoding step is summarized in the first section of Fig. 1.

2.3 CNN architecture and training paradigm

As shown in the second section of Fig. 1, we designed a CNN model with two
convolutional layers (kernel size 5) followed by two max pooling layers (kernel
size 2). To avoid overfitting, we set dropout to 0.5 and learning rate to 0.01. After
flattening, we inserted a 1000-units dense layer with ReLU activation function
and a final single unit dense layer with sigmoid activation function, which pro-
vides the classification output. Batch size was set to 256 and number of epochs to
50, and the network was trained by backpropagation implementing a Stochastic
gradient descent optimizer.
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Fig. 1. Overview of the encoding and classification process.

The CNN was implemented in Keras python library under Tensorflow back-
end [4].

3 Results

A first set of experiments aimed at evaluating the performance of the network
in the classification of completely new fused transcripts, using different types
of encoding techniques. For this purpose, we created a random partition of the
available dataset, where we ensured a complete independence of the training and
test sets in terms of involved transcripts. More specifically, we included in the test
set only fused sequences whose 5p’ and 3p’ genes were both not present in any of
the fused sequences used for training. This configuration resulted in 1490 samples
for the training set and 251 samples for the test set, respectively. With these
sets, we trained and tested our CNN model with the three different encoding
methods (i.e. ordinal, standard one-hot and Bulka’s encoding). In order to asses
the stability of the network in terms of independence from weights initialization,
we trained and tested the model five times per each type of encoding. As it is
visible from the trend of the loss functions during the test set, shown in Fig. 2,
the network converged well within 50 epochs.

The test accuracy values obtained in the five runs per each type of encoding
are shown in the form of box-plots in Fig. 3, with black boxes ranging from the
25% to the 75% percentile of the accuracy values, and red lines indicating the
median accuracy value over the five runs.

From the plots in Fig. 3 we can make the following observations. i) Ordinal
encoding consistently achieved the lowest accuracy (around 52%, with very low
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Fig. 2. Loss functions of CNN models using different encodings: 2(a) ordinal encoding,
2(b) standard one-hot encoding and 2(c) Bulka’s encoding.
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Fig. 3. Box-plot of test accuracy values over five runs, using three different types of
encoding techniques.

variation over the five runs). ii) Bulka’s encoding obtained on average higher
accuracy than ordinal encoding (median accuracy value around 60%), but at
the price of a very high variability of the results (Bulka’s box ranges from 52%
to 88% accuracy). iii) Standard one-hot encoding had a very good accuracy
(median value 89%), coupled with reasonably low variability.

Based on our results, standard one-hot encoding provided the best compro-
mise, in terms of classification accuracy and stability of the model. This evidence
can be explained by taking into consideration the three different encoding de-
signs. On one hand, ordinal encoding introduces a very strong bias into the
representation, because it forcefully creates an alphabetical ordering of the 22
amino acids. This easily explains the low accuracy values obtained by this type
of encoding. On the other hand, Bulka’s encoding uses physical properties of the
proteins to univocally represent each amino acid, without implying any type of
ordering. Nonetheless, there is no certainty about the significance of the spe-
cific properties that were chosen for the representation, nor of their complete
independence. This might explain the high instability of the classification model
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leveraging upon Bulka’s technique. In the end, according to our results, standard
one-hot encoding ensures the most unbiased data representation, and hence the
highest classification accuracy. Based on this evidence, we selected this type of
encoding for our next set of experiments.

Because of the limited number of transcripts involved in the dataset, one
might argue that the high accuracy of the network derives from a sort of mem-
orization of the transcript sequences, and not from a real capability of discrim-
inating significant patterns on the input data. To prove this hypothesis wrong,
we performed a second set of experiments, giving the entire transcripts of both
the NotOnco and the Onco class as input to our CNN model. The rationale of
this experiment is to ensure that the network does not blindly assign all the first
set of transcripts to the NotOnco class and all the second set of transcripts to
the Onco class, respectively.

As a result of this experiment, we obtained that only 70% of the first set
of transcripts were classified as NotOnco class and the 78% of the second set
as Onco class, respectively. As a fair amount of the whole transcripts were still
assigned a class that is different from the one they were extracted from, we can
reasonably conclude that the classification task is not driven by the transcript
sequence alone.

4 Conclusion

In the end, our experiments proved that the proposed CNN approach is able to
predict the oncogenicity of a gene fusion with a satisfactory level of accuracy,
relying only on the fused sequence with no additional information. Tests on three
different encoding methods demonstrated that standard one-hot encoding was
the most suitable for the representation of the amino acid sequence.

Future works will focus on the interpretation of the features extracted by the
locally connected stages of the CNN, in order to obtain a deeper understanding of
the specific biological patterns that mostly influence the carcinogenic potential of
a gene fusion. On top of that, we plan to increase as much as possible the number
of samples used to train the CNN, with the aim of improving the generalization
capabilities of our model.
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